RESULTS

OF THE

Magnetical and meteorological OBSERVATIONS

made at

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR
1884 :

UNDER THE DIRECTION OF
W. H. M. CHRISTIE, M.A. F.R.S.

ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF JHE BOARD OF ADMIRALTY IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON:
PRINTEDBYEYREAND SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY. FOR HER MAJESTY'S STATIONERY OFFICE.

$$
\begin{aligned}
& c^{a^{50}} \\
& \text { R.syy" } c^{2}
\end{aligned}
$$

I N D E X.

DARLIMGTON plimle library
INTRODUCTION.
PAGE
Personal Establishment and Arrangements' $i u i$
General Description of the Buildings and Instruments $i i i$
The Magnetical and Meteorological Observatory iii
Positions of the Instruments $i v$ and v
Experiments to determine the effect of masses of iron on the Declination Magnet $v i$
Subjects of Observation $v i i$
Magnetic* Ins̀trùments.
Upper Dećlination Magnett vii
Its Súspeinsion : "Stand: Double Box: Collimator: and Theodolite vii and viii
Its Callimation Error: TTorsion Effect of its Suspending Skein $\boldsymbol{i x}$
Determination of the reading of the Azimuthal Circle of the Theodolite corresponding to the Astronomical Meridian ix
Method of Making and Reducing Observations for Magnetic Declination \boldsymbol{x}
Lower Dećlination "Mágnet \boldsymbol{x}
General principle of Photographic Registration $x i$
Arrangements for recording the Movements of the Declination Magnet $x i i$
Scale.for.measurement of Ordinates of the Photographia Curve $x i v$
Horizontal Force Magnet. $x i v$
Magnet Carrier: Suspension Skein: Suspension Pulleys $x i v$ and $x v$
Plane Mirror, Telescope, and Scale for Eye-observation $x v$
Adjustment of the Magnet $x v$ to xviz
Eye-observations: Photographic Record $x v i i i$
Scale for measurement of Ordinates of the Photographic Curve $x v i i i$
Temperature coeffictent ${ }^{\prime}$ $x i x$
Vertical Force Magnet $x i x$
Supporting frame, Carrier, and Knife-edge $x \boldsymbol{x}$
Plane Mirror, Telescope, and Scale for Eye-observation $x x$
Time of Vibration in the Vertical and Horizontal Planes $x x i$
Determination of the value of the Scale $x x i$
Eye-observations: Photographic Record xxii
Scale fon measurement of Ordinates of the Photographic Curve $x x i i$
Temperature coefficient $x x i i i$
Dip Instrumeat $x x i i i$
Deflexion Instrument xxiy
A 16015. Wt. 20651 $\left[\begin{array}{ll}a & 2\end{array}\right]$

INDEX.

IN'CRODUCTION - continued.
page
Earth Current Apraratus $x x v i$
Earth Connexions: Wire Circuits xxvii
Arrangements for Photographic Registration $x x v i i$
Magnetic Reductions xxviii
Treatment of the Photographic Curves sxviiii
Results in terms of Gauss's Absolute Unit xxix
Harmonic Analysis of the Diurnal Inequalities of Magnetic Declination, Horizontal Force, and Vertical Force $x x x$ and $x x x i$
Magnetıc Disturbances and Earth Currents xxxi
Scale Values of the different Magnetic Elements, and Comparative Values for differentAbsolute Units:$x x x i i i ~ a n d ~ x x x i v$
Notes referring to the:Plates xxxiv
Meteorobogical Instruments.
Standard Barometer $x x x v$
Its Position: Diameter of Tube : Correction for Capillarity $x x x v$
Correction for Index Error: Comparison with Kew Standard $x x x v$
Photographic, Barometer xxxvi
Arrangements for Photographic Registration xixxvi
Determination of the Scale $x x x v v i$
Dry and Wet Bulb Thermometers $x x x v i$
Revolving Frame: Standard Thermometer $x x x v i$ and $x x x v i i$
Corrections for Index Error xxxvii
Photographic, Dry and Wet Bulb Thermometers $x x x v i i i$
Radiation Thermometers $x x x v i i i$
Earth Tifermometers xxxix
Thames Thermometers xxxix
Osler's Anemometer $x l$
Method of registering the Direction and Pressure of the Wind $x l$
Its Rain-gauge $x l i$
Robinson's Anemometer $x l i$
Rain-Gauges $x l i i$
Electrometer x xiii
Instrument employed : general description xliii
Method of collecting the Electricity of the Atmosphere xliiu
System of Photographic Registration xliv
Sunshine Instrument x xiv
Ozonometer $x l v$

INDEX.

INTRODUCTION-concluded.
Meteorological Reductions $x l v$
System of 'Reduction $x l v$
Deduction of the Temperature of the Dew-Point, and of the degree of Humidity . . xlvi and xlvii Rainfall:,Clouds and Weather: Electricity xlviii to l
Meteorological Averages l
Observations of Luminous Meteors $l i$
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:-
Results of the Magnetical Observations (i)
Table 1.-Mean Magnetic Declination West for each Astronomical Day (ii)
Table II.-Monthly Mean Diurnal Inequality of Magnetic Declination West (ii)
Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Astro- nomical Day. (iii)
Table IV.-Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet, for each Astronomical Day (iv)
Table V.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force (v)
Table VI.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet, at each of the ordinary Hours of Observation (v)
Table VII.-Mean Vertical Magnetic Force (diminished by a Constant) for each Astro- nomical Day (vi)
Table VIII.-Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnet, for each Astronomical Day (vii)
Table IX.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force(viii)
Table X.-Monthly Means of Readings of the Thermometer placed within the box in- closing the Vertical Force Magnet, at each of the ordinary Hours of Observation (viii)
Table XI.-Mean Magnetic Declination, Horizontal Force, and Vertical Force in each Month (ix)
Table XII.-Mean Diurnal Inequalities of Magnetic Declination, Horizontal Force, andVertical Force, for the year(x)
Table XIII.-Diurnal Range of Declination and Horizontal Force on each Astronomical day,as deduced from the Twenty-four Hourly Measures of Ordinates of the PhotographicRegister :(xi)
Table XIV.-Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean,for Declination, Horizontal Force, and Vertical Force, as deduced from the MonthlyMean Diurnal Inequalities(xi)
Table XV.-Values of the Coefficients in the Periodical Expression-

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+\& c .
$$for the Magnetic Diurnal Inequalities(xii)

Table XVI.-Values of the Coefficients and Constant Angles in the Periodical Expressions-

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+\alpha)+c_{2} \sin (2 t+\beta)+\& \mathrm{c} \\
& \mathrm{~V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+\alpha^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+8 \mathrm{c}
\end{aligned}
$$

[^0]RESUITS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS-continued.
Table XVII.-Separate Results of Observations of Magnetic Dip * (xiv)
Table X VIII.-Monthly and Yearly Means of Magnetic Dip, and General Meau (xv)
Table XIX.-Determination of the Absolute value of Horizontal Magnetic Force (xvi)
Magnetic Disturbances and Earth Currents (xvii)
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.001 in Horizontal Force, or 0.0003 in Vertical Force, taken from the Photographic Register (xviii)
Explanation of the Plates of Magnetic Disturbances and Earth Currents (xxiv)
Plates I. xo X., photo-lithographed from tracings of the Photographic Registers of Mag-netic Disturbances and Earth Currents.
Plate XI., photolithographed from tracings of the Photographic Registers of MagneticMovements, as types of the Diurnal Variations at four seasons of the year.
Results of Meteorological Observations (xxv)
Daily Results of Meteorological Observations (xxvi)
Highest and Lowest Readings of the Barometer (l)
Absolute Maxima and Minima Readings of the Barometer for each Month (lii)
Monthly Results of Meteorological Elements (liii)
Monthly Mean Reading of the Barometer at every Hour of the Day (liv)
Monthly Mean Temperature of the Air at every Hour of the Day (liv)
Monthly Mean Temperature of Evaporation at every Hour of the Day (lv)
Monthly Mean Temperature of the Dew-Point at every Hour of the Day (lv)
Monthly Mean Degree of Humidity at every Hour of the Day (lvi)
Total Amount of Sunshine registered in each Hour of the Day in each month (lvi)
Earth Thermometers:-
(I.) Reading of a Thermometer whose bulb is sunk to the depth of $25 \cdot 6$ feet (24 Frenchfeet) below the surface of the soil, at Noon on every Day(lvii)
(II.) Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day (lvii)
(III.) Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day (lviii)
(IV.) Reading of a Thermometer whose bulb is sunk to the depth of $\mathbf{3 \cdot 2}$ feet (3 French feet) below the surface of the soil, at Noon on every Day (lix)
(V.) Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day (lx)
(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day (lxi)
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer (lxii)
Mean Hourly Measures of the Horizoutal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer (lxvii)
RESULIS OF MAGNETICAL ANU METEOROLOGICAL OBSERVATIONS-concluded.
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day (lxviii)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day (lxix)
Monthly Mean Electrical 了otential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day. (lxx)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on . Non-Rainy Days, at every Hour of the Day (Ixxi)
Amount of Ruin collected in each Month by the different Rain Gauges (lxxii)
Observations of Luminous Meteors (lixxiii)

RESULTS

or

MAGNETICAL AND METEOROLOGICAL

OBSERVATIONS.

1884.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1884.

Introduction.
 § 1. Personal Establishment and Arrangements.

During the year 1884 the establishment of Assistants in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Ellis, Superintendent, and William Carpenter Nash, Assistant, aided usually by four Computers. The names of the Computers employed at different times during the year are, John A. Greengrass, William Hugo, Ernest E. McClellan, Frederick C. Robinson, and Edward Finch.

Mr. Ellis controls and superintends the whole of the work of the Department. Mr. Nash is charged generally with the instrumental adjustments, the determination of the values of instrumental constants, and the more delicate magnetic observations. He also specially superintends. the Meteorological Reductions. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. On its east stands the New Library (erected at the end of the year 1881), in the construction of which non-magnetic bricks were used, and every care was taken to exclude iron. The Magnetical and Meteorological Observatory is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the directions of the cardinal magnetic points as they were in 1838. The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room ; the stove which warms this room, and its flue, are of copper. The remaining portion, consisting of the eastern, southern, and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite for determination
of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of the position of the astronomical meridian. Both the magnet and its theodolite are supported on piers built from the ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern being supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the junction of the southern and western arms. The sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use. A mean solar clock (Molyneux), transferred from the Astronomical Department, was set up in the northern arm during the year 1883.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time employed for photographic record of the variations of declination, as well as for absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were exposed in the upper room to large variations of temperature, a room known as the Magnet Basement (in which the variations of temperature are inconsiderable) was excavated in the year 1864 below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new declination magnet for photographic record of declination, were mounted therein. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, to avoid mutual interference; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A mean solar clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. Another mean solar clock is attached to the western wall of the southern arm. On the northern wall, near the photographic barometer, is fixed the Sidereal standard clock of the Astronomical Observatory, Dent 1906, communicating with the chronograph and with clocks of the Astronomical Department by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped up with bags packed with straw or jute.
A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this platform.
An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zinc-built room adjacent to the computing room on its western side.
The Dip instrument and Deflexion apparatus are placed in the New Library. Each instrument rests on a heavy slate slab supported by strong wooden framework rising from brick work built into the ground.
To the south of the Magnet House, in what is known as the Magnet Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its northwestern corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden hut. About 25 feet to the west of the photographic thermometers is situated the thermometer stand carrying the thermometers used for eye observations, and adjacent to the thermometer stand on the north side are several rain gauges. Between the rain gauges and the Magnet House are placed the thermomeiers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to the sky.

The Magnet Ground is bounded on its south side by a range of seven rooms, known as the Magnet Offices. No. 1 is used as a general store room, and in it is placed the Watchman's Clock ; Nos. 2, 3, and 4 are used for photographic purposes in connexion with the Photoheliograph, placed in a dome adjoinng No. 3, on its south side; Nos. 5 and 6 are store rooms; No. 7 forms an ante-room and means of approach to the Lassell dome.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind and amount of rain, and Robinson's, giving continuous record of velocity; are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

On 1883 March 3 the iron tube of the Lassell reflecting telescope was brought into the ground south of the Magnet Offices (known as the South Ground), and on

March 9 the iron supports of the same. On 1883 December 31 the iron work of the dome was brought into the same ground, and on 1884 June 26, the iron gutter of the dome in 16 pieces, weighing together about 2 tons 6 cwt . A careful examination of the magnetic registers on each of these occasions shows that no disturbance of the declination, horizontal force, or vertical force magnets was caused by the location of these masses of iron in the South Ground, at a distance of more than 100 feet from the magnets.

In order to determine the effect of a mass of iron on the magnets, experiments were made on 1884 July 2 , with $4,8,12$, and 16 pieces of the gutter respectively, placed at a distance of 25 feet from the declination magnet in a direction south-east (magnetic) from it, so that the maximum effect would be produced. The following are the results for the deflexions of the Upper Declination magnet :-

Each piece weighs nearly 3 cwt .
As the effect of a mass of iron on a magnet varies as the sine of twice its magnetic azimuth divided by the cube of its distance from the magnet, these experiments show that the deflection caused by the whole of the iron in the lassell instrument and dome (which is at a distance of 100 feet and very nearly in the magnetic meridian of the declination magnet) would be quite insensible.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning of the year $18+8$ these were superseded by the introduction of the method of photographic registration, by which means a continuous record of the various elements is obtained.

For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which have been made from time to time, the reader is referred to the Introduction to the Magnetical and Meteorological Observations for the year 1880 and previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

Upper Declination Magnet.

§ 3. Subjects of Observation in the year 1884.

The observations comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire; eye observations of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, and occasional phenomena.

§ 4. Magnetic Instruments.

Upper Declination Magnet and its Theodolite.-The upper declination magnet, employed solely for the determination of absolute declination, is by Meyerstein of Göttingen ; it is a bar of hard steel, 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick, attached by two pinching screws to the magnet carrier, also by Meyerstein, but since altered by Troughton and Simms. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently of the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalk of the magnet carrier; to the upper portion carrying the vernier is attached, by a hnok, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, \&c., is carried by a braced wooden tripod stand, whose feet rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to the roof. The upper end of the suspension skein is attached to a short square wooden rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upper end of the rod is fixed a leather strap, which, passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangular wonden box (one box within another), both boxes being covered externally and
internally with gilt paper, and having holes'at their south and north ends, for illumination of the magnet-collimator and for viewing the collimator with the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried by two sliding frames fixed by pinching screws to the south and north arms of the magnet respectively. The cobweb cross is in the principal focus of the lens, and its image in the theodolite telescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.

The theodolite, by which the position of the upper declination magnet is observed, is by Troughton and Simms. It is planted about 7 feet north of the magnet. The radius of its horizontal circle is $8 \cdot 3$ inches, and the circle is divided to 5^{\prime}, and read, by three verniers, to $5^{\prime \prime}$. The theodolite has three foot-screws, which rest in brass channels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches : it is carried by a horizontal transit axis $10 \frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eye-piece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carries the micrometer-head. The value of one division of the striding level is considered to be equal to $1^{\prime \prime} \cdot 05$. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as δ Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance of about 270 feet from the theodolite, affords an additional check on its continued steadiness.

The inequality of the pivots of the axis of the theodolite telescope was found from several independent determinations made at different times to be very small. It appears that when the level indicates the axis to be horizontal the pivot at the illuminated end of the axis is really too low by $1^{\text {div }} \cdot 3$, equivalent to $1^{\prime \prime} \cdot 4$.

The value in arc of one revolution of the telescope-micrometer is $1^{\prime} .34^{\prime \prime} \cdot 2$.
The reading for the line of collimation of the theodolite telescope was found, by ten double observations, 1883 December 12, to be $100^{\text {r. }} 334$, by ten double observations, 1884 September 11, 100r.347, and by ten double observations, $188 \pm$ December 11, $100^{\text {r. }} 342$. The value used throughout the year 1884 was $100^{\text {r. }} 350$.

The effect of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by ten double observa-
tions made on 1882 September 14, which showed that in the ordinary position of the glass the theodolite readings were diminished by $20^{\prime \prime} \cdot 1$. Other sets of observations, made on 1883 December 12 and 1884 December 11, gave $18^{\prime \prime} \cdot 9$ and $19^{\prime \prime} \cdot 5$ respectively. The mean of these, $19^{\prime \prime} \cdot 5$, has been added to all readings throughout the year 1884.

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collimator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1884 was $26^{\prime} .5^{\prime \prime} \cdot 4$, being the mean of determinations made on 1880 October 26, 1881 September 8, 1882 September 12, 1883 December 13, and 1884 December 12 , giving respectively $25^{\prime} .56^{\prime \prime} \cdot 6,26^{\prime} .18^{\prime \prime} \cdot 9,26^{\prime} .15^{\prime \prime} \cdot 0,25^{\prime} .53^{\prime \prime} \cdot 5$, and $26^{\prime} .2^{\prime \prime} \cdot 9$. With the collimator in its usual position, above the magnet, the quantity $26^{\prime} .5^{\prime \prime} \cdot 4$ has been subtracted from all readings.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until a brass bar (of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The brass bar is thus inserted usually about onco a month, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for displacement of the magnet from the meridian by the torsion of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion circle by a definite amount, usually 90°, thus giving the skein that amount of azimuthal twist, and observing, with the theodolite, the change in the position of the magnet thereby produced, from which is derived the ratio of the couple due to torsion of the skein to the couple due to the earth's horizental magnetic force. This ratio was, on 1882 September 13, found to be $\frac{1}{2} \frac{1}{6}$, on 1883 December 12, $\frac{1}{37}$, and on 1884 December 12, $\frac{1}{1 \frac{1}{2} 2}$. During the year 1884 the plane in which the suspension skein was free from torsion generally coincided with the magnetic meridian, small corrections of the absolute measures of magnetic declination for deviation from the plane of no torsion being required only in the months of June and November and in portions of the months of January, July, and December.
The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1880 . December 29 to be $30^{s} 78$, on 1881 September $9,31^{s} 30$, on 1882 September 14, $31^{s} \cdot 20$, on 1883 December $13,31^{s} 15$, and on 1884 December 11, $31^{\text {s. }} 17$.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined about once in each month by observation of the stars Polaris and δ Ursæ Minoris. The fixed mark is usually observed weekly.

The concluded mean reading of the circle for the south astronomical meridian (deduced entirely from the observations of the polar stars), used during the year 1884 for reduction of the observations of the declination magnet, was until June $4,27^{\circ} .3^{\prime} .14^{\prime \prime} \cdot 4$, and from June 5 to the end of the year, $27^{\circ} .3^{\prime} \cdot 4^{\prime \prime} \cdot 6$.

In regard to the manner of making observations with the upper declination magnet:-The observer on looking into the theodolite telescope sees the image of the diagonal cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds, he first applies his eye to the telescope about one minute, or two vibrations, before the prearranged time of observation, and, with the vertical wire carried by the telescopemicrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and so on, taking in all four readings. The mean of each pair of adjacent readings of the micrometer is taken, giving three means, and the mean of these three is adopted. In practice this is done by adding the first and fourth readings to twice the second and third, and dividing the sum by 6 . Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the pre-arranged time, the other at the vibration following. The verniers of the theodolitecircle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circle-reading corresponding to the position of the magnet is found. The difference between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register of the lower declination magnet. The times of observation of the upper declination magnet are usually $1^{\mathrm{h}} .5^{\mathrm{m}}, 3^{\mathrm{h}} .5^{\mathrm{m}}, 9^{\mathrm{h}} .5^{\mathrm{m}}$, and $21^{\mathrm{h}} .5^{\mathrm{m}}$ of Greenwich mean time, reckoning from noon.

Lower Declination Magnet.-The lower declination magnet is used simply for the purpose of obtaining photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long, $1 \frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one, of the crossed slates resting on the brick piers rising up from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the brass bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet not being necessary in this case.

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of $5: 2$ nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication a cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indications whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal : so also can two different galvanic earth currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similnrly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement being horizontal, a horizontal cylinder is provided.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest each on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and held by a slender brass clip, the cylinder thus prepared is placed in position, and connected with the clock-movement: it is

xii Introduction to Greenwich Magnetical Observations, 1884.

then ready to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. The cylindrical glass cover to the cylinder as used in former years is still employed for the electrometer. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, a reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray light from reaching the photographic paper.

In June 1882 the photographic process employed for so many years was discarded, and a dry paper process introduced, the argentic-gelatino-bromide-paper, as prepared by Messrs. Morgan and Kidd of Richmond (Surrey), being used with ferrous oxalate development. The greater sensitiveness of this paper permits diminution of the effective surface of the magnet mirrors, and allows also the use of smaller gas flames. In the case of the vertical force magnet the old and comparatively heavy mirror has been replaced by a small and light mirror with manifest advantage, as will be seen in the description of the vertical force magnet. The new paper works equally well at all seasons of the year, and any loss of register on account of photographic failure is now extremely rare.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter (reduced by a stop, on the introduction of the new photographic paper, to an effective diameter of about 1 inch), which thus partakes in all the angular movements of the magnet. The revolving ebonite cylinder is $11 \frac{1}{2}$ inches long and $14 \frac{1}{4}$ inches in circumference: it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force may both be registered on the same cylinder, which makes one complete revolution in 26 hours.

The light used for obtaining the photographic record is that given by a flame of coal gas, charged with the vapour of coal naphtha. A vertical slit about $0^{\text {in }} 3$ long and $0^{\text {in }} \cdot 01$ wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror and the registering cylinder, and its distance from the concave mirror of the magnet is
about 25 inches. The distance of the axis of the registering cylinder from the concave mirror is $134: 4$ inches. Immediately above the cylinder, and parallel to its axis, are placed two long reflecting prisms (each 11 inches in length) facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, falls on the concave mirror, and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism, by the action of which it is reflected downwards to the paper on the cylinder as a small spot of light. The concave mirror can be so adjusted in azimuth on the magnet that the spot shall fall not at the centre of the cylinder but rather towards its western side, in order that the declination trace shall not interfere with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.

By means of a small prism, fixed near the registering cylinder, the light from another lamp is made to form a spot of light on the cylinder in a fixed position, so that, as the cylinder revolves, a reference or base line is traced out on the paper, from which, in the interpretation of the records, the ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and lets it in again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and at which it was again let in. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour of changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is not strictly followed. To obviate any uncertainty that might arise on such occasions from the interference of the two ends of a trace slightly longer than 24 hours, it has been arranged that one revolution of the cylinder should be made in 26 hours. The actual length o 24 hours on the sheet is about $13 \cdot 3$ inches.

xiv Introduction to Greenwich Magnetical Observations, 1884.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, $134 \cdot 4$ inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4.691 inches on the photographic paper. A small strip of cardboard is therefore prepared, graduated on this scale to degrees and minutes. The ordinates of the curve as referred to the base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times daily, the apparent value of the base line, as inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly, a mean base line value is adopted for use through each group. This adopted base line value is written upon every sheet. Then, with the cardboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure. From the new base line the hourly ordinates (see page $x x v i i i$) are measured.

Horizontal Force Magnet.-The horizontal force magnet, for measure of the variations of horizontal magnetic force, was made by Meyerstein of Göttingen, and like the two declination magnets, is 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For support of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnet Basement to the Upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line; and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line : these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of
the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about $7^{\text {tt }} 6^{\mathrm{in}}$. The distance between the branches of the skein, where they pass over the upper pulleys, is $\mathrm{l}^{\mathrm{in}} 14$: at the lower pulleys the distance between the branches is $0^{\text {in }} 80$. The two branches are not intended to hang in one plane, but are to be so twisted that their torsion will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the marked end to recede towards the south under the influence of torsion. An oval copper bar, exactly similar to that used with the lower declination magnet, is applied also to the horizontal force magnet, for the purpose of diminishing the small accidental vibrations.

Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90.84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror being therefore inclined about 19° to the axis of the magnet.

To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The

$z v i$

position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion-circle so as to reverse the direction of the torsion produced by the oblique tension of the two branches of the suspending skein, the magnet may be made to take the same position as before but with poles reversed, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. We thus obtain two readings of the torsion circle corresponding to the same direction of the magnet axis, but with the marked end opposite ways, without however possessing any information as to whether the magnet axis is accurately transverse to the magnetic meridian, inasmuch as the same operation can be performed whether the magnet axis be transverse or not.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let, in addition, the time of vibration be taken in each position of the magnet. Resolve the terrestrial magnetic forces acting on the poles of the magnet each into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet, marked end westerly and marked end easterly, the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this force, in one case increases that due to the torsion, and in the other case diminishes it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes, and the times of vibration in both positions of the magnet become the same.

The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore double of the angle of torsion of the suspending lines for which, in either position, the force of terrestrial magnetism is neutralized by the torsion.

The present suspension skein was mounted on 1880 December 30, and on December 31 the following observations were made:-

1880, Day.	The Marked End of the Magnet.							
	West.				East.			
	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1 of TorsionCircle Reading.	Mean of the Times of Vibration.	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of TorsionCircle Reading.	Mean of the Times of Vibration.
Dec. 31	-	div.	div.	-	-	div.	div.	s
	144	36.80		21.30	227	$32 \cdot 52$		20.50
	145	$45 \cdot 26$	7.89	21.12	228	40'07	$7 \cdot 28$	$20 \cdot 62$
	146	$53 \cdot 15$	$\begin{aligned} & 7 \cdot 89 \\ & 8 \cdot 94 \end{aligned}$	20.94	229	$47 \cdot 35$	7.28 7.97	$20 \cdot 76$
	147	62.09	$\begin{aligned} & 8 \cdot 94 \\ & 8 \cdot 06 \end{aligned}$	20.74	230	$55 \cdot 32$	7.97 7.94	20.90
	148	70'15		$20 \cdot 54$	231	$63 \cdot 26$	7.94 8.67	21.00
					232	$71 \cdot 93$	8.67	21.12

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read $140^{\circ} .15^{\prime}$, marked end west, and $230^{\circ} .0^{\prime}$, marked end east, the difference being $83^{\circ} .45^{\prime}$. Half this difference, or $41^{\circ} .52^{\prime} \cdot 5$, is therefore the angle of torsion when the magnet is transverse to the meridian. The values similarly found from other sets of observations made on 1882 January 3, 1883 February 16, 1883 December 31, and 1885 January 1, were respectively 42°. $9^{\prime}, 41^{\circ} .56^{\prime}, 42^{\circ} .1^{\prime} \cdot 5$, and 42°. 9^{\prime}. The value adopted in the reduction of the observations during the year 1884 was $42^{\circ} .0^{\prime}$.

The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 146° throughout the year.

The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.

The length of $30^{\text {div }} 85$ of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90.84 inches; consequently the angle at the mirror subtended by one division of the scale is $14^{\prime} .43^{\prime \prime} \cdot 2$, or for change of one division of scale-reading the magnet is turned through an angle of $7^{\prime} .21^{\prime \prime} 6$.

The variation of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ cotan. angle of torsion \times value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to

xuiii Introduction to Greenwtch Magnettcal Observations, 1884.

change of one division of scale-reading was found to be 0.002378 , which value has been used throughout the year 1884 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. A fine vertical wire is fixed in the field of view of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually $\mathbf{l}^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$, and 21^{h} of Greenwich mean time (reckoning from noon). Remarking that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the prearranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. It reads too high by $0^{\circ} \cdot 3$, but no correction has been applied.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record of the motions of the lower declination magnet. And as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter, reduced by a stop (on the introduction of the new photographic paper) to an effective diameter of about 1 inch. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages xii and $x i i i$), in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 136.8 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.
The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or
136.8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273.6 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole horizontal force will therefore be $273.6 \times$ tan. angle of torsion $\times 0.01$. Taking for angle of torsion $42^{\circ} .0^{\prime}$ the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2.464 inches, and with this unit the cardboard scale for measure of the ordinates was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, from which the hourly ordinates (see page mxviii) are measured, exactly in the same way as described for declination.
The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnet Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the change of position of the magnet thereby produced. This process seems preferable to others in which was observed the effect which the magnet, when inclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself, Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made in the early part of the year 1868 on the principle mentioned, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced an apparent change of 000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east indicating that a change of 1° of temperature produced an apparent change of $\cdot 000187$ of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force. It is concluded that an increase of 1° of temperature produces an apparent decrease of 00018 of horizontal force.

On November 10 the cord attaching the single pulley to the small windlass gave way. It was renewed on November 11.

Vertical Forcr Magnet.-The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is 1 ft .6 ins . long and lozenge.
shaped, being broad at the centre and pointed at the ends; it is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the eastern arm. The supporting frame consssts of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the vertical plane through the magnet an angle of $52 \frac{3}{4}^{\circ}$ nearly. A telescope fixed to the west side of the brick pier supporting the theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical opal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two screw stalks, carrying adjustable screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

In the year 1882 Messrs. Troughton and Simms substituted for the old mirror of 4 inches diameter a much lighter mirror of 1 inch diameter, and also lowered the position of the knife-edge bar with respect to the magnet so as to permit of a diminution of the adjustable counterpoise weights which as well as the mirror appear to largely affect the temperature correction of this balance-magnet. The use of a smailer and much lighter mirror was rendered possible by the much greater sensitiveness of the new photographic paper introduced in 1882 June.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week, or more often should it appear to be desirable. From 22 observations made between January 1 and April 30 the time of vibration was found to be $21^{\mathrm{s}} .941$; and from 43 observations made between May 3 and December 29, $19^{\circ} 798$. The time of vertical vibration was altered on May 1 and again on May 3 by a slight shift of the screw weight on the vertical stalk in order to make equal changes of amplitude in the horizontal and vertical force photographs more nearly correspond to equal changes of absolute magnetic force.

The time of vibration of the magnet in the horizontal plane is determined by suspending the magnet with all its attached parts from a tripod stand, its broad side being in a plane parallel to the horizon, so that its moment of inertia is the same as when in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers is placed on the floor, at right angles to the long axis of the magnet, so as to be seen, by reflexion, in the fixed telescope. The magnet is observed only when swinging through a small arc. Observations made in the way described on 1884 December 30 gave for the time of vibration of the magnet in the horizontal plane, $17^{s} 027$. This value has been used throughout the year 1884.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and $30^{\text {dir }} 85$ of the scale correspond to 12 inches. Consequently the angle which one division of the scale subtends, as seen from the mirror, is $7^{\prime} .11^{\prime \prime} \cdot 2$, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is $3^{\prime} .35^{\prime \prime} .6$.

But the angular movement of the normal to the mirror is equal to the angular movement of the magnet multiplied by the sine of the angle which the plane of the mirror makes with a vertical plane through the magnet. This angle, as already stated, is $52 \frac{3}{4}^{\circ}$, therefore dividing the result just obtained, $3^{\prime} .35^{\prime \prime} \cdot 6$, by $\operatorname{Sin} .52 \frac{3}{4}^{\circ}$, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be $4^{\prime} .30^{\prime \prime} \cdot 9$.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ cotan. dip $\times\left(\frac{T V}{T}\right)^{z} \times$ value of one division in terms of radius, in which T^{\prime} is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. From January 1 to April 30 , assuming $T^{\prime}=17^{s} 027, T=21^{\mathrm{s}} \cdot 941$, and $\operatorname{dip}=67^{\circ} .30^{\prime}$, the change of vertical force corresponding to change of one division of scale reading was found to be 0.000328 ; and from May 3 to December 29 with the same value for $T^{\prime \prime}$, and assuming $T=19^{s} \cdot 798$, and $\operatorname{dip}=67^{\circ} .29 \frac{1}{2}^{\prime}$, it was found to be 0.000403 . These values have been severally used during the
periods mentioned for conversion of the observed scale readings into parts of the whole vertical force.

The hours of observation of the vertical force magnet are the same as those for the horizontal force magnet, and the method of observation is precisely similar, the time of vertical vibration being substituted for that of horizontal. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.

As in the case of the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. It reads too high by $0^{\circ} \cdot 2$, but no correction has been applied.

The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and the variations of the barometer are also registered on it. The slit is horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 1 inch in diameter, and the slit is distant from it about 22 inches, being placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical arrangements. Instead of falling on a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall on the lower part of the sheet to avoid interference with the barometer trace. A base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of time scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.

The scale for measure of ordinates of the photographic curve is determined as follows:-.The distance from the concave mirror to the surface of the registering cylinder is 100.2 inches. But the double of this measure, or 200.4 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole vertical force, will therefore be $=200.4 \times \tan . \operatorname{dip} \times\binom{ T}{T^{\prime}}^{2} \times 0.01 . \quad$ Using the values of T, T^{\prime}, and of dip, before given (page $x_{x} x i$), the movement of the spot of light on the cylinder for a change of 0.01 of vertical force is thus found to be, for the period January 1 to

April 30, 8.034 inches, and from May 3 to December 29, 6.538 inches, and with these units the scales for measure of the ordinates were constructed. Base line values were then determined, and, written on the sheets, and new base lines laid down, from which the hourly ordinates (see page xxviii) were measured, exactly in the same way as was described for horizontal force.

In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made in a similar manner to those for the horizontal force magnet (page wix), it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 0.00020 of vertical force. The value of the coefficient is thus much less than was found in the old state of the magnet with the large mirror, although still not following the ordinary law of increase of temperature producing loss of magnetic power. In practice a nearly uniform temperature is as far as possible maintained.

On February 27 the driving chronometer was sent to Messrs. E. Dent and Co, to be cleaned ; it was returned on February 29.

Dip Instrument.-The instrument with which the observations of magnetic dip have been made during the year 1884 is that which is known as Airy's instrument. It is mounted in the New Library on a slate slab supported by a braced wooden stand built up from the ground independently of the floor. The plan of the instrument was arranged by Sir G. B. Airy so that the points of the needles should be viewed by microscopes and if necessary observed whilst the needles were in a state of vibration, that there should be power of employing needles of different lengths, and that the field of view of each microscope should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the observation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, turn on a horizontal axis so as to follow the points of the needles in the different positions which in observation they take up. The object glasses and field glasses of the microscopes are within the front glass plate, their eye glasses being outside, and turning with them on the same axis. Upon the plane side of each field glass (the side next the object glass and on which the image of the needle point is formed) a scale is etched. And on the inner side of the front glass plate is etched the graduated circle, divided to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$. The verniers (thin plates of metal, with notches instead of lines, for use with transmitted light) are carried by the horizontal axis, inside the front glass, plate. their reading lenses, attached to the same axis, being
outside. A suitable clamp with slow motion is provided. The microscopes and verniers can be illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms are carried behind the back glass plate on a circular frame in such a way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again opposite to its proper microscope or vernier.

Since the instrument has been placed in the New Library artificial light has not been employed in making the observation.

The whole of the apparatus is planted upon a circular horizontal plate, admitting of rotation in azimuth : a graduated circle near the circumference of the plate is read by two fixed verniers.

A brass zenith point needle, having points corresponding in position to the three different lengths of dip needles, is used to determine the zenith point for each particular length of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is adjusted in level from time to time. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level : the correction seldom exceeds a very few seconds.

The needles in regular use are of the ordinary construction; they are two 9 -inch needles, B_{1} and B_{2}, two 6-inch needles, C_{1} and C_{2}, and two 3 -inch needles, D_{1} and D_{2}. Needle B_{2} was taken away by Mr. Dover on May 29 to fit a new axis; it was returned on June 23.

Deflexion Instrument.-The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute measure of horizontal magnetic force, are made with a unifilar instrument, which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. Until the beginning of March 1883 it was mounted on a block of wood in the Magnet Office No. 7, on the south side of the Dip instrument. It is now mounted in the New Library on a slate slab in the same way as the Dip instrument.

The deflected magnet, used merely to ascertain the ratio which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed
on the transverse deflexion rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by Professor Balfour Stewart, and these have been since used in the reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :-
The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement $=\mu=0.00015587$.

The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c=0.00013126$ $(t-35)+0.000000259(t-35)^{2}: t$ representing the temperature (in degrees Fahrenheit) at which the observation is made.

Moment of inertia of the deflecting magnet $=K$. At temperature 30°, $\log . K=0.66643:$ at temperature $90^{\circ} \log . K=0.66679$.

The distance on the deflexion rod from $1^{\text {tt. }} 0$ east to $1^{\text {tt. }} 0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\text {tt }} 3$ east to $1^{\text {tt. }} 3$ west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is $\cdot 00001$.

The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0.66727$.

Let $m=$ Magnetic moment of deflecting or vibrating magnet.
$X=$ Horizontal component of Earth's magnetic force.
Then, if in the two deflexion observations, r_{1}, r_{2} be the apparent distances of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (about $1 \cdot 0$ and $1 \cdot 3$ foot). u_{1}, u_{2} the observed angles of deflexion.
Greenwich Magnetical and Meteorological Observations, 1884.

$$
\left.\begin{array}{rl}
A_{1} & =\frac{1}{2} r_{1}^{3} \sin . u_{1}
\end{array}\left\{1+\frac{2 \mu}{r_{3}{ }^{3}}+c\right\}\right\}
$$

we have :-

$$
\begin{aligned}
& \frac{m}{\bar{X}}=A_{1}\left(1-\frac{P}{r_{1}^{2}}\right), \text { from observation at distance } r_{1} . \\
& \frac{m}{\bar{X}}=A_{2}\left(1-\frac{P}{r_{2}^{2}}\right), \text { from observation at distance } r_{2} .
\end{aligned}
$$

The mean of these is adopted as the true value of $\frac{m}{X}$.
For determination, from the observed vibrations, of the value of $m X:-\operatorname{let} T_{1}=$ time of vibration of the deflecting magnet, corrected for rate and arc of vibration,
$\frac{H}{F}=$ ratio of the couple due to torsion of the suspending thread to the couple due to the Earth's magnetic force. [This is obtained from the formula $\frac{H}{F}=\frac{\theta}{90^{\circ}-\theta}$, where $\theta=$ the angle through which the magnet is deflected by a twist of 90° in the thread.]

$$
\begin{aligned}
& \text { Then } T^{1}=T_{1}^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-c\right\} \\
& \text { and } m X=\frac{\pi^{2} K}{T^{2}} .
\end{aligned}
$$

The adopted time of vibration is the mean of 100 vibrations observed immediately before, and of 100 vibrations observed immediately after the observations of deflexion.
From the combination of the values of \bar{X} and $m X, m$ and X are immediately found. The computation is made with reference to English measure, taking as units of length and weight the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimetre, and the grain equal to β times the milligramme, then for reduction to metric measure $\frac{\bar{X}}{}$ and $m X$ must be multiplied by α^{3} and $\alpha^{2} \beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{\alpha}}$. Taking the mètre as equal to $39 \cdot 37079$ inches, and the gramme as equal to $15 \cdot 43249$ grains, the factor by which X is to be multiplied in order to obtain X in metric measure is $0 \cdot 46108=\frac{1}{2 \cdot 1689}$. The values of X in metric measure thus derived from those in English measure are given in the proper table. Values of X in terms of the centimètre and gramme, known as the C.G.S. unit (centimètre-gramme-second unit), are readily obtained by dividing those referred to the millimetre and milligramme by 10 .

Earth Current Apparatus.-For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are
occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires pass from the Royal Observatory to the Greenwich Railway Station and thence, by kind permission of the Directors of the South-Eastern Railway Company, along the lines of the South-Eastern Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf-Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 50°; in the Blackheath-North Kent East circuit the direct distance is $2 \frac{1}{2}$ miles, and the azimuth, from magnetic north towards west, 46°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7 \frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary.

In each circuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coil contains 150 turns of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire. They are placed on opposite sides of the registering cylinder which is horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, on a light stalk extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surfaces facing opposite ways, each towards the mirror of its respective galvanometer. In each case the light of a gas lamp, passing through a vertical slit and a cylindrical lens having its axis vertical, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming a base line are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the astronomical day, commencing at noon.

Before proceeding to discuss the photographic records of magnetic declination, horizontal force, and vertical force, they were divided into two groups, one including all days on which the traces showed no particular disturbance, and which therefore were suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces were so irregular that it appeared impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are 5 days in the year 1884 which have been classed as days of great disturbance. These are July 2, 3, October 1, 2, and November 2. Cither days of lesser disturbance were February 23, 24, 25, 29, March 1, 2, 3, 28, April 17, 24, 30, June 22, 23, August 8, 9, September 17, 18, November 1, 3, and December 22.

Separating the 5 days of great disturbance to be spoken of hereafter, the photographic sheets for the remaining available days, including those of lesser disturbance, were thus treated. Through each photographic trace a pencil line was drawn representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day. Tables I. and II. contain the results for declination, Tables III. to VI. those for horizontal force, with corresponding tables of temperature, and Tables VII. to X. those for vertical force, with corresponding tables of temperature. Table XI. gives the collected monthly values for declination, horizontal force, and vertical force, and Table XII. the mean diurnal inequalities for the year.

The temperature of the horizontal and vertical force magnets was maintained so nearly uniform through each day that the determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude. It was not possible under the circumstances to maintain similar uniformity of temperature through the seasons, a point however of less importance. In preceding years the results for horizontal and vertical force have been given uncorrected for temperature, leaving the correction to be applied when the results for series of years are collected for discussion; but commencing with the year 1883 it has been considered
desirable to add also, in Tables III., V., VII., and IX., results corrected for temperature, in order to render them more immediately available. In Tables XI. and XII., only results corrected for temperature are given. The corrected mean daily and mean hourly values of horizontal force given in Tables III. and V. respectively are obtained by applying to the uncorrected values the correction $\left(t^{\circ}-32^{\circ}\right) \times \cdot 00018$, where t° is the temperature (Fahrenheit), and to those of vertical force, Tables VII. and IX., the correction $-\left(t^{\circ}-32^{\circ}\right) \times \cdot 00020$. The corrections applied are founded on the daily and hourly values of temperature given in Tables IV., VI., VIII., and X.

In order to economise space the daily values as exhibited in Tables III. and VII., both uncorrected and corrected, have been diminished by constants. The division $\overline{=}$ in these Tables and in Table XI. indicates that the instrument has been disturbed for experiment or adjustment, or that for some reason the continuity of the values has been broken, the constants deducted being different before and after each break. In the interval between two breaks the constant deducted remains the same, and that deducted in Tables III. and VII. from the corrected values differs from that deducted from the uncorrected values by some multiple of 100. In Tables II., V., IX., and XII. the separate hourly values of the different elements have been simply diminished by the smallest hourly value.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in terms of 00001 of the whole horizontal and vertical forces respectively taken as units. In Tables XI. and XII. they have been also expressed in terms of 00001 of Gauss's absolute unit, as referred to the metrical system of the millimètre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows:-

For variation of declination, expressed in minutes, the factor is

$$
\text { H.F. in metrical measure } \times \sin 1^{\prime}=1.812 \times \sin 1^{\prime}=0.0005271
$$

For variation of horizontal force, the factor is

$$
\text { H. F. in metrical measure }=1 \cdot 812 \text {, }
$$

and for variation of vertical force

$$
\begin{aligned}
\text { V. F. in metrical measure } & =\mathrm{H} . \text { F. in metrical measure } \times \tan \text { dip, } \\
& =1.812 \times \tan 67^{\circ} .29 \frac{1}{2}^{\prime}=4.373 .
\end{aligned}
$$

The measures as referred to the millimètre-milligramme-second are convertible into measures on the centimètre-gramme-second (C. G. S.) system by dividing by 10 .

Table XIII. exhibits the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page xxviii), and the monthly means
of these numbers, the results for horizontal force being corrected for temperature The first portion of Table XIV. contains the difference between the greatest and least hourly mean values in each month, for declination, horizontal force, and vertical force, as extracted from Table II., and columns c of Tables V. and IX. In the second portion of the table there are given for each month the numerical sums of the deviations of the 24 hourly values from the mean, taken without regard to sign.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, have been treated by the method of harmonic analysis, and the results are given in Tables XV. and XVI. The values of the coefficients contained in Table XV. have been thus computed, 0 representing the value at $0^{\mathrm{h}}, 1$ that at 1^{h}, and so on.

$$
\left.\begin{array}{rl}
m= & \frac{1}{24}(0+1+2 \ldots \ldots .22+23) . \\
12 a_{1}= & 0-12 \\
& +(\overline{1+23}-\overline{11+13}) \cos 15^{\circ}+(\overline{2+22}-\overline{10+14}) \cos 30^{\circ} \\
& \quad+(\overline{3+21}-\overline{9+15}) \cos 45^{\circ}+(\overline{4+20}-\overline{8+16}) \cos 60^{\circ}
\end{array}\right] \begin{aligned}
12 b_{1}= & (\overline{5+19}-\overline{7+17}) \cos 75^{\circ} .
\end{aligned}
$$

The values of the coefficients c_{1}, and of the constant angles α contained in Table XVI., are then determined by means of the following relations:-

$$
\frac{a_{1}}{b_{1}}=\tan \alpha \quad c_{1}=\frac{a_{1}}{\sin \alpha}=\frac{b_{1}}{\cos \alpha} .
$$

Similarly for $c_{2}, \beta, \& c$.
Finally, the values of the angles $\alpha^{\prime}, \beta^{\prime}, \& c$. were thus found. Calling the Sun's hour angle east at mean solar noon $=h$, then-

$$
\begin{aligned}
& a^{\prime}=a+h \\
& \beta^{\prime}=\beta+2 h \\
& \& c .=\& c .
\end{aligned}
$$

a mean value of h for the month being employed.

The values of a_{5} and b_{5} for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XV. ; they are as follows :-

1884.	a_{5}.	b_{5}.
Declination...	+óog	+ó04
Horizontal Force	+0.4	+177
Vertical Force	-0.9	+0.4

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page (xii), corresponding to the single terms of the expressions on page (xiii), have been calculated for the mean diurnal inequalities for the year (columns 1, $\dot{2}$, and 3 of Table XII.). The respective sums of squares of residuals are as follows:-

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

The unit in the case of horizontal and vertical force being 00001 of the whole horizontal and vertical forces respectively, it thus appears that there would be no advantage in carrying the approximation (Table XV.) beyond the determination of a_{4}, b_{4}.

As regards Magnetic Dip, the result of each separate observation of dip with each of the six needles in ordinary use is given in Table XVII., and in Table XVIII. the concluded monthly and yearly values for each needle.

The results of the observations for Absolute Measure of Horizontal Force contained in Table XIX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument.
$x x x i i \quad$ Introduction to Greenwich Magnetical Observations, 1884.
No numerical discussion of Earth Current records is contained in the present volume.

In the treatment of disturbed days it was formerly the custom to measure out for each element all salient points of the curves and to print the numerical values. But, since the year 1882, it has been considered preferable to give instead of these tables reduced copies of the actual photographic curves (reproduced by photolithography from full-sized tracings of the original photographs), adding thereto copies of the corresponding earth current curves. The registers thus exhibited are those for the days of great and of lesser disturbance mentioned on page axviii.

The plates are preceded by a brief description of all significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1884, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

In regard to the plates, it may be remarked that on each day five distinct registers are given, viz.: declination, horizontal force, vertical force, and the two earth currents, all necessary information for proper understanding of the plates being given in the notes on page (xxiv). No attempt has been made to determine earth current scales in terms of any electrical unit, but it may be stated that the instrumental conditions are similar for the two circuits, excepting that the communicating wire of the \mathbf{E}_{1} circuit is longer than that of the \mathbf{E}_{2} circuit in the proportion of 3 to 2 , and that the distances between the earth plates of the former and of the latter are in the proportion of 6 to 5 .

An additional plate (XI.) exhibits the registers of declination, horizontal force, and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. The earth currents on these days are insensible on the scale of the photographic register.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The observed temperatures being inserted on the plates, reference to the temperature coefficients of the magnets, given at page xix for horizontal force, and page xxiii for vertical force, will show the effect produced. Briefly, an increase of nearly 6° of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of 5° of temperature throws the vertical force curve downward by 0.001 of the whole vertical force.

Plates of Magnetic Disturbances and Earth Currents; Scale Values of Magnetic Elfments.

xxxiii

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :-

The scales actually attached to the plates are, however, so arranged as to correspond with the tables of the magnetic section, that is to say, the units for horizontal force and vertical force are 00001 of the whole horizontal and vertical forces respectively.

But the preceding scale values are not immediately comparable for the different elements, and it will therefore be desirable to refer them all to the same unit, say 0.01 of the horizontal force.
Now, the transverse force represented by a variation of 1° of Declination $=\cdot 0175$ of Horizontal Force
and Vertical Force $=$ Horizontal Force $\times \tan . \operatorname{dip}\left[\operatorname{dip}=67^{\circ} .29 \frac{1}{2}^{\prime}\right]$
$=$ Horizontal Force $\times 2.4132$
whence we have the following equivalent scale values for the different elements, as applying to the plates :-

Length of Unit, equivalent to ooor of Horizontal Force.				
For Declination Curve throughout the Year.	For Horizontal Force Curve throughout the Year.	For Vertical Force Curve.		
		$\begin{gathered} \text { January I } \\ \text { to } \\ \text { April } 30 . \end{gathered}$	$\begin{gathered} \text { May 3 } \\ \text { to } \\ \text { December 29. } \end{gathered}$	
in. $1 \cdot 47$	in. . $1 \cdot 36$	in. $\mathbf{I} \cdot 83$	in. $1 \cdot 49$	

Greenwich Magnetical and Metlorological Observations, 1884.

xxxiv Intrguuction to Greenwich Meteorological Observations, 1884.

It may be convenient to give also comparative scale values for the different systems of absolute measurement, viz. :-

Dividing therefore the scale values last given by $3.931,1.812$, and 0.1812 respectively, the following comparative scale values for each of the elements on the plates as referred to 0.01 of these units respectively are found :-

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight however that, in the copies, the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near $2^{\mathrm{h}} .30^{\mathrm{m}}, 8^{\mathrm{h}} .30^{\mathrm{m}}$, and $21^{\mathrm{h}} .30^{\mathrm{m}}$, and at somewhat different times on Sundays. The interruption in the earth-current registers is greater than in the other registers because of the necessity of also temporarily disconnecting the wires for determination of the instrumental zeros. A weekly clearing of the gas pipes also causes a somewhat longer interruption, usually at about $22^{\text {h }}$, as on February $29^{\text {d }}$. $22 \frac{11}{2}^{\text {h }}$. There are other small interruptions due to various causes which scarcely call for special remark.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet
containing the records for two or more days was then reduced by photo-lithography, in the proportion of 20 to 11 , to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in }} \cdot 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 05$, subdivided by vernier to $0^{\text {in. }} 002$.

The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod a comparison was again made with the same three barometers, from which it appeared that the readings of the standard, in its new state, required a correction of ' $-0^{\text {in. }} 000$, all three auxiliary barometers giving accordant results. This correction has been applied to every observation since 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made, under the direction of the Kew Committee, by Mr. Whipple, Superintendent of the Kew Observatory, in the spring of the year 1877, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{\text {in. } 006) ~ d i d ~ n o t ~ e x c e e d ~} 0^{\text {in.001. (Proceedings of }}$ the Royal Society, vol. 27, page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {ft }} 2^{\text {in }}$ above Mr. Lloyd's reference mark in the then transit room, now the Astronomer Royal's official room (Philosophical Transactions, 1831).

The barometer is usually read at $21^{h}, 0^{h}, 3^{h}, 9^{h}$ (astronomical reckoning). Each reading is corrected by application of the index correction above mentioned; and reduced to the temperature 32° by means of Table II. of the "Report of the

xaxxi Introduction to Greenwich Meteorological Observations, 1884.

Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Рhotographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upper half of the cylinder, on its eastern side. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about $l \cdot 1$ inch. A metallic float is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\mathrm{in}} 33$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page alvi) are measured as for the magnetic registers.

As regards the effect of temperature, it will be understood from the construction of the apparatus that the photographic record is influenced only by the expansion of the column of mercury (about 4 inches in length) in the lower tube of the barometer, and as the diurnal change of temperature in the basement is very small, no appreciable differential effect is produced on the photographic register.

From February 27 to 29 the driving chronometer was in the hands of Messrs. E. Dent and Co. for the purpose of being cleaned.

Dry and Wet Bulb Thermometers.-The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 35 feet south of the south-west angle

Photographic Barometer; Dry and Wet Bulb Thermometers. xxxvii

of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it and connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth during the day so as to keep the inclined side always towards the sun. In 1878 September, a circular table 3 feet in diameter was fixed, below the frame, round the supporting posit, at a height of 2 feet 6 inches above the ground, with the object of protecting the thermometers from radiation from the ground.

The corrections to be applied to the thermometers in ordinary use (except the earth thermometers) are determined usually once each year for the whole extent of scale actually employed, by comparison with the standard thermometer, No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry and wet bulb thermometers are Negretti and Zambra, Nos. 45354 and 45355 respectively. The correction $-0^{\circ} \cdot 2$ has been applied to dry bulb readings, and $-0^{\circ} \cdot 1$ to wet bulb readings throughout.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. To the readings of No. 8527 for maximum temperature of the air a correction of $-0^{\circ} \cdot 9$ has been applied, and to those of No. 4386, for minimum temperature of the air, a correction of $-0^{\circ} \cdot 3$ throughout. The readings of No. 44285 for maximum temperature of evaporation required a correction of $-0^{c} \cdot 5$, and the readings of No. 3627 for minimum temperature of evaporation a correction of $+1^{\circ} .3$ until February 15, and a correction of $+1^{\circ} \cdot 6$ after that date.
The dry and wet bulb thermometers are usually read at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$ (astronomical reckoning). Readings of the maximum and minimum thermometers are usually taken at 21^{h} and 9^{h}. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.
xxxviii Introduction to Greenwich Meteorological Observations, 1884.
Photographic Dry and Wet Bulb 'I'hermometers.-About 28 feet south-southeast of the suuth-east angle of the Magnetic Observatory, and about 25 feet east-north-east of the stand carrying the thermometers for eye-observation already described, is an open shed, 10 ft .6 in . square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry bulb towards the east and the wet-bulb towards the west. The bulbs are 8 inches in length and $0 \cdot 4$ inch internal bore, and their centres are about 4 feet above the ground. A registering cylinder of ebonite, 10 inches long and 19 inches in circumference, is placed with its axis vertical between the stems of the two thermometers. The registers are made simultaneously on opposite sides of the cylinder, and to avoid any accidental overlapping of the two registers the cylinder is made to revolve once in about 52 hours. The thermometer frames are covered by metal plates having longitudinal slits, so that light can pass through the slit only above the surface of the mercury. At each degree a fine cross wire is placed, thicker at the decades of degrees, and also at $32^{\circ}, 52^{\circ}$, and 72°. A gas lamp is placed about 9 inches from each thermometer (east of the dry-bulb and west of the wet-bulb), and in each case the light shines through the tube above the mercury, and forms a well-defined line of light upon the paper. As the cylinder revolves horizontally under the light passing through the thermometer tube, the paper thus receives a broad sheet of photographic trace, whose breadth, in the direction of the axis of the cylinder, varies with the varying height of the mercury in the thermometer tube. When the sheet is developed the whole of that part of the paper which in each case passed the slit above the mercury will show photographic trace, with thin white lines corresponding to the degrees, the lower part of the paper remaining white; thus the boundary of the photographic trace indicates the varying temperature. The time scale is determined by interruption of the traces made by the observer at registered times, usually three times a day. The length of 24 hours on each of the thermometer traces is about 9 inches.

Radiation Thermometers.-These thermometers are placed in the Magnet Ground, a little south of the Magnet House. The thermometer for solar radiation is a self-registering mercurial maximum thermometer by Negretti and Zambra, No. 38592 ; its bulb is blackened, and the thermometer is enclosed in a glass sphere from which the air has been exhausted. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass; they require no col rection for index error.

Radiation Thermometers; Earth Thermometers; Thames Thermometers.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the northwest corner of the photographic thermometer shed.
The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet ($25 \cdot 6$ English feet) below the surface, then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, $8 \cdot 5,10 \cdot 0,11 \cdot 0$, and $14 \cdot 5$ inches respectively are in each case tube with narrow bore. The length of 1° on the scales is $1 \cdot 9$ inch, $1 \cdot 1$ inch, $0 \cdot 9$ inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} .0$ to $55^{\circ} \cdot 5$; No. $2,43^{\circ} .0$ to $58^{\circ} \cdot 0$; No. $3,44^{\circ} \cdot 0$ to $62^{\circ} \cdot 0$; and for No. $4,37^{\circ} .0$ to $68^{\circ} .0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

The ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, corresponding alterations being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.
The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers, one, No. 5, with bulb one inch in the ground, another, No. 6, whose bulb is freely exposed in the centre of the hut.
These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by $0^{\circ} \cdot 2$, and No. 6 by $0^{\circ} 4$, but no corrections have been applied.
Thames Thermometers.-Observations of the temperature of the water of the river Thames, which had been discontinued in the year 1879 in consequence of

$x l \quad$ Introduction to Greenwich Meteorological Observations, 1884.

inability to find a suitable station after the placing of the police ship "Royalist" on the river bank, were resumed in the year 1883, under the direction of the Corporation of the City of London. The thermometers are placed at the end of one of the jetties of the Foreign Cattle Market at Deptford, the record including observations (by means of two Six's self-registering thermometers made by Negretti and Zambra) of the maximum and minimum temperature of the water at a depth of two feet below the surface, and also near the bottom of the river, the thermometers being read daily at 21^{h} (astronomical reckoning). By arrangement with the officers of the Corporation a copy of the record is furnished weekly to the Royal Observatory, in order that the readings of the surface thermometers may be included in the tables of "Daily Results of Meteorological Observations," page (xxvi) in which the highest and lowest readings recorded each morning at $2 l^{h}$ are entered to the same civil day. The observations are made by Mr. G. Philcox, Clerk of the Market. The thermometers having been broken, the observations were suspended from July 26 to December 2 when new thermometers were mounted. The Royal Observatory authorities are not responsible for the accuracy of the observations.

Osler's Anemometer. - This self-registering anemometer, devised by A. Follett Osler, is fixed above the north-western turret of the ancient part of the Observatory. For direction of the wind a large vane, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers, running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transiverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vane is 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

For the pressure of the wind the construction is as follows. At a distance of 2 feet below the vane there is placed a circular pressure plate having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for
which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the ycar 1880, when the present circular plate, having an area of $1 \frac{1}{3}$ square. feet, was introduced.] A short flexible snake chain, fixed to a cross bar in connexion with the pressure plate, and passing over a pulley in the upper part of the shaft is attached to a brass chain (formerly a copper wire) running down the centre of the shaft to the registering table, just before reaching which the chain communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The substitution of the flexible brass chain for the copper wire has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring.

A rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is the same as that of the magnetic registers.

Robinson's Anemometer.-This instrument, mounted above the small building on the roof of the Octagon Room, is constructed on the principle described by the late Dr. Robinson in the Transactions of the Royal Irish Academy, Vol. XXII. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles. The revolving hemispherical cups are 56 feet above the adjacent ground, and 211 feet above the mean level of the sea.
The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is the same as that of Osler's Anemometer and of the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the

xlii Introduction to Greenwich Meteorological Observations, 1884.

cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer then in use, not the same as that now employed. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880 . With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile $1 \cdot 15$ was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0.97 was registered. This was considered to confirm sufficiently the accuracy of the assumption.

Rain Gadaes.-During the year 1884 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (lxxii) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches (200 square inches in area). The collected water passes into a ressel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following monification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. The water filling the bore of the pipe creates a partial vacuum in the globe sufficient to cause the longer leg of the siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory; No. 6 is the old daily gauge, No. 7 the old monthly gauge, and No. 8 an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7, the monthly amounts collected by these gauges having occasionally shown greater differences than seemed proper. The positions of these gauges were slightly shifted on April 1, 1884. All three gauges have been read daily since the beginning of July 1881.

The gauges are also read at midnight on the last day of each calendar month.

Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording electrometer, constructed by Mr. White of Glasgow:

For a full description of the principle of the electromever reference may be made to Sir William Thomson's "Report on Electrometers and Electrostatic Measurements," contained in the British Association Report for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the suspension pulleys of the Horizontal Force Magnet. A thin flat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar, this charge is easily maintained at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or diminished at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.

- Sir William 'Thomson's water-dropping apparatus is used to collect the atmospheric electricity. For this purpose a rectangular cistern of copper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern rests on four pillars of glass, each

xliv Introduction to Greenwich Meteorological Observations, 1884.

one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle, (about ten feet above the ground), having a very small hole, through which the water passes and breaks almost immediately into drops. The cistern is thus brought to the same electrical potential as that of the atmosphere, near the nozzle, and this potential is communicated by means of a connecting wire to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp, falling through a slit upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder of ebonite, nearly 7 inches long and 16 inches in circumference, which is turned by clock-work. A second fixed mirror, by means of the same gas-lamp, causes a reference line to be traced round the cylinder. The actual zero is found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

On May 13 the bifilar snspension of the needle gave way; the threads were renewed on May 17. On November 11 the suspension again failed; it was renewed on November 18 using a somewhat stronger silk thread.

The scale of time is the same as that of the magnetic registers.
Inconvenience is sometimes caused by cobwebs making connexion between the cistern or its pipe and the walls of the building, and in winter, interruptions occasionally occur owing to the freezing of the water in the exit pipe.

Sunshine Instrument.-This instrument, contrived by the late Mr. J. F. Campbell, and presented by him to the Royal Observatory, consists of a sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formed when the sun shines, falls always on the concave surface of the bowl. A strip of blackened millboard being fixed in the bowl, the sun, when shining, burns away the surface at the points where the image successively falls, by which moans

Sunshine Instrument; Ozonometer; Meteorological Redtctions. xlo
the record of periods of sunshine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from apparent noon) through the month are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, or when the sun's altitude is less than 5°. The instrument is placed on a table upon the platform above the Magnetic Observatory.

Ozonometer.-This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at $21^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} are collected respectively at $3^{\mathrm{h}}, 9^{\mathrm{h}}$, and 21^{h}, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10 . The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at $2 l^{\mathrm{h}}$, the values registered at 3^{h} and 9^{h}, and one-fourth of that registcred at the following 21^{h}, are added together, the resulting sum (which appears in the tables of "Daily Results of the Meteorological Observations") being taken as the value referring to the civil day. The means of the $21^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} values, as observed, are also given for each month in the foot notes.

§ 7. Meteorological Reductions.

The results given in the Meteorological section refer in general to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers at 21^{h} and 9^{h} (astronomical reckoning), reference being

xlvi Introduction to Greenwich Meteorological Observations, 1884.

made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. Then, for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve in the way described for the magnetic registers (page axviii), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively.
To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Table of Factors by which the Difference between the Readings of the Dry-Bulb and WetBulb Thermometers is to be Multiplied in order to produce the Corresponding Difference between the Dry-Bulb Temperature and that of the Dew-Point.

Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer	Factor.	Reading of Dry-balb Thermometer.	Factor.
10°	$8 \cdot 78$	33	$3 \cdot 01$	$5{ }^{\circ}$	$1 \cdot 94$	79	1.69
11	8.78	34	$2 \cdot 77$	57	$1 \cdot 92$	80	1.68
12	$8 \cdot 78$	35	2.60	58	$1 \cdot 90$	81	1.68
13	$8 \cdot 77$	36	2.50	59	1.89	82	1.67
14	$8 \cdot 76$	37	2.42	60	1.88	83	1.67
15	$8 \cdot 75$	38	$2 \cdot 36$	61	1.87	84	1.66
16	$8 \cdot 70$	39	$2 \cdot 32$	62	1.86	85	$1 \cdot 65$
17	8.62	40	2.29	63	1.85	86	1.65
18	$8 \cdot 50$	41	$2 \cdot 26$	64	1.83	87	1.64
19	$8 \cdot 34$	42	$2 \cdot 23$	65	1.82	88	1.64
20	8.14	43	$2 \cdot 20$	66	1.81	89	1.63
21	7-88	44	$2 \cdot 18$	67	1.80	90	1. 63
22	7.60	45	$2 \cdot 16$	68	1779	91	1.62
23	$7 \cdot 28$	46	$2 \cdot 14$	69	$1 \cdot 78$	92	1.62
24	6.92	47	$2 \cdot 12$	70	$1 \cdot 77$	93	$1 \cdot 61$
25	$6 \cdot 53$	48	$2 \cdot 10$	71	$1 \cdot 76$	94	1.60
26	$6 \cdot 08$	49	2.08	72	$1 \cdot 75$	95	1.60
27	5.61	50	2.06	73	$1 \cdot 74$	96	$1 \cdot 59$
28	$5 \cdot 12$	51	$2 \cdot 04$	74	$1 \cdot 73$	97	1.59
29	$4 \cdot 63$	52	$2 \cdot 02$	75	$1 \cdot 72$	98	1.58
30	4.15	53	$2 \cdot 0$	76	$1 * 71$	99	1.58
31	$3 \cdot 70$	54	$1 \cdot 98$	77	1.70	100	$1 \cdot 57$
32	3-32	55	1•96	78	1.69		

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages (lv) and (Ivi)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (liv) and (lv)).
The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results of Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the numbers given in Table LXXVII. of the "Reduction of Greenwich Meteorological Observations, 1847-1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.
xleiii Introduction to Greenwich Meteorological Observations， 1884.
Adopted Valdes of Mean Temperature of the Air，deduced from Twenty－four Hourly Readings on each Day，for every Day of the Year，as obtained from the Photographic Records fur the Period 1849－1868．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Day of } \\
& \text { the } \\
& \text { Month. }
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \text { 官 } \\
& \text { 苞 } \\
& \text { en }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { ej } \\
& \text { 品 }
\end{aligned}
$$ \& -囟 \& 穼 \& 号 \& 官 \& \& \& 苞 \& 咎 \& 莒

\hline 1 \& $38^{\circ}{ }^{1}$ \& $4{ }^{\circ} \cdot 5$ \& 40．3 \& $45^{\circ} \cdot 3$ \& $48^{\circ} \cdot 7$ \& $57^{\circ} 5$ \& 61.6 \& $62^{\circ} \cdot 6$ \& $60^{\circ} \mathrm{I}$ \& $54^{\circ} 7$ \& 47° \& $41: 5$

\hline 2 \& $37 \cdot 9$ \& $40 \cdot 6$ \& $40 \cdot 4$ \& $45 \cdot 7$ \& 48.9 \& 57.7 \& 61.5 \& 62.7 \& $60 \cdot 0$ \& 54.4 \& $46 \cdot 7$ \& 41.8

\hline 3 \& $37 \cdot 8$ \& $40 \cdot 7$ \& $40 \cdot 5$ \& $46 \cdot 1$ \& $49^{\cdot 1}$ \& $57 \cdot 9$ \& 61.4 \& $62 \cdot 7$ \& $59 \cdot 8$ \& $54^{\circ} \mathrm{O}$ \& $46 \cdot 4$ \& $42 \cdot 1$

\hline 4 \& 37.7 \& $40 \cdot 7$ \& $40 \cdot 5$ \& $46 \cdot 4$ \& $49^{\circ} 4$ \& $58 \cdot 1$ \& 61.4 \& $6^{6 \cdot 7}$ \& $59 \cdot 7$ \& $53 \cdot 7$ \& $46^{\circ} \mathrm{O}$ \& 42.4

\hline 5 \& 37.6 \& $40 \cdot 6$ \& $40 \cdot 5$ \& $46 \cdot 6$ \& 49.7 \& 58.2 \& 61.5 \& $62 \cdot 7$ \& 59.5 \& 53.4 \& $45 \cdot 6$ \& $42 \cdot 6$

\hline 6 \& 37.6 \& $40 \cdot 4$ \& $40 \cdot 5$ \& $46 \cdot 7$ \& $50 \cdot 0$ \& $58 \cdot 3$ \& 61.7 \& $62 \cdot 7$ \& 59.3 \& $53 \cdot \circ$ \& $45 \cdot 2$ \& $42 \cdot 7$

\hline 7 \& 37.6 \& $40^{\circ} 2$ \& $40 \cdot 6$ \& $46 \cdot 8$ \& $50 \cdot 3$
50.6 \& 58.4 \& $61 \cdot 9$
$62 \cdot 2$ \& 62.7
62.7 \& 59.0
58.8 \& $52 \cdot 7$
52.
5 \& 44.7 \& 42.8

\hline 8 \& 37%
37%

3 \& 39.9
39.6 \& $40 \cdot 6$
$40 \cdot 7$ \& $46 \cdot 8$
$46 \cdot 9$ \& $50 \cdot 6$
$50 \cdot 8$ \& $58 \cdot 5$
$58 \cdot 5$ \& $62 \cdot 2$
$62 \cdot 5$ \& $62 \cdot 7$
$62 \cdot 7$ \& $58 \cdot 8$
58.5 \& $52 \cdot 5$
52.3 \& $44 \cdot 3$
$43 \cdot 8$ \& $42 \cdot 8$
$42 \cdot 8$
42

\hline 10 \& 37.8 \& 39.3 \& $40 \cdot 7$ \& $46 \cdot 9$ \& 51.1 \& 58.6 \& $62 \cdot 7$ \& $62 \cdot 7$ \& 58.3 \& 52．1 \& 43.4 \& $42 \cdot 7$

\hline 11 \& 37.9 \& $39 \cdot 1$ \& 40＊8 \& 47° \& 51.4 \& 58.7 \& $62 \cdot 9$ \& $62 \cdot 7$ \& $58 \cdot 1$ \& 51.9 \& $43 \cdot 0$ \& $42 \cdot 5$

\hline 12 \& $38 \cdot 1$ \& 38.9 \& $40 \cdot 8$ \& 47＊ \& 51.8 \& $58 \cdot 8$ \& $63 \cdot 1$ \& 62.6 \& 58° \& $51 \cdot 7$ \& $42 \cdot 6$ \& 42.2

\hline 13 \& $38 \cdot 2$ \& $38 \cdot 8$ \& $40 \cdot 9$ \& $47^{\circ} \mathrm{P}$ \& 52．I \& $58 \cdot 9$ \& $63 \cdot 3$ \& $62 \cdot 5$ \& 57.8 \& 51.6 \& $42 \cdot 3$ \& 41.8

\hline 14 \& 38.3 \& $38 \cdot 7$ \& 41° \& $47^{\circ} 4$ \& $52 \cdot 5$ \& $59 \cdot 1$ \& 63.4 \& 62.4 \& $57 \cdot 6$ \& 51.4 \& $42 \cdot$ \& 41.5

\hline 15 \& 38.4 \& 38.7 \& $41^{1.1}$ \& $47^{\circ} 5$ \& 52.9 \& 59.3 \& 63.4 \& $62 \cdot 3$ \& 57.4 \& $51 \cdot 3$ \& $4{ }^{1} 8$ \& 41.1

\hline 16 \& $38 \cdot 5$ \& 38.8 \& 41.2 \& $47^{\circ} 6$ \& $53 \cdot 3$ \& 59.5 \& $63 \cdot 5$ \& $62 \cdot 1$ \& $57 \cdot 3$ \& $51 \cdot 2$ \& 41.6 \& $40 \cdot 8$

\hline 17 \& 38.6 \& $38 \cdot 9$ \& $41 \cdot 3$ \& $47^{\circ} 8$ \& $53 \cdot 7$ \& $59 \cdot 7$ \& $63 \cdot 5$ \& 61.9 \& $57 \cdot 1$ \& $51 \cdot 1$ \& 41.5 \& $40 \cdot 5$

\hline 18 \& 38.8 \& $39 \cdot 0$ \& 41.4 \& $47^{\circ} 9$ \& $54 \cdot 1$ \& 59.9 \& 63.4 \& 61.8 \& 56.9 \& 51.0 \& 41.5 \& $40 \cdot 2$

\hline 19 \& 38.9 \& $39 \cdot 2$ \& 41.4 \& $48^{\circ} \mathrm{O}$ \& 54.4 \& $60 \cdot 2$ \& $63 \cdot 3$ \& 61.6 \& $56 \cdot 8$ \& $50 \cdot 8$ \& 41.4 \& 40°

\hline 20 \& 39．1 \& $39 \cdot 3$ \& 41.5 \& $48 \cdot 1$ \& 54.7 \& $60 \cdot 5$ \& $63 \cdot 2$ \& 61.4
6.3 \& $56 \cdot 6$ \& $50 \cdot 6$ \& $4{ }^{1 \cdot 3}$ \& 39.8

\hline 21 \& 39.3 \& $39 \cdot 5$ \& 416 \& $48 \cdot 2$ \& 55\％ \& $60 \cdot 8$ \& $63 \cdot$ \& $61 \cdot 3$ \& $56 \cdot 4$ \& $50 \cdot 4$ \& $41 \cdot 2$ \& 39^{6}

\hline 22 \& $39 \cdot 5$ \& $39 \cdot 6$ \& $41 \cdot 7$ \& $48 \cdot 2$ \& $55 \cdot 3$ \& 61．1 \& 62.9 \& $61 \cdot 3$ \& $56 \cdot 2$ \& 50．1 \& $41 \cdot 1$ \& 39.4

\hline 23 \& $3{ }^{3} 6$ \& 39.7 \& 41.8 \& $48 \cdot 3$ \& $55 \cdot 5$ \& 61.4 \& $62 \cdot 8$ \& $61 \cdot 2$
6.1 \& $56 \cdot 1$ \& $49 \cdot 7$ \& 410 \& 39．3

\hline 24 \& 39
3
3 \& 39.8 \& $42^{\circ} \mathrm{O}$ \& $48 \cdot 3$ \& $55 \cdot 7$ \& $61 \cdot 7$ \& $62 \cdot 7$
62.7 \& 61.1 \& 55．9 \& 49.4 \& $41^{\circ}{ }^{\circ}$ \& 39．3

\hline 25 \& $39 \cdot 8$ \& 39.9 \& $42 \cdot 3$ \& 48.4 \& 55.9 \& 61.9 \& 62.7 \& 61.0 \& $55 \cdot 8$ \& 49^{1} \& 409 \& $39 \cdot 2$

\hline 26 \& $39 \cdot 9$ \& $40 \cdot 0$ \& $42 \cdot 6$ \& $48 \cdot 4$ \& $56 \cdot 1$ \& 62° \& $62 \cdot 7$ \& $60 \cdot 9$ \& 55.7 \& $48 \cdot 8$ \& $40 \cdot 8$ \& 39.1

\hline 27 \& $40^{\circ}{ }^{\circ}$ \& $40 \cdot 1$ \& 43.0 \& \& $56 \cdot 3$ \& 62° \& 62．6 \& $60 \cdot 8$ \& $55 \cdot 5$ \& $48 \cdot 5$ \& $40 \cdot 8$ \& 39°

\hline 28 \& $40 \cdot 1$ \& $40 \cdot 2$ \& $43 \cdot 4$ \& $48 \cdot 5$ \& $56 \cdot 5$ \& $61 \cdot 9$ \& 62.6 \& $60 \cdot 7$ \& 55.4 \& $48 \cdot 2$ \& $40 \cdot 9$ \& 38.8

\hline 29 \& $40 \cdot 2$ \& \& $43 \cdot 8$ \& $48 \cdot 5$ \& $56 \cdot 8$ \& 61.8
6.7 \& 62.6
62.6 \& $60 \cdot 6$ \& $55 \cdot 2$ \& 47.9 \& 41° \& $38 \cdot 7$
38

\hline 30
31 \& $40 \cdot 3$
40.4 \& \& $44 \cdot 3$
4.8 \& $48 \cdot 6$ \& 57.0
57 \& 617 \& 62.6
62.6 \& $60 \cdot 4$
60.3 \& 54.9 \& 47.6 \& 41.2 \& $38 \cdot 5$

\hline 31 \& $40 \cdot 4$ \& \& 44^{8} \& \& $57 \cdot 3$ \& \& 62.6 \& $60 \cdot 3$ \& \& $47 \cdot 3$ \& \& $38 \cdot 3$

\hline Means \& 38.7 \& 39.7 \& 41.5 \& 475 \& $53 \cdot 1$ \& $59 \cdot 8$ \& 62.6 \& 619 \& 57.5 \& 51.0 \& 42.7 \& $40 \cdot 8$

\hline \multicolumn{13}{|c|}{The mean of the twelve monthly values is $49^{\circ} \mathrm{7}$ ．}

\hline
\end{tabular}

The daily register of rain contained in column 18 is that recorded by the gauge No．6，whose receiving surface is 5 inches above the ground．This gauge is usually read at 21^{h} and 9^{h} ．The continuous record of Osler＇s self－registering gauge shows whether the amounts measured at 21^{b} are to be placed to the same，or to the preceding civil day；and in cases in which rain fell both before and after midnight． also gives the means of ascertaining the proper proportion of the 21^{h} amount which should be placed to each civil day．The number of days of rain given in the foot notes，and in the abstract tables，pages（liii）and（lxxii），is formed from the records of this gauge．In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in．}} 005$ ．

The indications of atmospheric electricity are derived from Thomson's Electrometer. Occasionally, during interruption of photographic registration, the results depend on eye observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.

The mean amount of cloud given in a foot note on the right-hand page, and in the abstract table, page (liii), is the mean found from observations made usually at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h}, of each day.

For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6 A.m., and those following it to the interval from 6 A.m. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

Grernwici Magnitical and Metrobologioal Obserfations, 1884.

fr-r	deuotes	frozen rain
fq-r	\ldots	frequent rain
hy-r	\ldots	heavy rain
c-hy-r	\ldots	continued heavy rain
$\mathrm{m}-\mathrm{r}$	\ldots.	misty rain
fq-m-r	\ldots	frequent misty rain
oc-m-r	\ldots	occasional misty rain
oc-r	\ldots	occasional rain
sh-r	\ldots	shower of rain
shs-r	\ldots	showers of rain
slt-r	\ldots	slight rain
oc-slt-r	\ldots	occasional slight rain
th-r	\ldots	thin rain
fq-th-r	\ldots	frequent thin rain
oc-th-r	\ldots	occasional thin rain
hy-sh	\ldots	heavy shower
slt-sh	\ldots	slight shower
fq-shs	\ldots	frequent showers
hy-shs	\ldots	heavy showers
fq-hy-shs	\ldots	frequent heavy showers
oc-hy-shs	\ldots	occasional heavy showers
li-shs	\ldots	light showers

oc-shs	denotes	occasional showers
s	\ldots	stratus
sc	\ldots	scudt
li-sc	\ldots	light scud
sl	\ldots	sleet
sn	\ldots	snow
oc-sn	\ldots	occasional snow
slt-sn	\ldots	slight snow
so-ha	\ldots	solar halo
sq	\ldots	squall
sqs	\ldots	squalls
fq-sqs	\ldots	frequent squalls
hy-sqs	\ldots	heavy squalls
fq-hy-sqs	\ldots	frequent heary squalls
oc-sqs	\ldots	occasional squalls
t	\ldots	thunder
t-sm	\ldots	thunder storm
th-cl	\ldots	thin clouds
v	\ldots	variable
wv	\ldots	very variable
w	\ldots	wind
st-w	\ldots	strong wind

The following is the notation employed for Electricity :-

N denotes negative
P ... positive
m ... moderate
w denotes weak
s ... strong
v ... variable

The duplication of the letter denotes intensity of the modification described, thus, ss, is very strong; vv, very variable. 0 indicates zero potential, and a dash "-" accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in § 6 .

In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854-1873, and the photographic thermometric results and deductions
therefrom with the corresponding thermometric results, 1849-1868 (see " Reduction of Greenwich Meteorological Observations 1847-1873"). Other deductions, from eye observations, are compared with averages for the period 1841-1883.
The tables of Meteorological Abstracts following the tables of "Daily Results" require no lengthened explanation.

It may be pointed out that the monthly means for barometer and temperature of the air and of evaporation contained in the tables referring to diurnal inequality, pages (liv) and (lv), do not in some cases agree with the true monthly means given in the daily results, pages (xxvi) to (xlviii), and in the table on page (liii), in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the foot notes, but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases however the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table "Abstract of the Changes of the Direction of the Wind" as derived from Osler's Anemometer, page (lxii), exhibits every change of direction of the wind occurring throughout the year whenever such change amounted to two nautical points or $22 \frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table wasi generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column no change of direction in general occurred varying from that given by so much as one point or $11 \frac{1}{4}^{\circ}$. From the numbers given in this table the monthly and yearly excess of motion, page (lxvi), is formed. By direct motion it is to be understood that the change of direction occurred in the order N, E, S, W, N, \&c., and by retrograde motion that the change occurred in the order N, W, S, E, N, \&c.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 18 of the "Daily Results of Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages (lxx) and (lxxi) respectively.

In regard to the observations of Luminous Meteors it is simply necessary to say that in general only special meteor showers are watched for, such as those of

April, August, and November. The observers of meteors in the year 1884 were Mr. Nash, Mr. Hugo, and Mr. McClellan ; their observations are distinguished by the initials N, H, and M respectively.

Royal Observatory, Greenwich,
W. H. M. CHRISTIE. 1886, April 27.

ROYAL OBSERVATORY, GREENWICH.

R E S U L T S

OF

MAGNETICAL OBSERVATIONS

(EXCLUDING THE DAYS OF GREAT MAGNETIC DISTURBANCE).
1884.

Table I.-Mean Magnetic Declination West for each Astronomical Day. (Each result is the mean of 24 hourly ordinàtes from the photographic register.)												
1884.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	18°											
${ }^{\text {a }}$	10.8	10^{\prime}	$8 \cdot 5$	9'0	8.8	78	$8 \cdot 2$	$6 \cdot 2$	7.3	\ldots	$5 \cdot 2$	${ }^{\prime} \cdot 6$
2	110	10.6	$9 \cdot 4$	9.4	$8 \cdot 4$	11.0		$7 \cdot 5$	$7 \cdot 2$			$4 \cdot 3$
3	10.6	$9{ }^{\circ}$	10.6	$9{ }^{\circ}$	$8 \cdot 8$	$7 \cdot 6$	-	$7{ }^{\circ} 8$	7.6	$4 \cdot 8$	$5 \cdot 7$	$4 \cdot 3$
4	10.5	$9 \cdot 5$	9.4	$9 \cdot 3$	$9{ }^{\circ}$	$7 \cdot 8$	$9{ }^{\circ}$	$7 \cdot 2$	$6 \cdot 8$	4.4	4.4	$5 \cdot 0$
5	10.6	10.8	100	$9 \cdot 1$	$9^{\cdot 1}$	$8 \cdot 1$	$8 \cdot 1$	$8 \cdot 1$	$6 \cdot 6$	5\%	$4 \cdot 1$	4.7
6	10.9	$10 \cdot 0$	100	$8 \cdot 5$	$8 \cdot 8$	$8 \cdot 1$	$8 \cdot 8$	$8 \cdot 2$	$6 \cdot 7$	4.2	$3 \cdot 0$	4.7
7	$11 \cdot 1$	97	100	$8 \cdot 6$	$7 \cdot 8$	8.6	$8 \cdot 6$	$7 \cdot 0$	$7 \cdot 6$	$4 \cdot 1$	$4 \cdot 2$	$4 \cdot 8$
8	10.5	$9 \cdot 5$	110	$8 \cdot 5$	$8 \cdot 0$	$7 \cdot 4$	$9 \cdot 2$	7.8	$6 \cdot 9$	$5 \cdot 0$	4.0	$4 \cdot 5$
9	10.7	$9 \cdot 5$	$9 \cdot 7$	$9^{\circ} \mathrm{O}$	79	$8 \cdot 8$	$8 \cdot 7$	$8 \cdot 0$	$6 \cdot 6$	4.7	$3 \cdot 3$	$5 \cdot 1$
10	$10^{\circ} 0$	97	$9 \cdot 8$	10.5	$7 \cdot 8$	$7{ }^{\circ} 4$	$8 \cdot 9$	$8 \cdot 2$	$7 \cdot 0$	$5 \cdot 3$	$3 \cdot 9$	$4 \cdot 8$
11	$10 \cdot 7$	10.0	10.2	$9 \cdot 1$	$8 \cdot 3$	$7 \cdot 5$	$9 \cdot 2$	$7 \cdot 7$	$6 \cdot 5$	$5 \cdot 6$	$4 \cdot 6$	4.7
12	10.5	$10 \cdot 3$	$9 \cdot 8$	$8 \cdot 8$	7×9	$7 \cdot 5$	$8 \cdot 1$	$7 \cdot 9$	$6 \cdot 9$	$5 \cdot 3$	$3 \cdot 7$	4.5
13	10.4	11.2	$10 \cdot 1$	$8 \cdot 7$	$8 \cdot 3$	$7 \cdot 4$	$9 \cdot 5$	$8 \cdot 1$	4.9	$6 \cdot 2$	$4 \cdot 2$	$4 \cdot 8$
14	$9 \cdot 9$	10.6	$9 \cdot 8$	7.4	$8 \cdot 3$	7.2	$8 \cdot 8$	$9 \cdot 1$	$5 \cdot 5$	4.7	42	$3 \cdot 6$
15	$10 \cdot 6$	$10 \cdot 6$	$9 \times$	$9 \cdot 1$	$8 \cdot 4$	$7 \cdot 8$	$8 \cdot 5$	$8 \cdot 1$	$5 \cdot 6$	$4 \cdot 5$	$4 \cdot 6$	$5 \cdot 8$
16	10.6	10.6	9.4	$9 \cdot 1$	$7 \cdot 6$	8.5 8.6	$8 \cdot 8$	7.9	$6 \cdot 5$	$4 \cdot 6$	$4 \cdot 8$	$5 \cdot 5$
17	10.7	$9 \cdot 8$	9.7	$7 \cdot 8$	$8 \cdot 0$	$8 \cdot 6$	$8 \cdot 0$ $7 \cdot 5$	$7 \cdot 5$	$6 \cdot 6$	$5 \cdot 1$	$4 \cdot 7$	4.8
18	9^{93}	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$	$7 \cdot 1$	7.2	7.5	7.9	4.4	4.2	4.2	5.1
19	10.1	9.4	8.4 8.3	$8 \cdot 3$	7.4	7.9	$8 \cdot 9$	8.4	$6 \cdot 5$	$5 \cdot 1$	$5 \cdot 0$	$4 \cdot 8$
20	10.0	10.5	$8 \cdot 3$	$8 \cdot 1$ $8 \cdot 2$	$8 \cdot 7$ $8 \cdot 3$	$7 \cdot 1$	$7 \cdot 9$	$8 \cdot 7$	$6 \cdot 3$	$4 \cdot 6$	$5 \cdot 8$	$4 \cdot 3$
21	10.9	10.5	$8 \cdot 9$	$8 \cdot 2$	$8 \cdot 3$	5.9 8.2	$7 \cdot 5$	10.1 8.4	6.2	$5 \cdot 0$	$5 \cdot 7$ $5 \cdot 3$	4.6 5.5
22	$9 \cdot 7$ 9	$10 \cdot 7$	$9 \cdot 5$	$7 \cdot 6$	7.8 8.5	8.2 8.6	$7 \cdot 0$	8.4	$7 \cdot 1$	$5 \cdot 0$	$5 \cdot 3$	$5 \cdot 5$
23	$10 \cdot 3$	$9 \cdot 8$	10.1	7.7	8.5	$8 \cdot 6$	7.9	$8 \cdot 1$ $8 \cdot 1$	$6 \cdot 0$	4.8	$5 \cdot 4$	$4 \cdot 5$
24	10.7 9.8	9.9 9.7	10.4 8.3	7.9	$7 \cdot 5$	7.9 7.8	9.8 7.5	$8 \cdot 1$ $8 \cdot 2$	$6 \cdot 0$ $6 \cdot 1$	$5 \cdot 7$ 4.7	$5 \cdot 2$ $4 \cdot 8$	$4^{\circ} \mathrm{O}$
25	9.8 10.4	$9 * 7$ 9.4	8.3 8.6	$7 \cdot 4$	7.6 8.5	$7 \cdot 8$ 7.7	7.5 7.6	$8 \cdot 2$ 7.2	$6 \cdot 1$ $5 \cdot 7$	4.7 5.8	4.8 4.8	4.2 4.8
26	10.4	9.4 9.0	8.6 8.7	$7 \cdot 3$ $8 \cdot 2$	$8 \cdot 5$ 9.0	7.7 6.6	7.6 8.7	$7 \cdot 2$ $7 \cdot 5$	$5 \cdot 7$ $5 \cdot 6$	5.8	$4 \cdot 8$ $5 \cdot 9$	4.8 $5 \cdot 8$
27	$10 \cdot 8$	90 9.5	8.7 6.6	$8 \cdot 2$	9.0 8.8	$6 \cdot 6$ $7 \cdot 8$	$8 \cdot 7$ 78	7.5 6.9	$5 \cdot 6$ $5 \cdot 3$	5.0 4.2	$5 \cdot 9$ $5 \cdot 4$	$5 \cdot 8$ $5 \cdot 1$
29	$8 \cdot 7$	7.9	$9 \cdot 6$	$7 \cdot 5$	8.4	8.2	$8 \cdot 2$	$7 \cdot 2$	$5 \cdot 7$	$4 \cdot 5$	4.9	4.8
30	$9 \cdot 4$		$8 \cdot 4$	10.3	$7 \cdot 3$	$7 \cdot 6$	$7 \cdot 5$	$7 \cdot 0$	$5 \cdot 6$	$4 \cdot 3$	$4 \cdot 8$	4.0
31	$9 \cdot 2$		$8 \cdot 6$		$9 \cdot 3$		79	$7 \cdot 3$		$4 \cdot 5$		4.6

Table II.-Monthly Mean Diurnal Inequality of Magnetic Declination West.
(The results in each month are diminished by the smallest hourly value.)

$\begin{gathered} \text { Hour, } \\ \text { Green wich } \\ \text { Mean Solar } \\ \text { Time. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\stackrel{\square}{0}$	$5 \cdot 3$	$6 \cdot 2$	$10^{\circ} 0$	$11 \cdot 7$	10.5	$10^{\prime} 8$	$9 \cdot 5$	$\dot{9}^{9} 4$	9.8	$8 \cdot 6$	6.0,	$5^{1} \cdot 1$
1	$6 \cdot 3$	$7 \cdot 7$	11.4	13.2	$11 \cdot 3$	$12 \cdot 1$	10.8	10.4	10.9	9.4	$6 \cdot 6$	$5 \cdot 9$
2	$5 \cdot 7$	$8 \cdot 1$	$11 \cdot 1$	12.8	10.9	12.4	$10 \cdot 5$	9.4	9.6	$9{ }^{\circ}$	$6 \cdot 1$	$5 \cdot 3$
3	4.2	$7 \cdot 5$	$9 \cdot 4$	$10 \cdot 6$	$9 \cdot 2$	11.5	$8 \cdot 8$	$7 \cdot 5$	$7 \cdot 6$	$7 \cdot 3$	$5 \cdot 0$	$4 \cdot 4$
4	$3 \cdot 3$	$5 \cdot 8$	7*	$8 \cdot 3$	$7 \cdot 5$	97	$7 \cdot 2$	$5 \cdot 6$	$5 \cdot 5$	$5 \cdot 5$	$3 \cdot 6$	3.9
5	$3 \cdot 0$	4.5	$5 \cdot 3$	$6 \cdot 0$	$5 \cdot 9$	$7 \cdot 8$	$5 \cdot 9$	$3 \cdot 9$	$4{ }^{\circ}$	$4 \cdot 3$	$2 \cdot 9$	$3 \cdot 3$
6	$2 \cdot 7$	4°	4.8	$4 \cdot 5$	4.9	$6 \cdot 3$	$5 \cdot 3$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 7$	$2 \cdot 5$	$2 \cdot 9$
7	$2 \cdot 1$	3.6	$4 \cdot 3$	4.0	4.4	$5 \cdot 1$	$4 \cdot 8$	$3 \cdot 1$	$2 \cdot 8$	3.0	$1 \cdot 8$	$2 \cdot 3$
8	1.6	2.6	3.5	$4{ }^{\circ}$	$4{ }^{\circ}$	$5 \cdot 0$	$4 \cdot 6$	$2 \cdot 9$	$2 \cdot 2$	2.4	$1 \cdot 1$	$1 \cdot 6$
9	$1 \cdot 1$	$1 \cdot 7$	2.6	3.7	$4{ }^{\circ}$	$5 \cdot 0$	4.4	2.5	$1 \cdot 9$	2.0	$0 \cdot 7$	$0 \cdot 7$
10	0.5	$1 \cdot 3$	$2 \cdot 3$	3.8	$4 \cdot 2$	4.8	$4^{\cdot 1}$	$2 \cdot 1$	$1 \cdot 9$	$1 \cdot 6$	0.3	00
11	$0 \cdot 0$	1.2	$2 \cdot 1$	$3 \cdot 6$	$4 \cdot 1$	4.4	$3 \cdot 6$	$2 \cdot 0$	$1 \cdot 9$	1.8	$0 \cdot 0$	$0 \cdot 1$
12	$0 \cdot 0$	$1 \cdot 2$	$2 \cdot 0$	$3 \cdot 3$	3.9	$3 \cdot 8$	$3 \cdot 1$	1.8	$1 \cdot 9$	2.1	0.4	$0 \cdot 0$
13	0.5	1.4	$2 \cdot 0$	$3 \cdot 1$	$3 \cdot 8$	$3 \cdot 5$	$2 \cdot 8$	$1 \cdot 7$	$1 \cdot 6$	$2 \cdot 1$	$1 \cdot 0$	$0 \cdot 9$
14	0.8	$2 \cdot 0$	$2 \cdot 3$	$3 \cdot 3$	$3 \cdot 6$	$3 \cdot 4$	2.4	1.5	1.5	$2 \cdot 1$	$1 \cdot 8$	$1 \cdot 5$
15	1.0	2.4	$2 \cdot 8$	$3 \cdot 3$	$3 \cdot 1$	$2 \cdot 9$	2.4	$1 \cdot 6$	1.4	$2 \cdot 1$	$1 \cdot 7$	$1 \cdot 9$
16	1.2	$2 \cdot 6$	$2 \cdot 8$	$2 \cdot 9$	2.4	$2 \cdot 0$	$1 \cdot 9$	$1 \cdot 0$	$1 \cdot 8$	$2 \cdot 2$	$1 \cdot 8$	2.4
17	$1 \cdot 2$	$2 \cdot 6$	$2 \cdot 7$	2.4	$1 \cdot 3$	$0 \cdot 9$	$0 \cdot 8$	$0 \cdot 9$	$1 \cdot 9$	$2 \cdot 3$	$1 \cdot 9$	$2 \cdot 5$
18	$1 \cdot 0$	$2 \cdot 1$	$2 \cdot 3$	$1 \cdot 9$	0.5	$0 \cdot 1$	000	0.3	1.4	$2 \cdot 1$	$1 \cdot 8$	$2 \cdot 2$
19	0.8	1.6	$1 \cdot 3$	$0 \cdot 5$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	0.2	$1 \cdot 5$	$1 \cdot 6$	$2 \cdot 3$
20	$0 \cdot 3$	0.6	$0 \cdot 0$	$0 \cdot 0$	0.2	0.4	$0 \cdot 7$	$0 \cdot 1$	$0 \cdot 0$	0.2	$0 \cdot 9$	$1 \cdot 9$
21	0.2	$0 \cdot 0$	$0 \cdot 5$	$0 \cdot 9$	$1 \cdot 9$	$2 \cdot 0$	$2 \cdot 1$	$1 \cdot 2$	10	$0 \cdot 0$	$0 \cdot 3$	1.4
22	1.5 3.5	1.2	$3 \cdot 0$	$3 \cdot 2$	4.4	4.6	4.1	$3 \cdot 7$	3.4	$2 \cdot 2$	$1 \cdot 3$	2.2
23	$3 \cdot 5$	3.9	$6 \cdot 9$	$7 \cdot 2$	$7 \cdot 5$	$7 \cdot 8$	7°	$6 \cdot 9$	$6 \cdot 5$	$5 \cdot 6$	3.6	3.6
Means	'999	$3 \cdot 16$	${ }^{\prime} \cdot 27$	4.92	4.73	$5 \cdot 26$	4.45	3.44	3.50	$3 \cdot 46$	2'28	2.43

Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Astronomical Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Horizontal Force, the unit in the table being $\cdot 00001$ of the whole Horizontal Force. The letters \mathbf{u} and c indicate respectively values uncorrected for, and corrected for temperature.)

1884.																								
Day of Month:	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	u	c	u	c	u	c	u	${ }^{c}$	u	c	u	c	u	c	u	c	u	c	u	c	u	c
d																								
1	398	380	536	53I	297	297	14	465	500	540	513	560	480	630	502	711	438	620	..	\ldots	522	593	639	582
2	410	418	411	406	303	302	486	539	525	572	487	550			480	687	458	629					640	608
3	489	516	358	355	386	390	496	549	585	625	442	516			535	703	398	569	358	466	257	324	641	652
4	458	502	418	433	392	396	529	565	577	608	530	602	356	549	527	686	418	568	400	494	405	476	632	647
5	432	479	369	386	429	43 I	566	597	601	637	553	625	396	584	525	689	445	575	454	534	413	482	630	654
6	452	487	375	374	450	476	53I	580	645	660	572	630	441	605	579	759	462	594	457	549	450	515	559	579
7	450	47^{2}	444	416	426	457	542	591	604	637	557	601	452	613	539	745	436	568	377	480	494	548	583	594
8	42 I	430	438	422	430	434	546	586	635.	684	559	604	413	602	338	572	453	599	437	526	496	534	471	482
9	449	473	506	515	421	418	552	581	678	723	603	650	444	646	275	527	466	646	495	557	522	571	577	574
10	441	468	$5{ }^{4} 8$	554	401	432	523	554	609	672	569	632	468	647	309	569	367	553	478	516			646	646
11	375	386	576	578	435	466	438	480	533	607	567	659	527	691	304	578	399	581	513	540	462	513	553	564
12	378	382	614	614	453	462	494	548	564	647	575	685	522	695	326	605	402	590	505	550	42 I	465	613	24
13	44^{1}	459	562	579	452	476	583	618	616	687	567	674	440	622	298	563	294	498	5il	553	468	513	569	605
14	460	491	530	554	461	490	537	563	599	657	574	659	428	605	288	530	327	529	373	433	498	534	459	479
15	425	452	535	534	492	536	520	553	627	681	578	638	478	667	302	524	369	582	379	459	464	482	486	488
16	461	476	522	512	488	530	523	552	58I	661	609	665	460	639	282	504	423	652	431	534	492	507	52	4
17	490	510	495	490	46.9	513	518	540	577	655	662	724	479	640	302	529	285	528	443	544	429	451	555	530
18	484	502	433	446	480	538	414	440	666	719	626	691	515	650	317	546	273	515	490	588	431	457	535	517
19	462	477	436	454	425	47^{2}	381	407	605	659	516	587	523	633	343	554	307	523	456	545	423	458	541	543
20	445	489	438	460	463	480	400	436	582	629	499	586	462	590	360	567	342	540	47^{5}	547	466	492	513	506
21	512	550	452	478	485	478	395	424	655	700	557	647	443	593	261	474	393	584	425	492	500	509	535	512
22	55I	582	394	425	543	542	402	426	554	623	563	666	484	650	240	464	386	557	463	526	549	549	509	482
23	491	518	315	344	538	537	409	442	544	634	435	533	475	634	260	503	438	581	494	543	486	481	553	516
24	489	502	275	320	542	533	303	343	523	606	477	576	494	631	218	488	4^{86}	616	488	533	501	478	547	499
25	464	468	354	378	532	52.9	330	374	563	621	491	599	483	604	278	518	478	612	460	507	528	496	571	525
26	396	393	366	388	511	535	434	456	548	602	526	645	502	621	324	503	465	597	463	505	550	540	586	536
27	387	371	375	402	500	520	497	515	588	648	564	699	465	588	349	513	482	628	532	583	538	531	609	559
28	397	397	398	400	378	384	560	587	591	631	566	700	475	607	352	518	434	609	459	521	479	456	567	510
29	457	481	310	310	341	377	547	587	605	638	566	696	515	670	353	508	450	609	403	44^{8}	549	521	573	518
30	519	541			33_{4}	392	558	594	547	594	508	647	513	686	424	594	475	610	483	548	648	596	579	511
	582	590				462			550	595				689	485	673			517	589			600	521

[^1] the end of the year experiments were made for determination of the angle of torsion; thus, in each case, breaking the continuity of the values.

1884.												
$\begin{aligned} & \text { Day of } \\ & \text { Month. } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August. ${ }^{\text {d }}$	September.	October.	November.	December.
${ }^{\text {d }}$	$58 \cdot 8$	59.5	$5{ }^{\circ} \cdot 8$	$6{ }^{\circ} \cdot 6$	$62^{\circ} \mathrm{O}$	$6{ }^{\circ} \cdot 4$	$68 \cdot 1$	$7{ }^{\circ} \mathrm{C} 4$	$69^{\circ} 9$	\because	$63 \cdot 7$	56․6
2	$60 \cdot 2$	59.5	59.7	$62 \cdot 7$	62.4	$63 \cdot 3$.	$71 \cdot 3$	$69 \cdot 3$.	.	58.0
3	$61 \cdot 3$	$59 \cdot 6$	60°	62.7	62.0	63.9	.	$69 \cdot 1$	$69 \cdot 3$	$65 \cdot 8$	$63 \cdot 5$	$60 \cdot 4$
4	$52 \cdot 2$	$60 \cdot 6$	60°	61.8	61.5	$63 \cdot 8$	70.5	68.6	68.1	65.0	63.7	$60 \cdot 6$
5	62.4	$60 \cdot 7$	59.9	61.5	61.8	$63 \cdot 8$	$70^{\circ} 2$	68.9	67°	64.2	$63 \cdot 6$	$61 \cdot 1$
6	617	59×7	61.2	$62 \cdot 5$	$60 \cdot 6$	$63 \cdot 0$	68.9	69.8	$67 \cdot 1$	64.9	63.4	$60 \cdot 9$
7	61.0	$58 \cdot 2$	61.5	$62 \cdot 5$	6r.6	62.2	$68 \cdot 7$	71.2	$67 \cdot 1$	$65 \cdot 5$	$62 \cdot 8$	$60 \cdot 4$
8	$60 \cdot 3$	58.9	60°	$62^{\circ} \mathrm{O}$	62.5	$62 \cdot 3$	$70 \cdot 3$	$72 \cdot 8$	679	64.7	619	60.4
9	$61 \cdot 1$	$60 \cdot 3$	$59 \cdot 6$	61.4	$62 \cdot 3$	62.4	71°	$73 \cdot 8$	$69 \cdot 8$	$63 \cdot 2$	62.5	59.6
10	$61 \cdot 3$	$60 \cdot 1$	61.5	61.5	$63 \cdot 3$	$63 \cdot 3$	$69^{\circ} 7$	74^{2}	$70 \cdot 1$	619	.	$59 \cdot 8$
11	$60 \cdot 4$	59.9	61.5	62.1	63.9	649	$68^{\circ} 9$	75°	$69 \cdot 9$	61.3	62.6	$60 \cdot 4$
12	$60 \cdot 0$	59.8	$60 \cdot 3$	62.8	64.4	$65 \cdot 9$	69.4	$75 \cdot 3$	$70 \cdot 2$	$62 \cdot 3$	$62 \cdot 2$	$60 \cdot 4$
13	$60 \cdot 8$	$60 \cdot 7$	$61 \cdot 1$	617	$63 \cdot 7$	$65 \cdot 7$	$69^{\circ} 9$	74.5	71.1	$62 \cdot 1$	$62 \cdot 3$	$61 \cdot 8$
14	61.5	61.1	61.4	$61 \cdot 2$	$63^{\circ} 0$	64.5	69.6	$73 \cdot 2$	71°	$63 \cdot 1$	61.8	60.9
15	$61 \cdot 3$	597	$62 \cdot 2$	61.6	$62 \cdot 8$	$63 \cdot 1$	$70 \cdot 3$	$72 \cdot 1$	71.6	$64 \cdot 2$	$60 \cdot 8$	59.9
16	$60 \cdot 6$	59.2	$62 \cdot 1$	614	$64 \cdot 2$	62.9	69.7	72.1	72.5	$65 \cdot 5$	$60 \cdot 6$	$59 \cdot 3$
17	$60 \cdot 9$	59.5	$62 \cdot 2$	61.0	64.1	$63 \cdot 2$	68.7	$7{ }^{2 \%} 4$	$73 \cdot 3$	65.4	610	58.4
18	$60 \cdot 8$	60.5	63.0	$61 \cdot 2$	62.7	63.4	$67 \cdot 3$	$72 \cdot 5$	73.2	$65 \cdot 2$	$61 \cdot 2$	58.8
19	$60 \cdot 6$	$60 \cdot 8$	62.4	$61 \cdot 2$	62.8	$63 \cdot 7$	65.9	71.5	71.8	64.7	617	59.9
20	$62 \cdot 2$	61.0	$60 \cdot 7$	61.8	62.4	64.6	$66 \cdot 9$	71.3	$70 \cdot 8$	63.8	$61 \cdot 2$	59.4
21	619	$61 \cdot 2$	59.4	614	$62 \cdot 3$	$64 \cdot 8$	68.1	71.6	$70 \cdot 4$	$63 \cdot 5$	$60 \cdot 3$	$58 \cdot 5$
22	61.5	$61 \cdot 5$	$59 \cdot 7$	61.1	$63 \cdot 6$	$65 \cdot 5$	69°	$72 \cdot 2$	69.3	$63 \cdot 3$	59.8	58.3
23	$61 \cdot 3$	61.4	$59 \cdot 7$	61.6	$64 \cdot 8$	65*2	68.6	$73 \cdot 3$	677	62.5	59.5	577
24	$60 \cdot 5$	$62 \cdot 3$	$59 \cdot 3$	62.0	64.4	$65 \cdot 3$	$67 \cdot 4$	74^{-8}	67.0	$62 \cdot 3$	58.5	$57 \cdot 1$
25	60°	61.1	$59 \cdot 6$	62.2	63.0	$65 \cdot 8$	$66 \cdot 5$	$73 \cdot 1$	$67 \cdot 2$	62.4	58.0	57.2
26	59.6	61.0	611	61.0	$62 \cdot 8$	$66^{\circ} 4$	$66 \cdot 4$	69.7	$67 \cdot 1$	62.1	59.2	57°
27	$58 \cdot 9$	$61 \cdot 3$	$60 \cdot 9$	$60 \cdot 8$	$63 \cdot 1$	$67 \cdot 3$	$66 \cdot 6$	$68 \cdot 9$	$67 \cdot 9$	$62 \cdot 6$	59.4	57°
28	59.8	59.9	$60^{\circ} 1$	613	$62 \cdot 0$	67.2	$67 \cdot 1$	69°	$69 \cdot 5$	$63 \cdot 2$	58.5	$56 \cdot 6$
29	61.1	$59 \cdot 8$	61.8	$62^{\circ} \mathrm{O}$	61.6	$67 \cdot 0$	$68 \cdot 4$	68.4	68.6	$62 \cdot 3$	58.2	$56 \cdot 7$
30	61%		63.0	61.8	62.4	$67 \cdot 5$	$69 \cdot 4$	69.2	$67 \cdot 3$	63.4	$56 \cdot 9$	56.0
31	$60 \cdot 2$		62.8		$62 \cdot 3$		$70 \cdot 3$	$70 \cdot 2$		63.8		$55 \cdot 4$
Means	$60^{\circ} \cdot 81$	$60^{\circ} \cdot 30$	$60^{\circ} \cdot 89$	$6{ }^{\circ} \cdot 75$	$62^{\circ} \cdot 78$	$64^{\circ} \cdot 48$	$68 \cdot 68$	$7^{\circ} \cdot 66$	$69^{\circ} \cdot 43$	$6{ }^{\circ} \cdot 59$] $5^{\circ} \cdot 85$

Table V.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force.
(The results are expressed in terms of the whole Horizontal Force, diminished in each case by the smallest hourly value, the unit in the table being $\cdot 00001$ of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

1884.																								
$\begin{array}{\|c\|} \hline \text { Hour, } \\ \text { Greeñich } \\ \text { Mean Solar } \\ \text { Time. } \end{array}$	Janaary.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c
-	5	4	14	16	40	40	38	38	49	57	52	56	86	93	75	79	96	97	30	34	\bigcirc	\bigcirc	2	2
1	42	42	47	50	88	91	93	96	84	93	82	91	126	138	119	127	154	157	72	76	26	28	35	37
2	73	75	87	92	127	132	151	154	103	116	117	130	149	163	139	148	181	186	110	116	60	62	58	60
3	91	95	120	125	158	165	187	192	119	134	162	178	174	192	154	165	197	206	134	141	75	77	68	72
4	101	105	133	139	168	175	220	226	144	161	175	193	190	210	159	171	202	212	144	151	80	82	69	73
5	122	125	150	156	170	178	242	24^{8}	164	183	211	231	205	227	170	183	203	214	155	163	90	91	77	81
6	128	131	158	165	193	201	257	264	182	202	238	259	220	243	185	200	211	222	162	170	103	104	75	79
7	135	138	166	174	216	224	263	271	182	204	230	253	230	255	196	212	226	238	166	174	111	112	69	73
8	127	129	155	163	210	219	255	263	170	194	210	235	232	259	196	213	230	243	179	188	125	125	70	74
9	123	125	147	156	199	208	250	259	158	184	190	217	218	247	181	199	223	237	187	196	121	121	65	69
10	104	106	153	161	193	20	238	246	137	161	179	204	212	238	181	198	212	225	186	194	114	114	57	61
11	105	107	152	160	196	20	240	248	121	143	164	186	199	223	167	182	205	217	186	194	116	115	55	58
12	106	107	162	169	194	201	232	239	116	136	161	181	186	207	157	171	208	218	184	191	115	114	61	64
13	105	106	164	171	196	202	216	222	111	128	146	163	167	186	143	155	200	209	179	185	117	115	67	69
14	107	108	156	162	196	202	209	214	108	123	141	156	168	184	136	147	199	207	177	182	117	115	73	75
15	110	111	151	156	203	208	201	206	109	122	140	152	169	183	138	147	198	205	187	192	118	115	76	78
16	117	117	166	171	203	207	200	204	110	12	141	151	169	180	133	140	199	205	190	194	129	125	86	87
17	125	125	179	183	212	21	200	203	100	109	130	138	153	161	123	129	195	200	194	197	143	139	98	99
18	135	135	186	190	204	207	198	200	81	87	102	107	135	141	102	106	173	177	188	190	161	156	106	106
19	132	131	188	191	180	182	170	171	51	55	79	82	103	106	77	80	133	135	162	163	151	146	107	107
20	109	108	152	155	125	127	112	113	28	30	42	42	61	62	40	41	75	76	113	114	117	111	90	89
21	57	56	91	93	60	61	49	49	8	8	9	7	11	9	6	6	26	26	45	45	72	66	48	47
22	15	15	38	40	9	. 10	-	-	-	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	26	20	12	11
23	-	-	-	-	-	-	1	1	23	25	21	25	38	41	16	18	24	24	1	1	11	5	\bigcirc	-
Means cor rected for Temperature	$\} 9$			4.9		\% 9		-3		$5 \cdot 7$		$3 \cdot 2$		$4 \cdot 5$	134	4°		$2 \cdot 3$						5

Table VI.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet, at each of the ordinary Hours of Observation.

1884.													
Hour, Green. Whioh Mioan Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\underset{\substack{\text { For the } \\ \text { Year. }}}{ }$
$\stackrel{\square}{0}$	${ }^{\circ} \mathrm{O} \cdot 75$	${ }^{\circ}{ }^{\circ} \cdot 23$	$6{ }^{\circ} \cdot 70$	$6_{1}^{\circ} \cdot 63$	$6{ }^{\circ} \cdot 66$	$6{ }_{4}{ }^{\circ} 19$	68.52	${ }_{71}{ }^{\circ} 51$	$6{ }^{\circ} \cdot 34$	63.58	$6 \stackrel{\circ}{111}$	58.8	$6{ }^{\circ} \cdot 59$
1	$60 \cdot 79$	$60 \cdot 34$	60.87	6178	62.82	$64 \cdot 47$	$68 \cdot 76$	71.68	69.42	$63 \cdot 62$	61.16	58.87	63.71
2	$60 \cdot 86$	$60 \cdot 37$	$60 \cdot 97$	61.84	62.97	64.67	68.94	71.82	69.54	63.71	$61 \cdot 19$	58.93	63.82
3	60.95	60.43	61.06	${ }^{61} \cdot 95$	63.13	$64 \cdot 88$	$69 \cdot 12$	71.93	$69 \cdot 68$	$63 \cdot 80$	61.19	58.97	63.92
9	60.90	$60 \cdot 58$	61.23	62.07	63.66	65.49	69.74	$72 \cdot 34$	69.97	63.88	$61 \cdot 12$	$58 \cdot 95$	$64 \cdot 16$
21	$60 \cdot 75$	$60 \cdot 16$	$60 \cdot 79$	61.56	$62 \cdot 25$	63.90	67.98	71.28	$69 \cdot 16$	63.36	$60 \cdot 83$	58.72	63.40
22	$60 \cdot 76$	$60 \cdot 17$	$60 \cdot 76$	${ }^{6} 1.56$.	62.29	64.02	$68 \cdot 10$	71.31	69.15	$63 \cdot 37$	60.84	58.73 58.77	63.42
23	60.76	$60 \cdot 14$	$60 \cdot 75$	61.58	$62^{\circ} 4^{5}$	$64 \cdot 18$	$68 \cdot 32$	$71 \cdot 38$	69:20	63.41	60.84	58.77	63.48

Table VII.—Mean Vertical Magnetic Force (diminished by a Constant) for each Astronomical Dat.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Vertical Force, the unit in the table being 00001 of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected of temperature.)

1884.																								
Day of Month.	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	u	c	u	c	u	${ }^{c}$	u	c	u	c	u	c	u	c	u	c	${ }^{\text {u }}$	c	u	c	u	c
1	651	623	668	616	543	491	586	47^{2}		..	594	468	743	513	765	467	612	358	.	\cdots	342	212	120	146
2	683	63I	677	629	543	49^{3}	593	475			667	525			759	465	596	344					147	139
3	717	643	661	617	553	493	595	481	555	457	632	482			716	462	592	342	485	305	408	286	188	134
4	752	658	669	599	550	490	580	486	538	448	621	473	814	540	680	436	568	346	448	286	367	247	197	155
5	775	679	683	605	551	491	573	485	548	452	646	502	791	527	669	415	528	324	419	275	362	240	202	140
6	765	677	67 I	615	571	487	584	476	535	457	636	506	755	515	678	406	531	323	400	240	361	243	211	141
7	740	664	625	589	579	491	587	479	539	443	611	49^{3}	750	510	706	416	532	328	449	281	365	263	213	151
8	723	661	632	592	550	488	590	496	558	456	596	482	792	520	764	452	539	313	434	282	326	244	234	180
9	739	661	623	571	532	490	574	496	564	458	588	474	782	500	775	449	579	319	400	280	325	229	207	177
10	747	671	611	563	559	483	555	475	601	471	625	485	764	512	783	449	610	346	361	275	333	231	189	157
11	726	676	599	549	570	488	579	485	630	486	651	479	735	497	794	446	611	349	317	239	334	236	217	171
12	700	658	589	535	555	487	581	48 I	666	512	682	490	748	496	798	444	612	346	330	234	324	230	221	161.
13	694	638	613	539	563	479	546	476	655	515	688	518	745	483	781	447	622	338	321	227	317	223	240	166
14	693	623	631	551	579	497	504	424	645	523	661	525	765	509	732	426	647	367	357	245	300	222	227	175
15	716	632	597	55.	595	499	532	442	630	510	618	510	759	493	696	406	648	352	393	251	265	203	236	206
16	687	627	581	547	607	513	540	456	650	506	611	505	758	506	685	401	654	340	415	249	236	184	207	193
17	685	621	565	527	616	520	528	460	668	532	617	497	725	487	681	387	640	310	436	270	246	178	176	174
18	682	612	585	523	635	527	504	438	615	501	607	481	694	478	686	392	703	377	423	263	244	170	173	149
19	690	622	583	511	630	536	490	412	622	506	653	515	627	437	660	384	677	379	423	273	250	170	168	126
20	710	624	612	532	599	537	504	412	614	500	669	523	655	447	643	367	633	353	395	261	241	169	179	151
21	702	620	608	528	570	528	506	418	598	482	664	504	681	451	682	386	622	352	388	264	216	164	160	146
22	690	612	602	520	546	500	488	408	606	470	680	512	700	454	699	385	591	343	369	247	190	146	153	145
23	688	618	605	527	547	497	490	400	657	49^{5}	731	565	703	475	715	379	538	322	342	236	195	157	128	136
24	674	610	644	556	533	491	487	391	663	509	711	539	657	445	741	373	510	306	337	237	181	161	117	117
25	638	582	614	548	524	478	523	425	623	499	719	537	630	430	700	370	49^{5}	287	337	233	167	141	111	115
26					533	457	494	416	613	513	707	511	625	435	596	348	499	287	330	238	169	121		
27	630	602		.	520	444	495	417	615	513	705	489	637	437	562	336	500	284	315	209	168	122	88	96
28	628	580		.	489	421	502	420	584	508	719	505	651	435	551	333	535	295	340	224	198	172	91	107
29	660	580	555	501	556	468	521	431	559	477	719	515	673	435	542	328	529	301	343	237	171	161	85	99
30	681	595			589	485	505	417	588	468	736	518	707	451	555	319	503	293	339	213	135	149		
31	680	608			577	467			586	466			740	464	599	343			339	207				.

At the beginning of the month of May the time of vibration of the magnet in the vertical plane was altered; and on December 30 the magnet was dismounted for determination of its time of vibration in the horizontal plane; thus, in each case, breaking the continuity of the values.

Table IX.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force.
(The results are expressed in terms of the whole Vertical Force, diminished in each case by the smallest hourly value, the unit in the table being 00001 of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

1884.																								
Hour,Greenwich Green SolarMean Sol Time.	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	u	c	u	c	u	c																
ho	2	3	5	1	-	-	-	-	-	\bigcirc	-	-	2	-	5	1	3	0	9	5	14	8	6	
1	7	6	12	6	13	9	15	11	19	15	14	8	17	9	20	12	15	10	19	13	29	23	12	10
2	19	16	18	10	31	25	45	39	45	39	35	25	42	30	43	33	30	23	33	25	41	33	23	19
3	25	22	33	25	50	44	63	57	63	55	55	43	59	45	61	49	44	33	47	39	44	38	26	20
4	22	19	42	34	62	56	76	70	79	70	76	63	67	52	70	57	52	41	55	47	45	39	26	21
5	19	17	42	34	65	58	87	82	92	82	92	77	73	57	75	62	56	44	55	47	43	38	24	19
6	18	16	40	32	63	56	92	87	100	89	103	87	75	58	75	61	55	43	53	45	39	34	23	19
7	17	15	39	31	59	52	90	85	100	88	103	86	74	56	72	57	52	40	5I	43	37	32	22	19
8	15	14	38	30	59	51	87	83	99	86	95	76	73	54	71	56	50	37	49	41	32	28	21	18
9	13	12	36	28	55	47	81	77	94	80	85	65	68	48	67	51	47	34	44	36	29	25	20	18
10	12	11	32	25	50	43	73	70	85	73	77	59	61	43	61	47	44	32	39	32	24	20	16	14
11	13	12	28	21	47	41	65	62	81	71	72	56	56	41	57	44	36	26	36	30	22	19	13	11
12	9	8	26	20	41	35	61	59	80	72	65	52	50	37	53	42	33	24	33	27	20	17	12	10
13	7	6	21	16	38	33	54	53	75	69	62	51	44	34	49	40	31	23	31	26	16	14	8	7
14	3	2	17	12	33	29	52	51	70	66	58	49	41	33	48	40	28	22	25	21	13	11	5	4
15	3	2	14	10	28	25	48	48	68	66	56	49	36	31	48	42	25	20	24	21	12	11	2	
16	4	3	14	11	27	25	49	50	69	69	59	54	35	33	47	43	24	20	24	22	12	12	1	-
17	3	2	11	8	27	25	53	54	69	71	58	55	36	36	48	45	24	22	22	21	12	12	1	-
18	2	1	8	6	29	28	57	59	65	69	51	51	32	35	46	45	29	28	23	22	9	10	-	-
19	3	2	9	8	37	37	57	60	58	64	45	47	29	34	46	47	31	31	28	28	7	8	1	1
20	4	3	12	11	38	39	51	54	46	54	37	41	25	33	39	41	28	30	30	31	12	14	3	3
21	1	-	12	12	29	31	35	39	30	40	24	30	16	26	22	26	19	22	23	25	10	12	3	3
22	\bigcirc	1	4	4	13	13	20	22	13	23	12	16	8	14	9	11	10	13	11	13	3	5	4	4
23	2	1	-	-	2	2	3	5	\bigcirc	6	3	3.	-	2	-	-	-	1	\bigcirc	-	\bigcirc	0	4	2
$\begin{aligned} & \text { Means cor-- } \\ & \text { reted for } \\ & \text { Tempera. } \\ & \text { ture } \end{aligned}$			16		33		53						35		39		25							

Table X.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnet, at each of the ordinary Hours of Observation.

1884.													
$\begin{gathered} \text { Hour. } \\ \text { Green- } \\ \text { wich } \\ \text { Mesn } \\ \text { Solar } \\ \text { Time. } \end{gathered}$	January.	Febraary.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the
${ }^{\circ} \mathrm{O}$	$6{ }^{\circ} \cdot 32$	$60^{\circ} \cdot 02$	$6{ }^{\circ} \cdot 50$	$6{ }_{1}^{\circ} \cdot 14$	$6{ }^{\circ} \cdot 80$	${ }_{64}{ }^{\circ} \cdot 54$	68.83	71.43	$6{ }^{\circ} \cdot 50$	$6{ }^{\circ} \cdot{ }^{42}$	60.67	58.33	$63^{\circ} \cdot{ }^{\circ}$
1	$60 \cdot 42$	60.11	60.72	$61 \cdot 60$	$62 \cdot 98$	$64 \cdot 84$	69.08	71.56	69.63	63.51	$60 \cdot 75$	58.35	63.63
3	$60 \cdot 46$	$60 \cdot 17$	$60 \cdot 78$	61.67	63.09	64.95	$69 \cdot 26$	71.69	$69 \cdot 72$	$63 \cdot 57$	$60 \cdot 76$	58.39	63.71
3	6050	60.21	$60 \cdot 82$	$61 \cdot 75$	63.23	65.08	$69 \cdot 43$	71.80	$69 \cdot 85$	63.63	$60 \cdot 74$	58.47	$63 \cdot 79$
9	$60 \cdot 40$	60.20	$60 \cdot 90$	61.61	63.54	$65 \cdot 46$	69.72	72.03	70.01	63.61	$60 \cdot 63$	$58 \cdot 26$	63.86
		59.75	60.44	61.22	62.25	$64 \cdot 16$	68.21	71.02	69.18	63.08	$60 \cdot 27$	58.21	$63 \cdot 18$
22 2.3	60.33	59.80	$60 \cdot 45$	61.26	$62 \cdot 32$	$64 \cdot 33$	68.38	71.11	$69 \cdot 23$	$63 \cdot 10$	$60 \cdot 30$	58.23	63.24
2.3	60:36	59.77	$60 \cdot 45$	61.30	62.54	64.48	68.61	71.22	69.30	$63 \cdot 18$	$60 \cdot 36$	58.28	63.32

Table XI.-Mean Magnetic Declination, Horizontal Force, and Vertical Force in each Month.
(The results for Horizontal Force and Vertical Force are corrected for temperature.)

Month.	Declination West in Arc.	Horizontal Force in terms of the whole Horizontal Force (diminished by a	Vertical Force in terms of the whole Vertical Force (diminished by a	Declination diminished by 17° and expressed as Westerly Force.	Horizontal Force (diminished by a Constant).	Vertical Force (diminished by a Constant).
				in terms of Gaubs's Metrical Unit.		
January.............	$\text { 18. } 103$	472	630	3706	855	2755
February	18.10\%	450	559	3690	815	2445
March	18. 9.4	461	491	3658	835	2147
April...............	18. 8.5	516	448	3611	935	1959
May................	18. $8 \cdot 2$	640	487	3595	1160	2130
June	18. 799	632	504	3579	1145	2204
July..	18. 8.3	630	479	3600	1142	2095
August	18. 78	578	401	3574	1047	1754
September............	18. 6×3	582	331	3495	1055	1447
October	18. 409	524	251	3421	949	1098
November		Nov. 1-9 505			Nov. 1-9 915	
		Nov.11-30 501			Nov.11-30 908	857
December	18. 47	55ı	148	3410	998	647
Means	18. 7 '6	3562
Number of Column ...	1	2	3	4	5	6

The units in columns 2 and 3 are -00001 of the whole Horizontal and Vertical Forces respectively; in columns 4, 5, and 6 the unit is -00001 of the Millimètre-Milligramme-Second Unit, or 000001 of the Centimètre-Gramme-Second (C.G.S.) Unit, in terms of which Units the values of whole Horizontal Force (applicable to columns 4 and 5) are 1812 and 0.1812 respectively for the year, and of whole Vertical Force (applicable to column 6) 4.373 and 0.4373 respectively for the year.
Horizontal Force.-On November 10 the cord attaching the pulley of the suspension skein to the small windlass at the back of the brick pier was found broken; and at the end of the year experiments were made for determination of the angle of torsion, thus, in each case, breaking the continuity of the values.
Vertical Fobce.-At the beginning of the month of May the time of vibration of the magnet in the vertical plane was altered; and on December 30 the magnet was dismounted for determination of its time of vibration in the horizontal plane; thus, in each case, breaking the continuity of the values.

Table XII.-Mean Diurnal Inequalities of Magnetic Declination, Horizontal Force, and Vertical Force for the Year 1884.
(Each result is the mean of the twelve monthly mean values, the annual means for each element being diminished by the smallest hourly value. The results for Horizontal Force and Vertical Force are corrected for temperature.)

Hour, Greenwich Mean Solar Time.	Inequality of			Inequality of		
	Declination West in Are.	Horizonyal Force in terms of the whole Horizontal Force.	Vretical Force in terms of the whole Vertical Force.	Declination expressed as W raterit Force	Horizontal Force	Vertical Forci
				in terms of Gausbis Metricai Unit.		
$\stackrel{\square}{0}$	$8 \cdot 14$	35*	-*	429^{1}	63.4	00°
1	9.23	$77 \cdot 5$	9.2	$486 \cdot 5$	$140 \cdot 4$	$40^{\circ} 2$
2	8.80	1115	24.6	$463 \cdot 8$	2020	1076
3	$7 \cdot 31$	137.2	$37 \cdot 4$	$385 \cdot 3$	$248 \cdot 6$	- 163.6
4	$5 \cdot 63$	$150 \cdot 2$	$45 \cdot 6$	296•8	$272 \cdot 2$	$199 \% 4$
5	4.29	$165 \cdot 3$	$49^{\cdot 6}$	226.1	299.5	- $\mathbf{2 1 6}^{6}$
6	$3 \cdot 56$	178.7	$50 \cdot 5$	1876	$323 \cdot 8$	- $220 \cdot 8$
7	$3 \cdot 00$	$186 \cdot 0$	48.5	158.1	337%	2121
8	$2 \cdot 52$	184.1	46°	132.8	$333 \cdot 6$	$201 \cdot 2$
9	$2 \cdot 08$	$176 \cdot 8$	41.6	109.6	$320 \cdot 4$. ${ }^{181} 9$
10	1.80	167.8	37.3	$94^{\circ 9}$	304.1	163.1
11	1.63	1617	34.4	$85 \cdot 9$	293.0	150.4
12	1.52	158.5	31.8	$80 \cdot 1$	287.2	139.1
13	1.59	151.3	29.2	83.8	$274{ }^{2}$	1277
14	1×74	148.2	26.5	917	268.5	1159
15	$1 \cdot 78$	148.3	$25 \cdot 4$	$93 \cdot 8$	$268 \cdot 7$	1111
16	$1 \cdot 64$	150:5	$26 \cdot 7$	86.4	$272 \cdot 7$	116.8
17	$1 \cdot 34$	150\%2	${ }^{27} 4$	$70 \cdot 6$	$272 \cdot 2$	119.8
18	0.87	142.2	$27 \cdot 7$	$45 \cdot 9$	257%	1211
19	0.38	121.1	28.8	20.0	2194	125.9
20	$0 \cdot 00$	81.0	27.7	\bigcirc	146:8	1219
21	0.52	31.4	204	274	$56 \cdot 9$	89.2
22	2.46	$0 \cdot 0$	9.8	1297	000	$42^{\circ} 9$
23	5.39	$3 \cdot 7$	$0 \cdot 0$	284*1	$6 \cdot 7$	$0 \cdot 0$
Means	$\stackrel{1}{3} 22$	125.8	29.4	169.6	227.9	1287
Number of Column -	1	2	3	4	5	6

The units in columns 2 and 3 are $\cdot 00001$ of the whole Horizontal and Vertical Forces respectively; in columns 4 , 5 , and 6 the unit is oon of the Millimetre-Milligramme-Second Unit or coocoo of the Centimetre-Gramme-Second (C.G.S.) Unit, in terms of which Units the values of whole Horizontal Force (applicable to columas 4 and 5) are 1.812 and 0.1812 respectively, and of whole Vertical Force (applicable to celumn 6) are $4 \cdot 373$ and $0 \cdot 4373$ respectively.

Table XIII.-Diurnal Range of Declination and Horizontal Force, on each Astronomical Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register.
(The Declination is expressed in minutes of arc : the unit for Horizontal Force is,0001 of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)

Day of Month.	1884.																							
	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	Dec.	H.F.	Dec	H.F.	Dec.	H.E. ${ }^{\text {- }}$	Dec.	H.F.	Dec.	H.F.	Dec.	H.F.												
${ }_{1}$	4	170	97	350	16.1	280	15.1	330	$10 \cdot 3$	250	15:1	220	5	310	7.5	230	10.8	260	,		$8 \cdot 9$	310	7.6	180
2	$6 \cdot 7$	140	9.7	260	$15 \cdot 1$	270	17.6	400	$8 \cdot 9$	260	$14^{\circ} 1$	410			11.6	310	11.4	270					$5 \cdot 3$	180
3	$5 \cdot 6$	170	$8 \cdot 3$	220	12.2	260	14.2	280	11.3	270	11.8	360			$10 \cdot 9$	310	13.9	280	11.0	270	15.3	360	$4 \cdot 8$	100
4	$5 \cdot 8$	170	17.3	300	11.1	280	$15 \cdot 7$	300	12.5	270	11.6	340	10.8	290	12.3	200	12.0	240	11.7	350	$8 \cdot 8$	290	$5 \cdot 7$	170
5	$7 \cdot 0$	140	8.7	190	$10^{\circ} 2$	290	160	320	12.9	250	12.6	190	14.5	270	12.8	210	$13 \cdot 1$	240	12.4	220	8.6	260	$4 \cdot 5$	130
6	$5 \cdot 5$	110	9.6	170	9.7	320	16.7	310	$12 \cdot 8$	230	14.8	430	15.3	3ro	11.1	160	12.9	410	17.5	390	14.3	230	$3 \cdot 9$	130
7	6.2	160	$6 \cdot 8$	210	14.7	240	13.2	330	$9 \cdot 8$	230	11.5	250	13.0	310	$8 \cdot 0$	150	14.2	290	12.6	320	$6 \cdot 9$	210	$6 \cdot 3$	230
8	11.0	200	$7 \cdot 6$	240	12.3	170	$14^{\circ} 2$	370	8.1	210	12.1	300	149	290	$15 \cdot 8$	420	14.4	250	$10 \cdot 4$	210	8.0	270	$9 \cdot 4$	160
9	$6 \cdot 3$	150	$9 \cdot 3$	280	$9 \cdot 0$	210	18.4	310	13.7	250	$11 \cdot 1$	280	15\%	360	17.0	390	$12 \cdot 9$	410	10.6	290	10.4	300	$7 \cdot 0$	210
10	8.5	190	$9^{\circ} \mathrm{O}$	220	$10 \cdot 7$	270	$16 \cdot 9$	450	15.5	380	13.7	320	$16 \cdot 3$	310	13.5	280	$14^{\circ} 6$	380	$9 \cdot 5$	270	11.5		$5 \cdot 8$	150
11	7.8	210	$8 \cdot 6$	280	$13 \cdot 5$	240	16.6	340	$10^{\circ} 7$	330	14.4	320	13.9	300	12.9	220	13.4	320	12.1	270	$7 \cdot 7$	260	$15 \cdot 1$	190
12	13.8	190	6.4	270	11.3	270	15.2	320	9.6	250	13.9	330	$8 \cdot 7$	260	11°	330	$10 \cdot 5$.	240	11.6	260	$7 \cdot 3$	140	$5 \cdot 2$	100
13	$5 \cdot 4$	140	$5 \cdot 2$	160	14.7	240	$12 \cdot 9$	260	10.8	260	16.5	380	$15 \cdot 9$	520	$9{ }^{\circ}$	250	$19^{\circ} 5$	260	10.0	260	$6 \cdot 5$	160	$4 \cdot 5$	230
14	$7 \cdot 6$	220	$5 \cdot 0$	160	$15 \cdot 3$	270	$15 \cdot 2$	330	12.9	270	13.8	280	11.7	250	11.4	380	13.8	220	14.3	330	$6 \cdot 7$	310	20.5	230
15	8.7	230	$7 \cdot 6$	160	11.0	280	15.1	270	$13 \cdot 7$	250	11.8	210	12.4	370	10.3	230	9.5	230	12.4	250	$6 \cdot 8$	170	12.1	230
16	$5 \cdot 5$	170	77	230	12.6	300	$16 \cdot 0$	360	$10 \cdot 2$	240	14.8	190	12.4	210	$8 \cdot 8$	140	11.5	210	$8 \cdot 7$	260	7.2	230	7.6	150
17	$6 \cdot 7$	160	$10^{\circ} 0$	290	13.6	260	$21^{\circ} \mathrm{O}$	380	$10^{\circ} 0$	160	15.4	230	$7 \cdot 2$	220	13.0	240	$19^{\circ} 1$	630	12.2	160	$9 \cdot 2$	290	$5 \cdot 5$	160
18	$9 \cdot 2$	250	$7 \cdot 5$	230	12.0	260	12.6	320	10.4	180	$17 \cdot 3$	480	$9 \cdot 2$	220	10.4	310	17.3	390	$6 \cdot 8$	190	$8 \cdot 3$	150	$6 \cdot 3$	150
19	$6 \cdot 8$	160	4.7	180	14.8	250	12.1	410	11.4	230	10.0	170	12.3	370	12.4	310	8.7	230	$9 \cdot 2$	210	$9^{\circ} \mathrm{O}$	160	$7 \cdot 3$	250
20	$7 \cdot 3$	140	8.9	180	12.9	350	11.6	250	12.2	230	12.9	270	11.3	300	$18 \cdot 4$	530	$10 \cdot 6$	250	$7^{\circ} 1$	270	$7 \cdot 5$	140	$9 \cdot 2$	130
21	$8 \cdot 1$	170	$9 \cdot 3$	220	12.2	290	$10 \cdot 0$	220	14.9	160	$16 \cdot 3$	270	10.8	190	15°	450	14.7	420	10.1	230	$5 \cdot 8$	170	$9 \cdot 4$	210
22	$7{ }^{\circ}$	190	$9 \cdot 1$	290	13.7	300	14.6	180	15.2	350	$15 \cdot 3$	540	12.5	320	14.7	330	12.3	250	$9 \cdot 8$	290	$6 \cdot 1$	180	13.2	280
23	$5 \cdot 8$	150	$18 \cdot 9$	290	17.5	370	12.6	230	$9 \cdot 8$	240	$15 \cdot 8$	390	11.8	360	$10 \cdot 6$	310	12.8	260	$10^{\circ} 0$	290	12.5	210	$7 \cdot 1$	130
24	6:3	19°	$14^{\circ} 9$	390	$15 \cdot 8$	300	22.2	600	13.5	200	12.0	370	10.8	380	11.7	280	14.1	240	100	300	$8 \cdot 1$	150	$6 \cdot 0$	130
25	12.3	330	12.6	330	12.2	280	16.7	370	13.4	150	14.9	370	14.4	370	12.6	220	111	320	12.2	240	$6 \cdot 6$	130	4.5	100
26	$8 \cdot 5$	240	12.5	250	13.6	360	14.2	380	$15 \cdot 6$	280	13.2	250	10.5	260	$13 \cdot 6$	210	12.2	300	$11^{\circ} \mathrm{O}$	190	3.9	140	$5 \cdot 8$	110
27	$8 \cdot 0$	190	118	290	12.5	330	14.4	280	$14^{\circ} 6$	290	16.1	280	7×0	270	13.0	220	10.2	270	$8 \cdot 3$	190	7.8	250	$8 \cdot 2$	270
28	$8 \cdot 6$	200	$13 \cdot 6$	300	22.5	480	$14^{\circ} 5$	370	14.5	240	$14^{\circ} \mathrm{O}$	330	11.7	170	11.0	240	$10 \cdot 0$	230	$10 \cdot 9$	350	11.1	380	$8 \cdot 3$	150
29	$9 \cdot 3$	210	$20^{\circ} \mathrm{I}$	410	13.4	330	12.1	220	13.6	220	13.0	300	$9 \cdot 5$	280	10.4	140	10.2	250°	$14^{\circ} 0$	220	7.6	150	49	140
30	$8 \cdot 5$	180			$14^{\circ} \mathrm{I}$	230	10.5	380	11.5	270	13.4	290	7.4	290.	$8 \cdot 7$	220	12.6	340	$7 \cdot 9$	270	$6 \cdot 3$	140	$6 \cdot 7$	90
31	$8 \cdot 3$	190			12.6	310			13.0	430			11.1	150	$8 \cdot 3$	250			$8 \cdot 5$	170			$5 \cdot 0$	90
Means	6	184	10°	251	13.3	287	$14^{\circ} 9$	32	12.2	253	$13 \cdot 8$	312	11.8	ig3	11.9	273	$12 \cdot 8$	296	$10 \cdot 8$	259	$8 \cdot 4$	219	$7 \cdot 5$	166

Table XIV.-Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean, for Declination, Horizontal Force, and Vertical Force, as deduced from the Monthly Mean Diurnal Inequalities, Tables II., V., and IX.
(The Declination is expressed in minutes of arc: the units for Horizontal Force and Vertical Force are 00001 of the whole Horizontal and Vertical Forces respectively. The results for Horizontal Force and Vertical Force are corrected for temperature.)

Month.	Difference between the Greatest and Least of 24 Hourly Values.			Sums of the 24 Hourly Deviations from theMean Value.		
	Declination.	Horizontal Foree.	Vertical Force.	Declination.	Horizontal Force.	Vertical Force.
January.......................	$6 \cdot 3$	138	32	36.4	767	146
February.......................	$8 \cdot 1$	$\begin{array}{r}191 \\ \hline . \quad 224\end{array}$	34	$46 \cdot$ 63	1056	229
March .	11.4	- 224	58	$63 \cdot 8$	1329	314
April......................... .	13.2	271	87	$70 \cdot 4$ 5.5	1643	429
May...........................	11.3	204	89 87	$59^{\circ} 5$	1152 1509	481
June .	12.4 10.8		87 .58	72.9 59	1509 1460	429 283
July. .	10.8 10.4	259 $-\quad 213$	58 62	59.6 58.2	${ }_{124} 120$	283 306
August	10.4 10.9	213 243	62 44	58.2 58.8	1241 1386	306 219
October .	$9 \cdot 4$	197	47	51.7	1245	232
November .	6.6	156	39	$36 \cdot 3$	832	233
December	$5 \cdot 9$	107	21	${ }^{29} 9$	501	169
Means	9*7	205	54	$53 \cdot 6$	1177	289

Table XVI.-Values of the Co-efficients and Constant Angles in the Periodical Expressions

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+\alpha)+c_{2} \sin (2 t+\beta)+c_{3} \sin (3 t+\gamma)+c_{4} \sin (4 t+\delta) \\
& \mathrm{V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+c_{3} \sin \left(3 t^{\prime}+\gamma^{\prime}\right)+c_{4} \sin \left(4 t^{\prime}+\delta^{\prime}\right)
\end{aligned}
$$

(in which t and t^{\prime} are the times from mean solar noon and apparent solar noon respectively converted into arc at the rate of 15° to each hour, and $\mathrm{V}_{t}, \mathrm{~V}_{t}$ the mean value of the magnetic element at the time t or t^{\prime} for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).
The values of the co-efficients for Declination are given in minutes of are : the units for Horizontal Force and Vertical Force are -00001 of the whole Horizontal and Vertical Forces respectively.

Month.	\boldsymbol{m}	c_{1}	$\boldsymbol{\alpha}$	α^{\prime}	c_{3}	β	β^{\prime}	c_{3}	γ	γ^{\prime}	c_{4}	8	δ^{\prime}
	Declination West.												
		1	0 ,	- ,	,				- ,	- ,	,		
January	$1 \cdot 99$	$2 \cdot 10$	58. 4^{5}	61. 9	$1 \cdot 12$	23. 42	28.30	0.85	63.32	70.44	$0 \cdot 42$	47. 58	57.34
February	$3 \cdot 16$	2.41	48.59	52.28	$1 \cdot 87$	8. 49	15. 47	\bigcirc	41. 20	51.47	${ }^{\circ} \mathrm{4} 41$	38. 2	51.58
March	4.27	3.52	52. 7	5 +. 12	2.44	31. 22	35.32	$1 \cdot 51$	52. 36	58.51	$\bigcirc \cdot 56$	60. 26	68.46
April	4.92	3.82	46.34	46.32	3.13	41.28	41.24	1.63	43. 22	43. 16	$0 \cdot 40$	51. 4	50. 56
May	4.73	3.45	41. 1	40. 9	$2 \cdot 75$	53.36	51.52	$\bigcirc \cdot 94$	63. 23	60.47	- 19	70. 4	66.36
June	$5 \cdot 26$	$4 \cdot 45$	37. 5	37. 13	$2 \cdot 73$	48. 3	48.19	0.80	48. 13	48.37	-06	263. 9	263.41
July	445	$3 \cdot 69$	39.24	40.47	$2 \cdot 17$	56. 10	58.56	- 94	62.24	66.33	- 15	9. 50	15. 22
August.	3.44	3.42	53.41	54.34	$2 \cdot 28$	55. 52	57.38	$1 \cdot 17$	6 c .21	63. ${ }^{\circ}$	$\bigcirc \cdot 34$	50. 1	53.33
September	$3 \cdot 50$	$3 \cdot 33$	58. 12	56.51	$2 \cdot 35$	47. 35	44.53	$1 \cdot 34$	52.51	48.48	- 055	75.39	70. 15
October	3.46	2.72	54.40	51. 7	2.12	33. 18	26.12	1.20	47.21	36. 42	$0 \cdot 69$	64.7	49. 55
Novembe	$2 \cdot 28$	$1 \cdot 97$	69. 16	65. 39	1.48	18.54	11.40	0.82	53. 46	42. 55	$\bigcirc \cdot 53$	41. 46	${ }^{27} 18$
December	$2 \cdot 43$	$1 \cdot 87$	77. 12	76. 19	1.06	358.36	356.50	$\bigcirc \cdot 58$	67.36	64.57	$\bigcirc \cdot 36$	41.41	38. 9
For the Year. . .	3.22	3.01	50.39	50.39	2.04	38.55	38.55	105	53.29	53.29	$0 \cdot 37$	52.54	52.54
	Horizontal Force.												
January	$95 \cdot 9$	38.5	281. ${ }^{\circ}$	283.24	39°	279.27	284. ${ }^{\circ}$ ' ${ }^{\text {' }}$	$14^{\circ} 8$	$314.4{ }^{\circ} 6$	32 ${ }^{\circ}$. $5^{\prime} 8$	9×9	$35 \% .50$	$\stackrel{\circ}{7.26}$
February	1349	$56 \cdot 6$	267. 28	270.57	$45 \cdot 3$	279.22	286. 20	23.8	303. 27	313.54	$10 \cdot 7$	4.54	18.50
March	$160^{\circ} 9$	$77 \cdot 7$	282.54	284. 59	$49 \cdot 3$	298. 17	302. 27	$22 \cdot 7$	345.22	351.37	13.7	6.39	14.59
April	$180 \cdot 3$	1024	300.6	300.4	$52 \cdot 6$	296. 28	296. 24	23.4	330. 12	330. 6	$10 \cdot 3$	26. 24	26. 16
May	1157	$77 \cdot 7$	322.21	321.29	$30 \cdot 5$	307.51	306. 7	$10 \cdot 7$	55. 26	52.50	$5 \cdot 1$	55.51	52. 23
June	143.2	98.3	318.56	319. 4	$40 \cdot 5$	304. 16	304.32	6.9	33.56	34.20	$6 \cdot 7$	75. 4	75.36
July .	164.5	973	314.53	316. 16	$35 \cdot 6$	317.52	320.38	21.5	25.32	29.41	$8 \cdot 1$	49.19	54.51
August	134.0	82.4	317.54	318.47	29.3	325.51	327.37	19.8	22.50	25. 29	8.6	30. 58	34.30
September	172.3	847	305.59	304.38	45•8	327. 4	324. 22	${ }^{27} 9$	13. 20	9. 17	12	24.13	18.49
October	143.8	74.8	279. 2		$4{ }^{1} \cdot 4$	302. 4	294. 58	${ }_{25}{ }^{25} 4$	345. 0	334. 21	77	11. 18	357. 6
Novemb	94.1	$45 \cdot 2$	257.27	253.50	33*9	272. 3	264. 49	18.0	326. 4	315.13	8.9	356.30	342.2
December	$65 \cdot 5$	19.2	253. 8	252. 15	$30 \cdot 3$	287.36	285.50	14.5	317. 25	314.46	$8 \cdot 4$	349.40	346. 8
For the Year...	125.8	$66 \cdot 6$	298.50	298.50	37*8	299.33	299.33	16.4	348.48	348.48	8.5	18.38	18.38
	Vertical Forcr.												
January	$8 \cdot 1$	$8 \cdot 6$	358. '6	$\stackrel{\circ}{\circ} \mathrm{O} 30$		317.44	$32{ }^{\circ} .3^{1}$	$2 \cdot 6$	308. ${ }^{19}$	$315{ }^{1}{ }^{1}{ }^{1}$	$1 \cdot 0$	$26^{\circ} \mathrm{I} .56$	$27^{\circ}{ }^{3} 3^{\prime 2}$
February	$16 \cdot 5$	13.2	335. 8	338.37	5.6	265. 15	272.13	$4 \cdot 0$	255.35	266. 2	$2 \cdot 1$	243.20	257. 16
March	$33 \cdot 5$	$15 \cdot 7$	324.34	326.39	13.0	261.55	266. 5	$9 \cdot 4$	269. 42	275.57	3.4	284. 34	292.54
April	53.2	24°	307. 26	307. 24	214	262.30	262. 26	$8 \cdot 6$	278. 4	277.58	$2 \cdot 9$	301.40	301.32
May	59*	27^{5}	290.47	289. 55	$20 \cdot 8$	272.44	271. 0	6.7	274. 39	272. 3	$\stackrel{1}{ } \cdot 9$	307.41	304. 13
June	47^{6}	24.9	303. 37	303. 4^{5}	21.3	269. 1	269.17	$5 \cdot 2$	238.21	238.45	- 0.3	90. ${ }^{\circ}$	90. 32
July	35°	16.2	316.36	317.59	13.8	272. 25	275.11	$6 \cdot 2$	276. 6	280. 15	2.6	277.46	283. 18
August.	$39^{\circ} 7$	16.1	304.15	305. 88	$16 \cdot 6$	280. 10	281.56	7.3	288.30	291. 9	$2 \cdot 7$	296. 29	300. 1
September	$25 \cdot 8$	9.9	326.52	325.31	11.1	266.41	263.59	$6 \cdot 3$	277. ${ }^{1}$	272.58	2.4	300. 58	295.34
October	27.5 19.3	11.9	334. 38	331. 357.54	$\begin{array}{r}10 \\ \hline 10 \\ \hline 15\end{array}$	270.0 309.44	262.54 302.30	$6 \cdot 7$ 4.0	272.30 302.28		$3 \cdot 1$ 2.5	292.14	278. 28.30
November	193 9	$13 \cdot 5$ 10.5	1.31 359.22	357.54 358.29	6.5 1.2	309.44 293.34	302.30 291.48	4.0	302.28 302.3	291.37 299.24	2.5 1.5	301. 58 28.32	287.30 295.
For the Year...	$29^{\circ} 4$	148	319. 33	319.33	117	272. ○	272. ○	$5 \cdot 5$	275.52	275.52	$2 \cdot 1$	389.49	289. 49

[^2]The initial N is that of Mr. Nash.

Table XVIII.-Monthly and Yearly Means of Magnetic Dip in the Year 1884.

Monthly Means of Magnetic Dip.						
Month, 1884.	$\underset{\text { 9-inch Needle. }}{\mathbf{B}_{1},}$		$\underset{\text { 9-inch Needle. }}{\text { B 2, }}$	$\begin{gathered} \text { Namber } \\ \text { of } \\ \text { Observations. } \end{gathered}$	$\stackrel{\mathrm{C}_{1}}{\text { 6-inch Needle. }}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Observations. } \end{gathered}$
			- ' "		- 11	
January	$67 \cdot 28.19$	2	67.28.50	2	67.30 .45	2
February	67.29. 38	3	67.30. 14	2	67.29.40	2
March	67.29. 42	2	67.30 .31	2	67.30 .54	2
April67. 28.21	2	67. 28.43	3	67.30. 18	2
May	67.27 .33 67.28 .33	2	67.27.31	2	67. 28. 4	2
	67. 28.33 67.28 .24	1	67.27 .25 67.30 .12	1	67.28.18	2
August	67.28. ${ }^{\text {64 }}$	2	67.30. 12 67.30 .38	3	67.29.38 67.29 .2	2
September	67.27. 56	1	67.30. 14	1	67.28.30	2
October	67.31. 3	2	67.31 .16	1	67.30. 43	2
November	67.29. 0	1	67.29.57	2	67.30. 7	2
December.	67.26. 21	2	67.31 .16	1	67.28.40	2
Means	67.28.37	21	67.29.40	22	67. 29.33	24
Month, 1884.	$\begin{gathered} C_{2}, \\ \text { 6-inch Needle. } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Observations. } \end{gathered}$	$\begin{gathered} \text { D i, } \\ \text { 3-inch Needle. } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Observations. } \end{gathered}$	$\underset{\text { 3-inch Needle. }}{\text { D }}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Observations. } \end{gathered}$
	- ' 1		- , "		- , "	
January	67.30. 3	2	67.30. 4	2	67.30. 44	2
February	67.29. 53	3	67.30 .5	2	67.30 .32	3
March..................	67. 29.32	2	67.32. 33	1	67.31. 54	2
April	67.30. 8	2	67.29. 45	2	67.29.59	2
May	67.27.51	2	67. 28. 34	2	67. 28. 49	1
June	67. 29.44	2	67.29.35	2	67. 30. 51	2
July	67.30. 6	2	67. 29. 7	3	67.30. 38	2
August..................	67.28. 44	1 -1	67.28 .31	3	67. 29. 12	1
September	67.28.43	2	67.27 .52 67.32 .35	1	67.30. ${ }^{7}$	3
	67. 67.29 .24	1	67.32 .35 67.31 .19	2	67.31 .23 67.29 .41	2
December	67.28.56	2	67.29 .37	1	67.29.31	1
Means .	67.29 .31	23	67.29 .52	23	67. 30.26	23

The monthly means have been formed without reference to the hour at which the observation on each day was made.
In combining the monthly results, to form annual means, weights have been given proportional to the number of observations.

Collected Yrarly Means of Magnetic Dip for each of the Nerdles, and General Mean for the Year 1884.

Table XIX.-Determinations of the Absolute Value of Horizontal Magnetic Force in the Year 1884.

Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force.							
Month and Day, 1884.	Distances of Centres of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	Number of Vibrations.	Temperature.	Observer.
January 26	$\begin{array}{ll} A_{1} & 0 \\ 1 & \circ \\ 1 \end{array}$	$47^{\circ} 8$	$\begin{array}{r} \circ \\ 10.36 .5_{4}^{\prime \prime} \\ 4.49 \cdot 4 \\ \hline \end{array}$	$\begin{array}{r} 5 \cdot 652 \\ 5 \cdot 657 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 46 \cdot 4 \\ & 46 \cdot 7 \\ & \hline \end{aligned}$	N
February 21	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$52 \cdot 1$	$\begin{array}{r} 10.36 .18 \\ 4.48 .40 \end{array}$	$\begin{aligned} & 5.65 \mathrm{I} \\ & 5.653 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52 \cdot 1 \\ & 52 \cdot 7 \end{aligned}$	N
March 28	$\begin{aligned} & 1 \\ & 100 \\ & \hline 10 \end{aligned}$	$49{ }^{\circ} 7$	$\begin{array}{r} 10.36 .13 \\ 4.48 .35 \end{array}$	$\begin{aligned} & 5 \cdot 659 \\ & 5.65 \mathrm{I} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 48 \cdot 5 \\ & 49 \cdot 1 \end{aligned}$	N
April 24	$\begin{array}{ll} 1 \\ 100 \end{array}$	$50 \cdot 9$	$\begin{array}{r} 10.36 .17 \\ 4.48 .34 \end{array}$	$\begin{aligned} & 5 \cdot 660 \\ & 5.655 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \cdot 6 \\ & 51 \cdot 2 \end{aligned}$	N
May 30	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$57 \cdot 2$	10.34 .53 4.47 .45	$\begin{aligned} & 5 \cdot 66_{1} \\ & 5.659 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 1 \\ & 58 \cdot 4 \end{aligned}$	N
June 30	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	679	$\begin{array}{r} 10.32 .3 \\ 4.46 .54 \end{array}$	$\begin{aligned} & 5 \cdot 660 \\ & 5.664 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 68 \cdot 5 \\ & 69 \cdot 5 \end{aligned}$	N
July 18	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$64 \cdot 8$	10.32 .48 4.47 .12	$\begin{aligned} & 5 \cdot 662 \\ & 5.660 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \cdot 0 \\ & 65 \cdot 3 \end{aligned}$	N
August 26	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$60 \cdot 4$	$\begin{array}{r} 10.32 .35 \\ 4.47 .2 \end{array}$	$\begin{aligned} & 5 \cdot 662 \\ & 5.661 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \cdot 3 \\ & 61 \cdot 1 \end{aligned}$	N
September 26	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	60%	$\begin{array}{r} 10.32 .8 \\ 4.46 .46 \end{array}$	$\begin{aligned} & 5 \cdot 66 \mathrm{I} \\ & 5.665 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 61 \cdot 0 \\ & 60 \circ 9 \end{aligned}$	N
October $\quad 29$	$\begin{aligned} & 1 \circ \\ & 103 \end{aligned}$	$60 \cdot 0$	10.33 .9 4.47 .18	$\begin{aligned} & 5 \cdot 669 \\ & 5 \cdot 670 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 6 \\ & 58 \cdot \mathrm{I} \end{aligned}$	N
November 25	$\begin{array}{ll} 1 \\ 1 & 0 \\ \hline \end{array}$	$50 \cdot 9$	$\begin{array}{r} 10.33 .3 \\ 4.47 .16 \end{array}$	$\begin{aligned} & 5 \cdot 661 \\ & 5 \cdot 665 \end{aligned}$	100	48 48 48	\boldsymbol{N}
December 30	1.0 1.3	514	$\begin{array}{r} 10.33 .4 \\ 4.47 .18 \end{array}$	$\begin{aligned} & \hline 5 \cdot 666 \\ & 5.671 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 48 \cdot 7 \\ & 49 \cdot 5 \end{aligned}$	N
The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west : the deflexion given in the table above is the mean of the four deflexions observed in these positions of the magnets. The initial N is that of Mr. Nash. In the subsequent calculations every observation is reduced to the temperature 35°.							

Computation of the Values of Horizontal Force in Absolute Measure.

Month and Day, 1884.		In English Measure.									In Metric Measure.
		Apparent Value of A_{1}.	Apparent Value of \mathbf{A}_{2}.	Apparent Value of P.	Mean Value of \mathbf{P}.	Log. $\frac{m}{\boldsymbol{X}}$	Adopted Time of Vibration of Deflecting Magnet.	Log. m X.	Value of m.	Value of X.	Value of X.
January	26	$0 \cdot 09229$	$0 \cdot 09244$	-0.00395		$8 \cdot 96652$	5:6545	$\bigcirc \cdot 15446$	$\bigcirc \cdot 3635$	3.9262	1.8103
February	21	$\bigcirc \bigcirc 09227$	$\bigcirc \bigcirc 09238$	-0.00282		$8 \cdot 96633$	$5 \cdot 6520$	0.15526	$\bigcirc \cdot 3637$	3.9306	1.8123
March	28	$\bigcirc \bigcirc 09222$	$\bigcirc \cdot 0923 \mathrm{l}$	-0.00237		$8 \cdot 96607$	$5 \cdot 6550$	-1. 15454	0.3633	3.9286	1.8114
April	24	$0 \cdot 09225$	$\bigcirc \bigcirc 09233$	-0.00209		$8 \cdot 96616$	$5 \cdot 6575$	0.15432	$0 \cdot 3633$	3.9272	1.8108
May	30	$\bigcirc \bigcirc 09215$	$\bigcirc \bigcirc 09216$	-0.00039		8.96554	$5 \cdot 6600$	- 0.15440	$0 \cdot 363 \mathrm{I}$	3.9303	1.8122
June	30	$0 \cdot 09191$	$0 \cdot 09206$	-0.00406		8.96475	5.6620	0.15486	0.3629	3.9360	1.8148
July	18	-0.09197	$0 \cdot 09211$	-0.00372	-0029	8.96500	$5 \cdot 6610$	0.15475	- 2636	3.9344	-8141
August	26	-0.09187	-0.09199	-0.00310		8.96446	5.6615	$0 \cdot 15442$	0.3626	3.9353	1.8145
September	26	$0 \cdot 09180$	$\bigcirc \circ 09190$	-0.00265		8.96408	$5 \cdot 6630$	$\bigcirc \cdot 15420$	0.3624	3.9360	1.8148
Octoler	29	-0.09195	$0 \cdot 09207$	-0.00327		8.96484	$5 \cdot 6695$	0.15302	$0 \cdot 3622$	3.9273	1.8108
November	25	-009179	$\bigcirc \cdot 09191$	-0.00338		8.96410	$5 \cdot 6630$	0.15335	0.3620	3.9321	1.8130
December	30	-0.09180	$0 \cdot 09193$	-0.00361		8.96416	$5 \cdot 6685$	- 15256	0.3617	3.9283	1.8113
Means				\cdots		-				3.9310	1.8125
The value of \boldsymbol{X} in English Measure is referred to the Foot-Grain-Second unit, and in Metric Measure to the Millimètre-Milligramme-Second unit. To obtraia \boldsymbol{X} in the Centimetre-Gramme-Second (C.G.S.) unit, the values in the last column of the table must be divided by 10.											

MAGNETIC DISTURBANCES
 AND
 EARTH CURRENTS.

1884.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, and Earth Currents; recorded at the Roxal Observatorx, Greenwich, in the Year 1884.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.001 in Horizontal Force, or 0.0003 in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Force respectively. When any one of the three elements is not specifically mentioned it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double vave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase and - a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

In all cases of magnetic movement the earth-current photographs show corresponding earth curreuts, but it has not been thought necessary to refer to these in detail.

Magnetic movements which do not admit of brief description in this way are exhibited with their corresponding earth currents on accompanying plates.

The time is Greenwich Mean Solar Time (Astronomical Reckoning, commencing at noon).
1884.

5. 11^{h} to $1^{2 \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
7. 9^{h} to 21^{h} Fluctuations in Dec. $\left(\pm \mathbf{2}^{\prime}\right)$: in H.F. small.
8. $5^{\text {h }}$ to $1^{6^{\mathrm{h}}}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ}{ }^{\circ}$). . . .
10. 9^{h} to 18^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0002$).
12. 13^{h} to $15 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-8^{\prime}\right)$. 12^{h} to 17^{h} Fluctuations in H.F. ($\pm \cdot 001$) : in V.F. ($\pm \cdot 0001$).
18. $9^{\text {h }}$ to $1^{\text {h }}$ Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm \times 01$): in V.F. ($\pm \cdot 0001$).
25. 10^{h} to 14^{h} Double-crested wave in Dec. $\left(-10^{\prime}\right.$ and $\left.-7^{\prime}\right)$. 16^{h} to 19^{h} Double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-3^{\prime}\right)$. 10^{h} to 18^{h} Fluctuations in H.F. ($\pm \cdot 0005$): in V.F. ($\pm \cdot 0001$).

27. $93^{3 \mathrm{~h}}$ to $11^{\text {h }}$ Wave in Dec. $\left(-5^{\prime}\right)$: in H.F. ($-\cdot 0005$): in V.F. ($-\cdot 0001$).
29. 9^{h} to $1^{5 \mathrm{~h}}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. small.
30. $11 \frac{1}{2}^{\mathrm{h}}$ to $13 \frac{1_{2}^{\mathrm{h}}}{}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-2^{\prime}\right)$: wave in H.F. $(+-001)$.

February 1. $5^{\text {h }}$ to $22^{\text {b }}$ Fluctuations in Dec. ($\pm 2^{\prime}$): in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0001$).
2. 1^{b} to 9^{h} Fluctuations in Dec. ($\pm 2^{\prime}$): in H.F. (\pm-001).
3. 7^{h} to 7^{h} Fluctuations in Dec. ($\pm 2^{\prime}$): long wave in H.F. more steep at commencement ($-\times 02$).
4. $2 \frac{1_{2}{ }^{\mathrm{h}}}{}$ to 6^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$; followed by waves $8 \frac{3}{4} \mathrm{~h}$ to $10 \frac{1}{4}^{\mathrm{h}}\left(-7^{\prime}\right)$ and $11_{2^{\mathrm{h}}}$ to $16^{\mathrm{h}}\left(-10^{\prime}\right)$.

1884.

February
5. 8^{h} to 14^{h} Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. ($\pm \cdot 001$) : in V.F. ($\pm \cdot 0001$).
8. $7 \frac{1}{2}^{\mathrm{h}}$ to $8 \frac{1^{\mathrm{h}}}{}$ Double wave in Dec. $\left(-5^{\prime}\right.$ to $\left.+3^{\prime}\right)$: in H.F. $(-0005$ to $+\cdot 0005) .8^{\mathrm{h}}$. to $8 \frac{1}{2} \mathrm{~h}$ Wave in V.F. $\left(+{ }^{\circ} 0002\right)$. $16 \frac{1^{h}}{}$ to $17 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 001\right)$: in V.F. $\left(+{ }^{\circ} 0001\right)$.
16. $5^{\text {h }}$ to $9^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\text {f }}$) : in H.F. ($\pm \times 01$): in V.F. small.
17. $11^{\text {h }}$ to $14^{\text {h }}$ Wave in Dec. $\left(-10^{\text {) }}\right.$, followed by fluctuations till $17^{\text {h }}\left(\pm 2^{\prime}\right)$. $11^{\text {h }}$ to $13^{\text {h }}$ Wave in H.F. $(+\cdot 002)$: in V.F. ($-\cdot 0003$).
19. $6 \frac{1^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ to $9^{\text {h }}$ Flat wave in Dec. $\left(-3^{\prime}\right)$: fluctuations in H.F. ($\pm{ }^{\circ} 0005$) : in V.F. small.
21. $7{ }^{3}{ }^{3 \mathrm{~h}}$ to $8 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.

23, 24, 25. See Plate I.
26. $5^{\text {h }}$ to. $12^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 001\right)$: in V.F. small.
27. 5^{b}. to 15^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} \mathrm{oo}$) : no register of V.F.
29. See Plate II.

March 1, 2, 3. See Plates II. and III.
6. $14^{\text {h }}$ to $20^{\text {h }}$ Smail fluctuations in Dec. ($\pm 1 \frac{1^{\prime}}{2}$), with wave $16^{\text {h }}$ to $17^{\frac{1}{4}}\left(+5^{\prime}\right)$: fluctuations in H.F. ($\pm \circ 01$): in V.F. ($\pm{ }^{\circ} \circ{ }^{\circ}{ }^{\circ}$).
7. $6 \frac{1}{2}$ h Sudden movement in Dec. $\left(+2^{\prime}\right)$: in H.F. $(+\cdot 003)$: in V.F. ($+\cdot 003$) : followed in Dec. by waves $7^{\text {h }}$ to $8 \frac{11}{2}\left(-4^{\prime}\right) ; 9^{\text {h }}$ to $11^{\text {h }}\left(-13^{\prime}\right)$; and in H.F. and V.F. by small fluctuations until $11^{\text {h }}$.
 $(+\cdot 001)$: in V.F. $\left(+{ }^{\circ} 0001\right)$.
15. $10^{\text {b }}$ to $21^{\text {h }}$ Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} \times 1$) : in V.F. small.
16. rol ${ }_{2}^{\text {h }}$ Small sharp wave in Dec. $\left(+2^{\prime}\right)$: in H.F. $(+\cdot \circ 01)$: in V.F. ($+{ }^{\circ} 0002$) : followed in H.F. by small fluctuations until $15^{\text {h }}$.
17. $0^{\text {h }}$ to $1^{\text {bh }}$ Fluctuations in Dec. ($\pm \mathrm{i}^{\prime}$) : in H.F. ($\pm \cdot 0005$) : in V.F. small.
19. $7 \frac{1}{4}^{\text {h }}$ to $8 \frac{1}{2}{ }^{\text {h }}$ Steep wave in Dec. $\left(-10^{\prime}\right)$. $9 \frac{1}{2}^{\text {h }}$ to $11^{\text {h }}$ Wave in Dec. $\left(-4^{\prime}\right)$. $13 \frac{1}{2}{ }^{\text {h }}$ to 18^{h} Double wave in Dec. $\left(+10^{\prime}\right.$ to $\left.-7^{\prime}\right) .6^{\text {h }}$ to $18^{\text {h }}$ Fluctuations in H.F. ($\pm \cdot 001$) : in V.F. small.
20. $4^{\text {h }}$ to $1^{\text {h }}$ Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} \circ$ (5) : in V.F. small.
21. $6^{\text {h }}$ to $1^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in.H.F. ($\pm{ }^{\circ} \circ \mathrm{O}$) : in V.F. small.
22. $12^{\text {h }}$ to $^{19} 9^{\text {h }}$ Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. small.
23. 8^{h} to 17^{h}. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. small, with sharp wave $8 \frac{1}{2}^{\mathrm{h}}$ to $94^{\frac{\mathrm{h}}{}}\left(+{ }^{\circ} 003\right)$. 8^{h} to $94^{1^{\mathrm{h}}}$ Wave in V.F. ($+\cdot 0003$).
24. $10^{\text {h }}$ to $15^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$) : in V.F. small.
25. 7^{h} to 1^{h} Fluctuations in Dec. $\left(\pm \mathbf{2}^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 0007$) : in V.F. small.
26. $8^{\text {h }}$ to $14^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm \odot \circ 1$).
27. $0^{\text {h }}$ to $20^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. (± 0007) : in V.F. small.
28. See Plate III.
29. I^{h} to 16^{h} Fluctuations in Dec. ($\pm \mathrm{I}^{\prime}$) : in H.F. ($\pm \cdot 0005$) : in V.F. small.
31. $9^{\text {h }}$ to $20^{\text {h }}$ Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0$) : in V.F. small.

April 1. $8 \frac{8_{2}}{}{ }^{\mathrm{h}}$ to $10 \frac{1_{2}^{h}}{}{ }^{\mathrm{h}}$ Fluctuations in Dec. ($\pm 3^{\prime}$): in H.F. (± 001): in V.F. small.

10. 9^{h} to 13^{h} Wave in Dec. (-10^{\prime}), with superposed fluctuations. $8 \frac{1^{\mathrm{h}}}{}$ to $13 \frac{1}{2}^{\mathrm{h}}$ Fluctuations in H.F. ($\pm .0015$).
1884.

April 10. 18^{h} to 11.2^{h} Small rapid fluctuations in Dec. and H.F.
11. 6^{h} to $1^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0006$) : in V.F. small.
14. $10^{\text {h }}$ to $20^{\text {h }}$ Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \cdot 0015$) : in V.F. (± 0003).
15. $7^{\text {h }}$ to $1^{5^{h}}$ Fluctuations in Dec. ($\pm 5^{\prime}$). 2^{h} to $1^{6 h}$ Fluctuations in H.F. ($\pm{ }^{\circ} 001$) : in V.F. small.
16. 0^{h} to $17^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 0015$) : in V.F. small.
17. See Plate IV.

18, 19, 20. Fluctuations, nearly continuously shown, in Dec. ($\pm 4^{\prime}$) : in H.F. (\pm •0015) : in V.F. small.
23. 22 $\frac{1}{4}^{\text {h }}$ to $22 \frac{1}{2}{ }^{\text {h }}$ Wave in Dec. $\left(-2^{\prime}\right)$: steep in H.F. ($-{ }^{\circ} 002$) : in V.F. ($-{ }^{\circ} 0002$).
24. See Plate IV.
26. $4 \frac{1}{3}^{\text {h }}$ Sudden movement in Dec. $\left(+4^{\prime}\right)$: in H.F. $(+\cdot 003)$: in V.F. $\left(+{ }^{\circ}+003\right)$: followed till $9^{\text {h }}$ by fluctuations in Dec. small : in H.F. ($\pm \cdot 001$) : in V.F. small. $10^{\frac{3}{4} h}$ to 12^{h} Two successive waves in Dec. ($+6^{\prime}$ and $+3^{\prime}$) : in H.F. ($+\cdot 0015$ and $+\cdot 001$).
30. See Plate IV.

May I. $6 \frac{1}{2}^{h}$ to 8^{h} Wave in Dec. (-3^{\prime}) : in H.F. (- oor5). 12^{h} to $13 \frac{1}{4} \mathrm{~h}$ Wave in Dec. ($+3^{\prime}$).
6. $11^{\text {h }}$ to $22^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$). $2^{\text {h }}$ to $22^{\text {h }}$ Fluctuations in H.F. ($\pm{ }^{\circ} 001$).
7. 14^{h} to $15 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+6^{\prime}\right)$.
8. $13 \frac{1}{2}^{\mathrm{h}}$ to $144^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(+4^{\prime}\right)$: in V.F. $(+\cdot 0001)$.
10. $1^{\text {h }}$ to 21^{h} Fluctuations in Dec. ($\pm 3^{\prime}$), with wave. $8 \frac{1}{2}^{h}$ to $10^{h}\left(-11^{\prime}\right)$: fluctuations in H,F. ($\pm \cdot 0015$): in V.F. ($\pm \cdot 0001$).
11. $7^{\text {h }}$ to $20^{\text {h }}$ Fluctuations in Dec. ($\pm 5^{\prime}$). $3^{\text {h }}$ to $18^{\text {h }}$ Fluctuations in H.F. ($\pm .001$) : in V.F. small.
12. $8 \frac{1}{2}$ h to $9 \frac{1}{2}^{h}$ Wave in Dec. (-5^{\prime}): in H.F. double wave (-0007 to $+\cdot 0007$): in V.F. (-0001 to $+{ }^{\circ} 0001$).
13. 2^{h} to 14^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0005$) : in V.F. small.
14. 6^{h} to 11^{h} Fluctuations in Dec. ($\pm 2^{\prime}$). 2^{h} to 11^{h} Fluctuations in H.F. ($\pm{ }^{\circ} 001$).
15. $2^{\text {h }}$ to $10^{\text {h }}$ Fluctuations in H.F. ($\pm \cdot 0005$).

22. $7^{\text {h }}$ to $20^{\text {h }}$ Fluctuations in Dec. ($\pm 5^{\prime}$). o o^{h} to 18^{h} Fluctuations in H.F. (± 002) : in V.F. ($\pm{ }^{\circ} 0002$).
23. o^{h} to $5^{\text {h }}$ Fluctuations in H.F. ($\pm \cdot \infty 1$). $9^{\text {h }}$ to $9 \frac{1}{2}^{h}$ Wave in Dec. $\left(+5^{\prime}\right)$: in H.F. ($+\cdot 0015$) : in V.F. ($+\cdot 0001$).
30. $18 \frac{1}{2}^{\mathrm{h}}$ Small sudden movement in Dec. H.F. and V.F.
31. o o $^{\text {h }} 1^{\text {h }}$ Many small fluctuations in H.F. and V.F.

June \quad 1. 3^{h} to 17^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 001$).
2. $1 \frac{1}{4}^{\text {h }}$ to 7^{h} Small fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: increase of H.F. ($+{ }^{\circ} 003$), with superposed fluctuations (土 ${ }^{\circ} 002$). $1^{\frac{1}{4}}$ to I^{h} Wave in V.F. $\left(+{ }^{\circ} 002\right)$. 17^{h} to 19^{h} Wave in Dec. $\left(+8^{\prime}\right)$. 17^{h} to 18^{h} Wave in H.F. (- 002).
6. $7^{\text {h }}$ to $14^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$). o^{h} to 10^{h} Fluctuations in H.F. ($\pm \cdot 001$).
12. $8 \frac{1}{4}^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
13. 11^{h} to 15^{h} Double crested wave in Dec. $\left(-7^{\prime}\right.$ and $\left.-6^{\prime}\right)$. 3^{h} to 15^{h} Fluctirations in H.F. (土 001). 12^{h} to $1^{6^{h}}$ Wave in V.F. (- 0005).
14. $3 \frac{1}{2}{ }^{h}$ to $4 \frac{3}{4}$ Wave in H.F. (--002).

1884.

June
17. 1^{h} to 7^{h} Fluctuations in H.F. (\pm-0015) : in V.F. small.
18. 7^{h} to 20^{h} Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm{ }^{\circ} 002$) : in V.F. ($\pm{ }^{\circ} 0002$).

22, 23. See Plate V.
 V.F. ($+\cdot 0002$).
30. 1^{h} to 6^{h} Fluctuations in H.F. (\pm •0007) : in V.F. small.

2, 3. See Plates V. and VI.
4. 2^{h} to 9^{h} Fluctuations in H.F. ($\pm \cdot 001$) : in V.F. small.
5. 1^{h} to 9^{h} Fluctuations in H.F. $(\pm \cdot \circ 1)$. $9^{\frac{1}{2}}$ to $10^{\frac{1}{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$. 15^{h} to $17^{\frac{3}{4} h}$ Wave in Dec. $\left(+6^{\prime}\right)$.
6. 8^{h} to $9 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(-5^{\prime}\right)$. $0^{\text {h }}$ to $10^{\text {h }}$. Fluctuations in H.F. (± 0008).
9. $9^{\frac{81}{4}}$ to $11^{\text {h }}$ Movement in Dec. (-5^{\prime}): wave in H.F. ($+\circ 015$): small movement in V.F. ($-\infty 003$).
13. $10 \frac{3}{4}$ to 16^{h} Wave in Dec. (-10^{\prime}), with superposed fluctuations ($\pm 3^{\prime}$). 2^{h} to 16^{h} Fluctuations in H.F. ($\pm{ }^{\circ} 002$), with steep double wave $11 \frac{3{ }^{h}}{}$ to $13^{h}\left(+{ }^{\circ} 003\right.$ to $-\cdot 002$) : small fluctuations in V.F., terminating with wave $11_{\frac{1 \mathrm{~h}}{}}^{\mathrm{h}}$ to 1^{h} (-001).

19. $13^{\text {h }}$ to 17^{h} Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \times 015$) : in V.F. ($\pm \times 001$).
25. 12^{h} to 17^{h} Fluctuations in Dec. ($\pm 6^{\prime}$). 13^{h} to 16^{h} Two successive waves in H.F. ($+\cdot 0015$ and $+\circ 03$). $13^{\text {h }}$ to $18^{\text {h }}$ Wave in V.F. (- - 001).
29. $1^{\text {h }}$ to $3 \frac{1}{2}^{\text {h }}$ Wave in Dec. $\left(+5^{\prime}\right)$: in H.F. (-0045): fluctuations in V.F. $\left(\pm{ }^{\circ} 0002\right.$).
30. 8^{h} to 11^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm .0012$) : in V.F. small.

August 1. $2^{\text {h }}$ to $1^{8^{h}}$ Fluctuations in Dec. ($\pm 2^{\prime}$): in H.F. ($\pm{ }^{\circ} 0005$).
2. 7^{h} to $1_{1^{\mathrm{h}}}$ Fluctuations in H.F. ($\pm{ }^{\circ} \mathrm{Col}$).
3. $1^{\text {h }}$ to $13^{\text {h }}$ Fluctuations in H.F. ($\pm{ }^{\circ} 01$).
7. 34^{h} to 6^{h} Wave in H.F., steep at commencement ($-\mathrm{OO}^{2}$).

8, 9. See Plates VI, and VII.
10. 10 ${ }_{4}^{\frac{3 \mathrm{~h}}{}}$ to $11 \frac{3 \mathrm{sh}}{4}$ Wave in H.F. $\left(+^{\circ} 002\right)$.

 V.F. (--0002).
13. $0^{\text {h }}$ to $14^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} \circ 01$).
14. 3^{h} to 6^{h} Fluctuations in H.F. ($\pm{ }^{\circ} \mathrm{OO}$). $94^{\frac{1 \mathrm{~h}}{}}$ to $10 \frac{3}{4} \mathrm{~h}$ Wave in Dec., steep at commencement (-12^{\prime}), followed by fluctuations till $18^{\mathrm{h}}\left(\pm 3^{\prime}\right)$: fluctuations in H.F. ($\pm{ }^{\circ} 001$). $9 \mathbf{4}^{\text {h }}$ to $10^{\text {h }}$ Small wave in Y.F. (- •0003)
18. $11 \frac{1}{2}$ h to $1^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$). $2^{\text {h }}$ to $1^{\text {h }}$. Fluctuations in H.F. ($\pm{ }^{\circ} 001$).

21. 1^{h} to 7^{h} Fluctuations in H.F. ($\pm{ }^{\circ} \mathrm{O} 1$) : in V.F. small. 10^{h} to 12^{h} Two successive waves in Dec. $\left(+5^{\prime}\right.$ and $+7^{\prime}$) : in H.F. double-crested wave (+0015 and $+: 004$) : small fluctuations in V.F. .
22. $0^{\text {h }}$ to $13^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \times 01)$: in V.F. small.

1884.

August 23. $1^{\text {h }}$ to $7^{\text {h }}$ Fluctuations in Dec. ($\pm \mathbf{2}^{\prime}$): in H.F. ($\pm \times 00$).
25. 7^{h} to 16^{h} Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm{ }^{\circ} 000$).

September 6. $6 \frac{1_{2}^{h}}{}$ to 10^{h} Fluctuations in H.F. ($\pm \times 0015$). 8^{h} Movement in Dec. (-5^{\prime}) : in V.F. ($-{ }^{\circ} 0004$).
9. $14 \frac{1^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ to $15 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\text {W }}$ Wave in Dec. $\left(+4^{\prime}\right)$: movement in H.F. and V.F. small.
10. 4^{h} to 18^{h} Fluctuations in H.F. ($\pm \odot \infty 1$). 9^{h} to 16^{h} Fluctuations in Dec. ($\pm 5^{\prime}$).
11. $9^{\text {h }}$ to $11^{\text {h }}$ Double wave in Dec. $\left(-3^{\prime}\right.$ to $+5^{\prime}$): in H.F. fluctuations ($\pm \cdot 001$).
12. $13^{\text {h }}$ to 22^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$) : in V.F. small.
13. 2^{h} to 2^{h} Fluctuations in H.F. ($\pm \cdot 0015$). 7^{h} to $8 \frac{2^{\mathrm{h}}}{}$ Wave in Dec. $\left(-8^{\prime}\right)$. $\quad 12^{\mathrm{h}}$ to 17^{h} Wave in Dec. (-10^{\prime}), with superposed fluctuations : in V.F. small fluctuations.
14. $7^{\text {h }}$ to $1^{\text {h }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$, with sharp wave at $8^{\text {b }}\left(-10^{\prime}\right):$ in H.F. ($\pm \cdot 001$) : in V.F. small. 17, 18. See Plate VII.
20. $9^{\frac{3}{4} h}$ to 13^{h} Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0001$).
-30. $1 \frac{1^{h}}{}{ }^{\text {h }}$ to $4^{\text {h }}$ Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm \cdot 001$) : in V.F. ($\pm \cdot 0002$).

October 1, 2. See Plate VIII.
3. 10^{h} to 14^{h} Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. (± 0008) : in V.F. small.
4. 10^{h} to 14^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm \times 001$) : in V.F. ($\pm \times 001$).
5. 15^{h} to 17^{h} Double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-3^{\prime}\right)$: wave in H.F. $(+\cdot \circ 015)$: double wave in V.F. $(+\cdot \infty 001$ to - ${ }^{-0002 \text {). }}$
6. 1^{h} to 1^{h} Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0003$).
7. $3 \frac{34^{h}}{}$ to $5 \frac{1}{2}{ }^{h}$ Wave in Dec. (-13^{\prime}), with superposed fluctuations ($\pm 2^{\prime}$), followed by fluctuations till 10^{h} $\left(\pm 5^{\prime}\right)$. $3^{3 \frac{3}{h}}$ to $4^{\frac{3}{4}}$ Wave in H.F. $(+\cdot 003)$, followed by fluctuations till $10^{\text {h }}\left(\pm{ }^{\circ} 0015\right)$: fluctuations in V.'゙. $(\pm \cdot 0002)$.
9. 6^{h} to 7^{h} Wave in Dec. $\left(-7^{\prime}\right)$: in H.F. (- -002). $15 \frac{1}{4}^{\mathrm{h}}$ to 17^{h} Wave in Dec. $\left(+7^{\prime}\right)$. $15 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Shallow wave in H.F. $\left(+{ }^{\circ} 002\right)$.
13. $12^{\text {b }}$ to 20^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. small.

 Fluctuations in Dec. ($\pm 3^{\prime}$).
15. 3^{h} to 17^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0008$) : in V.F. small.
17. $o^{\text {h }}$ to $9^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$): in H.F. ($\pm{ }^{\circ} \circ$) : in V.F. small.
19. $0^{\text {h }}$ to $5^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. (\pm - 001) : in V.F. small.
21. 3^{h} to 7^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 001$).
24. 16^{h} to 20^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 001\right)$: in V.F. small.
25. $1^{\text {h }}$ to $14^{\text {h }}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0005$) : in V.F. small.
28. $1 \frac{3}{4}$ to $2 \frac{1^{h}}{}{ }^{\text {h }}$ Wave in Dec. $\left(+4^{\prime}\right)$: in H.F. $(+\cdot 0015)$: in V.F. $\left(+{ }^{\circ} 0002\right)$. $13^{\text {h }}$ to $14 \frac{1}{\frac{1}{2}^{\text {h }}}$ Wave in Dec. $\left(+6^{\prime}\right)$.

November 1, 2, 3. See Plates IX. and X.
4. $5 \frac{1^{h}}{}$ to $6^{\text {h }}$ Wave in Dec. $\left(-7^{\prime}\right)$: in H.F. $(-\cdot 001)$: in V.F. ($-\cdot 0002$).
6. $8 \frac{1}{2^{h}}$ to 12^{h} Two successive waves in Dec. (-5^{\prime} and -9^{\prime}). 9^{h} to 14^{h} Fluctuations in H.F. ($\pm \times 0005$). $9 \frac{1}{2}^{h}$ to 11^{b} Wave in V.F. (--0003).
1884.

November 8. 10^{h} to $1^{6^{\mathrm{h}}}$ Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 001$) : in V.F. small.
9. $12 \frac{34^{h}}{}$ to $14^{\text {h }}$ Sharp wave in Dec. $\left(+13^{\prime}\right)$: small fluctuation in.H.F.: wave in V.F. $\left(+{ }^{\circ} 0004\right)$.
10. 8^{h} to $1^{\text {足 }}$ Fluctuations in Dec. ($\pm 4^{\prime}$) : no register of H.F. : in V.F. small.
12. 6^{h} to 5^{h} Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$.
17. $3^{\text {h }}$ to $9^{\text {h }}$ Fluctuations in Dec. ($\pm 3^{\prime}$): in H.F. ($\pm \cdot 0007$).
18. 64^{h} to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$, followed by fluctuations till 15^{h} ($\pm 2^{\prime}$). 6^{h} to 14^{h} Fluctuations in H.F. ($\pm .0005$).
19. $4^{\text {h }}$ to 13^{h} Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \cdot 001)$: in V.F. small.
23. $3 \frac{1}{2}^{\mathrm{h}}$ Simultaneous small wave in Dec. $\left(+2^{\prime}\right)$: in H.F. ($+\cdot 0008$) : in V.F. $(+\cdot 0002)$. $5^{\text {b }}$ to $1^{8^{\mathrm{h}}}$ Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 002$) : in V.F. small.
24. $3 \frac{3}{4}^{h}$ to $5^{\text {h }}$. Steep wave in Dec. $\left(-18^{\prime}\right)$. $6 \frac{1}{2}^{\text {h }}$ to 8^{h} Wave in Dec. $\left(-5^{\prime}\right)$. $3 \frac{33^{h}}{}$ to 8^{h} Fluctuations in H.F. (\pm-001).
27. $12^{\text {h }}$ to 28. 3^{h} Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm \circ 013$) : in V.F. ($\pm{ }^{\circ} 0002$).
 and -5^{\prime}).

December 1. 8^{h} to 13^{h} Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 0005$).
4. $9 \frac{1^{\mathrm{h}}}{}$ to 11^{h} Wave in Dec. $\left(-5^{\prime}\right)$.
8. 3^{h} to 4^{h} Wave in Dec. $\left(-6^{\prime}\right)$. 12^{h} to $\mathbf{1 6}^{\mathrm{h}}$ Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$. 2^{h} to 14^{h} Fluctuations in H.F. ($\pm \cdot 0005$).
9. $1 \frac{1}{2}^{\text {h }}$ to $12 \frac{1}{4}^{\text {h }}$ Wave in Dec. $\left(-4^{\prime}\right)$.
11. $8 \frac{3^{h}}{}{ }^{\text {h }}$ to $9 \frac{12^{\text {h }}}{}$ Wave in Dec. $\left(-9^{\prime}\right)$: in H.F. ($+{ }^{\circ} 003$).
14. $8 \frac{12^{\mathrm{h}}}{}$ to $10 \mathrm{l}^{\mathrm{h}}$ Steep wave in Dec. $\left(-18^{\prime}\right)$, followed by fluctuations till $17^{\mathrm{h}}\left(\pm 3^{\prime}\right) .7^{\mathrm{h}}$ to 17^{h} Fluctuations in H.F. ($\pm{ }^{\circ} 01$) : in V.F. ($\pm{ }^{\circ} 0002$).
December 15. $4^{\text {h }}$ to 15^{h} Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm{ }^{\circ} 001$) : in V.F. small.
16. $0^{\text {h }}$ to 9^{h} Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm \cdot 0007$): in V.F. small.
19. $7 \frac{3}{4}^{\text {h }}$ Sudden movement in Dec. $\left(+2^{\prime}\right)$: in H.F. (+0016) : no available register of V.F.
20. $6^{\text {h }}$ to $15^{\text {h }}$ Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. and V.F. small.
21. $11^{\text {h }}$ to $13 \frac{1}{2}^{\text {h }}$ Shallow wave in Dec. (-5^{\prime}).
22. See Plate X.
23. $8 \frac{1^{h}}{}$ to $10 \frac{1^{h}}{2}$ Two successive waves in Dec. (-4^{\prime} and -8^{\prime}). $9 \frac{1}{4}^{h}$ to $9 \frac{3}{4}^{\frac{h}{h}}$ Wave in H.F. ($+\cdots 015$).
27. $15^{\text {h }}$ to $23^{\text {h }}$ Fluctuations in Dec. ($\pm 4^{\prime}$): in H.F. (± 0015): in V.F. (± 0002).
28. $4^{\text {h }}$ to $14^{\text {h }}$ Fluctuations in $\mathrm{Dec}_{4}\left(\pm 4^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} \mathrm{OO}$).

Explanation of the Plates.

The magnetic motions figured on the Plates are-
(1.) Those for days of great disturbance-July 2, 3, October 1, 2, November 2.
(2.) Those for days of lesser disturbance-February 23, 24, 25, 29, March 1, 2, 3, 28, April 17, 24, 30, June 22, 23, August 8, 9, September 17, 18, November 1, 3, December 22.
(3.) Those for four quiet days, January 1, April 6, July 21, November 5, which are given as types of the ordinary diurnal movement at four seasons of the year. The earth currents on these days are insensible on the photographic registers.

The day is the astronomical day commencing at Greenwich mean noon.
The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively ; the declination (west) is expressed in minutes of arc, the units for horizontal and vertical force are -00001 of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram.

At the beginning of the month of May the scale of vertical force movement on the photographic sheet was diminished in order to make equal changes of amplitude in the horizontal and vertical force photographs more exactly correspond to equal changes of absolute magnetic force.

Downward motion indicates increase of declination and of horizontal and vertical force.
The earth current register E_{1} is that of the line Angerstein Wharf-Lady Well, making an angle of 50° with the magnetic meridian, reckoning from north to east. The E_{2} register is that of the line Blackheath-North Kent East, making an angle of 46° with the magnetic meridian, reckoning from north to west. Zero E_{1} and Zero E_{2} indicate the respective instrumental zeros.

Downward motion of earth current register indicates in the E_{1} circuit the passage of a current, corresponding to that from the copper pole of a battery, in the direction Angerstein Wharf to Lady Well (N.E. to S.W.), and in the E_{2} circuit to the passage of a similar current in the direction Blackheath to North Kent East (S.E. to N.W.)

The temperatures (Fahrenheit) given in small figures on the Diagrams represent those of the horizontal and vertical force magnets at the corresponding hours of observation, usually $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}, 23^{\mathrm{h}}$.

Magnetic Disturbances and Earth Girrentsrecorded at the Roval Observatory,Greenwich, 1884.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory, Greenwich, 1884.

Magnetic Disturbances and Earth Gurrentsrecorded at the Royal Observatory Greenwich,1884.

-

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory, Gremwich:1884.
(

Plate IX

Magnetic Disturbances and Earth Gurrents reoorded at the Royal Observatory, Greenwich, 1884.

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory, Greenvich, 1884.

Types of Magnetic Diurnal Variations at four seasons of the year recorded at the Royal Observatory Greenwich, 1884.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

${ }^{0}$

METEOROLOGICAL OBSERVATIONS.

1884.

The mean Temperature of Evaporation for the month was $42^{00} 6$, being $5^{\circ} \cdot 2$ higher than
The mean Temperature of the Dew Poixt for the monfh was $40^{\circ} \cdot 9$, being $5^{\circ} \cdot 5$ higher than
The mean Dregree of Humidity for the month was $: 89.9$, being 2.6 gneouter than

The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grtw }} 0$, being osra greater than
The mean Weight of a Cubic Foot of Air for the month was 550 grains, boing 2 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 8.0.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.06. The maximum daity amount of Sunshine was 5.3 hours on January 28. The highest reading of the Solar Radiation Thermometer was $76^{\circ} \cdot 3$ on January 20 ; and the lowest reading of the Terrestrial Radiation Thermometer was $28^{\circ} \cdot 9$ on January 12. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m, $2 \cdot 0$; for the 6 hours emding 3 p.m, 0.4 ; and for the 6 heters ending 9 p.an, $\rho \cdot \mathrm{g}$. The Proportions of Wind referred to the cardizal points weme N. 1, E. 3, S. an, and W. 1%.
The chain of the Pressure apparatus gave wos on January 23 (at. $4^{\mathrm{h}} \cdot 40^{\mathrm{m}}$. p.m.) and was not remewed until February 26. The mean daily Florizontal Mavament of the Air tor the month was 404 miles; the greatest daily value was 891 miles on January 23 ; and the least daily value was in 3 miles on January 18.
Rain fell on 15 days in the month, amounting to $1^{\text {in }} \cdot 77 \mathrm{I}$, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {th }} \cdot 266$ less than the average fall for the 43 jeara, 1841-1883.

$\left\lvert\, \begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY. } \\ 188 \cdot . \end{gathered}\right.$	Phases of the Moon．		Templraturk．							Difference between the Air Temperature Temperature．				Tbmpriaturi．						Klectricity．	
			Of the Air．					$\|$Of Evapo－ ration． Mean of 24 Hourly Values．	Of the Dew Point． De－ duced Mean Daily Value．				Of Radiation．	Of the Water of the Thames at Deptford．							
			$\begin{aligned} & \text { 寭 } \\ & \text { 安 } \\ & \text { 苗 } \end{aligned}$		Daily Range．	$\left\|\begin{array}{c} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{array}\right\|$	Excess above Average of 20 Years．			Mean．	Greatest．	Least．		$\left\|\begin{array}{c} \text { Highest } \\ \text { in } \\ \text { Sun's } \\ \text { Rays. } \end{array}\right\|$	Lowest on the Grass．		畗				
		in．	\bigcirc	－	\bigcirc	－	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	c	\bigcirc	\bigcirc	in．		
Feb． 1		29.273	$50^{\circ} 0$	$43 \cdot 3$	6.7	$46 \cdot 6$	＋6．1	$44 \cdot 8$	$42 \cdot 8$	3.8	$8 \cdot 0$	0.6	87	72.0	$40^{\circ} 7$	$43 \cdot 3$	$43 \cdot 0$	0.240	9.2	$\mathbf{N , ~ w P : ~} \mathbf{v N}, \mathrm{vP}^{\text {P }}$	
		29.688	$43 \cdot 9$	33.7	10.2	40×0	－ 0.6	38.4	$36 \cdot 3$	3.7	$10^{\circ} 8$	$0 \cdot 0$	87	57．2	$30 \cdot 7$	44．1	$43 \cdot 5$	0.133	2.2		
3		30.252	4177	27.8	13.9	35.7	－ $5 \cdot 0$	$33 \cdot 8$	30．9	4.8	110	$2 \cdot 6$	82	55.7	$25 \cdot 1$	$44^{1} 1$	44°	$0 \cdot 000$	00	sP：vP	
4	$\underset{\text { First }}{\text { Perigee．}}$	30．257	$50^{\circ} \mathrm{I}$	417	8.4	457	$+5 \cdot 0$	$43 \cdot 9$	41＊9	$3 \cdot 8$	$6 \cdot 7$	1．1	87	$70^{\circ} 9$	$39^{\circ} 5$	$43 \cdot 7$	$42^{\circ} 2$	$0 \cdot 000$	$0 \cdot 0$	w $\mathrm{P}: \mathrm{mP}$ ．	
5		30.217	$48 \cdot 3$	$43 \cdot 2$	$5 \cdot 1$	$45 \cdot 2$	＋ 4.6	$43 \cdot 7$	$42 \cdot 0$	3.2	6．1	1.8	89	$58 \cdot 8$	$42 \cdot 0$	$43 \cdot 1$	42.6	$0 \cdot 000$	$2 \cdot 0$		
6	$\underset{\text { Declination }}{\text { Gratest }}$	30－082	$46 \cdot 4$	$35 \cdot 4$	11．0	$42 \cdot 5$	＋ $2 \cdot 1$	$40 \cdot 2$	37.4	$5 \cdot 1$	$10 \cdot 3$	1.0	83	$56 \cdot 1$	$30^{\circ} 0$	$42 \cdot 6$	$42 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	vP	
7		29．933	44＊8	$32 \cdot 7$	12.1	$38 \cdot 2$	－200	$37 \cdot 6$	$36 \cdot 8$	1×4	$5 \cdot 1$	00°	95	$77^{\circ} 7$	28.1	$42 \cdot 5$	42.2	$0 \cdot 000$	0%	${ }^{\mathrm{vP}}$	
8		29.746	45.7	$37^{\circ} \mathrm{I}$	8.6	$4{ }^{1} 1$	＋ 1.2	$40 \cdot 8$	$40^{\circ} 4$	0.7	3.5	$0 \cdot 0$	98	$51 \cdot 1$	$33 \cdot 5$	$42 \cdot 7$	42.4	$0 \cdot 012$	$0^{\circ} \mathrm{O}$	$w_{w P} \mathbf{P}$ ：vP	
9		29.365	51.4	$43 \cdot 9$	$7 \cdot 5$	$48 \cdot 2$	＋ 8.6	$47 \cdot 2$	$46 \cdot 1$	$2 \cdot 1$	$5 \cdot 5$	0.2	93	$60 \cdot 3$	$40 \cdot 1$	$42 \cdot 6$	42.4	$0 \cdot 066$	7°	P, wN	
10		29．365	50.2	37°	13.2	$43 \cdot 6$	$+43$	$40 \cdot 8$	37.5	6.1	99^{2}	$3 \cdot 1$	79	87.8	33°	$43 \cdot 9$	$43 \cdot 2$	$0 \cdot 138$	14.8	$\mathbf{w P}, \mathbf{v N}: \mathbf{v P}, \mathrm{vN}^{\prime}$	
11	Full	29.577	$47^{.5}$	$36 \cdot 1$	11.4	39.7	＋ + +06	$38 \cdot 2$	$36 \cdot 3$	3.4	$6 \cdot 1$	$1 \cdot 1$	89	88.6	31.0	43.7	43.4	$0 \cdot 175$	9.5 $8 \cdot 2$	$\begin{gathered} \mathrm{wN}, \mathrm{mP}: \mathrm{sN}, \mathrm{sP} \\ \mathrm{wP}: m \mathrm{mP} \end{gathered}$	
12	F	29．761	50.2	$37 \cdot 2$	13.0	$45 \cdot 1$	$+6.2$	$43 \cdot 0$	$40 \cdot 6$	$4 \cdot 5$	$8 \cdot 6$	$0 \cdot 2$	84	$87^{\circ} \mathrm{I}$	$33 \cdot$	$43 \cdot 5$	43.2	$0 \cdot 001$	$8 \cdot 2$	wP ：mP	
13	In Equator	29＊779	57．6	$43 \cdot 7$	13.9	$49 * 7$	$+109$	47^{11}	44.3	$5 \cdot 4$	$10 \cdot 6$	1．8	83	$98 \cdot 9$	38.2	$42 \cdot 9$	42.6	0.027	7.2	$w \mathrm{P}: \underset{\mathrm{vP}}{\mathrm{vP}} \mathrm{\nabla}$	
14	In Equator	29.952	53．0	43.4	9.6	$48 \cdot 9$	＋10\％2	$47^{\circ} \mathrm{O}$	$44^{\circ} 9$	$4^{\circ} 0$	$8 \cdot 4$	$0 \cdot 4$	87	$76 \cdot 1$	41°	$43 \cdot 1$	43.0	$0 \cdot 037$	$4{ }^{4} \mathrm{O}$	$\stackrel{v P}{\text { vP }}$	
15		29.936	43.4	$33 \cdot 8$	96	$40 \cdot 0$	$+1 \cdot 3$	$38 \cdot 1$	$35 \cdot 6$	44	8.0	$0 \cdot 7$	85	$78 \cdot 8$	$30^{\circ} 0$	44＇1	$43 \cdot 8$	$0 \cdot 000$	$1 \cdot 5$	vP：sP	
16		29．898	$40 \cdot 7$	$32 \cdot 5$	$8 \cdot 2$	$36 \cdot 2$	－ 2.6	33.5	$29^{\circ} 5$	67	$9 \% 9$	$4 \cdot 3$	77	79.6	28.5	$43 \cdot 3^{\circ}$	43.2	$0 \cdot 000$	8.7 3.7	$\underset{\sim P}{ } \mathrm{P}: \mathrm{sP}$	
17		29.763	$42 \cdot 9$	$35 \cdot 2$	77	$38 \cdot 1$	－ 0.8	$35 \cdot 7$	$32 \cdot 5$	$5 \cdot 6$	$8 \cdot 8$	$3 \cdot 7$	80	$74^{\circ} 1$	$33 \cdot 1$	$42 \cdot 9$	$42 \cdot 8$	$0 \cdot 000$	3.7 3.0	$\mathrm{mP}: \mathrm{mP}_{\text {sP }}$	
18	Apogee	29.684	$42 \cdot 8$	31.6	11.2	$36 \cdot 3$	-2.7	$34 \cdot 3$	$31 \cdot 4$	4.9	$9{ }^{\circ}$	$1 \cdot 2$	83	91.4	$27^{\circ} 0$	$42 \cdot 1$	$42^{\circ} \mathrm{O}$	$0 \cdot 000$	$3 \cdot 0$	vP	
19	Last Qr．	29：592	$49^{\cdot 6}$	$35 \cdot 2$	14.4	$43 \cdot 4$	$+4.2$	$42 \cdot 6$	$41^{1} 6$	1.8	4.6	$0 \cdot 0$	94	$78 \cdot 5$	320	$42 \cdot 1$	41.8	$0 \cdot 170$	$1 \cdot 0$	$\vee N, ~ \nabla P: ~ w P, ~ w N$	
20	Last Qr．	29.664	53.1	$44^{\circ} 9$	8．2	$48 \cdot 3$	＋${ }^{\circ} \mathrm{O}$	$45 \cdot 4$	$42 \cdot 2$	$6 \cdot 1$	110	2.1	80	100.2	$40 \cdot 8$	42.3	42.2	$0 \cdot 000$	8．0	wP ：mP $\nabla \mathrm{m}$	
21		29.560	53．0	$42 \cdot 7$	$10 \cdot 3$	$46 \cdot 3$	$+6 \cdot 8$	44^{-5}	$42 \cdot 5$	3.8	104	0.2	87	$96 \cdot 1$	$38 \cdot 2$	42.6	42.5	0.226	$10^{\circ} 0$	$\nabla \mathrm{P}, \mathrm{VN}: \mathrm{VP}$	
22		29.462	52.1	$40 \cdot 3$	11.8	$46 \cdot 0$	$+6.4$	$44^{\circ} 2$	42．1	3.9	$8 \cdot 0$	$0 \cdot 2$	87	$77 \cdot 8$	39.5	$43 \cdot 1$	$43 \cdot 0$	0.192	11．2	$\underset{\sim P, ~: ~}{\text { wP，}}$ wN	
23		29.350	$51 \cdot 8$	38.4	13.4	43.7	＋ 4°	41－6	$39 \cdot 1$ 38.	$4 \cdot 6$	$10 \cdot 7$	$0 \cdot 0$	84	$93 \cdot 8$	$35 \cdot 8$ 31	$43 \cdot 7$ $44 \cdot 7$	43 $44^{\circ} \mathrm{O}$	00047	8．0 3.8	$\underset{\sim P, ~ m N: ~}{\sim P}$	
24	\cdots	$29^{\circ} 443$	48．0	$36 \cdot 8$	11.2	$43 \cdot 5$	＋ 37	41.1	$38 \cdot 3$	$5 \cdot 2$	94	$3 \cdot 0$	81	$76 \cdot 9$	31.0	447	44.6	0.003	$3 \cdot 8$		
25		29＊700	$48 \cdot 2$	$34^{\circ} \circ$	14.2	41.2	＋ 13	$38 \cdot 8$	$35 \cdot 8$	$5 \cdot 4$	11.1	$1 \cdot 3$	80	$82^{\circ} \mathrm{O}$	$29^{\circ} 9$	44．1	$44^{\circ} \mathrm{O}$	$0 \cdot 028$	$0 \cdot 0$	vP：vP，	
26	New	29.766	$48 \cdot 0$	$32 \cdot 5$	$15 \cdot 5$	$39 \cdot 8$	－ 0.2	37.8	$35 \cdot 2$	$4 \cdot 6$	$10 \cdot 5$	0.2	84	82.6 68.9	$26^{26}{ }^{\circ}$	44.1 43.6	$44^{\circ} \mathrm{O}$ 43	0＊000	30 0.0	$v P$ $v P$	
27	In Equator	29.833	$45 \cdot 5$	$30 \cdot 6$	14.9	$36 \cdot 9$	-3.2	$35 \cdot 5$	$33 \cdot 6$	$3 \cdot 3$	$10 \cdot 3$	00	88	68.9	25%	$43 \cdot 6$	$43 \cdot$	$0 \cdot 000$	$0 \cdot 0$	vP：mP	
28	\cdots	29.769 29.773	$\begin{aligned} & 39^{\circ} 6 \\ & 43 \cdot 4 \end{aligned}$	$31 \cdot 2$ $30 \cdot 0$	8.4 134	$\begin{aligned} & 35 \cdot 3 \\ & 35 \cdot 6 \end{aligned}$	－ 4.9	$\begin{aligned} & 33 \cdot 5 \\ & 33 \cdot 0 \end{aligned}$	$\begin{aligned} & 30^{\circ} 7 \\ & 29^{\circ} 0 \end{aligned}$	4.6 6.6	$8 \cdot 5$ 13	2．0	83 76	$\begin{aligned} & 59.5 \\ & 91 \cdot 7 \end{aligned}$	$\begin{aligned} & 28 \cdot 0 \\ & 25 \circ \end{aligned}$	$43 \cdot 1$ $42 \cdot 3$	$\begin{aligned} & 43 \cdot 0 \\ & 42^{\circ} 2 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$	0.0 $0 \cdot 0$	$\begin{gathered} \mathrm{mP}: \mathrm{vP} \\ \mathrm{vP} \end{gathered}$	
29	．	29.773	434	30．0	1																
Means		29．739	$47 \times$	$36 \cdot 8$	10＊9	42.1	＋ 24	$40 \cdot 2$	$37 \cdot 8$	$4 \cdot 3$	$8 \cdot 7$	1.2	$85 \cdot 2$	$76 \cdot 9$	33.0	$43 \cdot 2$	42＊9	$\begin{gathered} \mathrm{sum} \\ 1 \cdot 496 \end{gathered}$	4.4		
Number of Solumn for Reference．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868．The temperature of the Dem Point（Column 9） and the Degree of Humidity（Column 13）are dednced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables．
and The mean difference between the Air and Dew Point Temperatures（Column 10 io is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Lear
Dest Differences（Columns ir and 12）are deduced from the 24 hourly photograppicameasures ${ }_{\text {and }}$ 29，for Barometer are deduced from eyc－observations，on account of temporary interruption of the photographic register．
The ralues given in Columns 3，4，5，14，15，16，and 17 are derived from eye－readings of self－registering thermometerso
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 739$ ，being $0^{\text {tn }} \cdot 093$ lower than the average for the 20 years，1854－1873．
temperature of the Air．
The highest in the month was $57^{\circ} \cdot 6$ on February 13 ；the lowest in the month was $27^{\circ} .8$ on February 3 ；and the range was $29^{\circ} .8$ ．
The mean of all the highest daily readings in the month was $47^{\circ} \cdot 7$ ，being $2^{\circ} \cdot 2$ higher than the average for the 43 years，1841－1883．
The mean of all the lowest daily readings in the month was $36^{\circ} \cdot 8$ ，being $2^{\circ} \cdot 4$ higher than the average for the 43 years，1841－1883．
The mean of the daily ranges was $10^{\circ} \cdot 9$ ，being $0^{\circ} \cdot 2$ less than the average for the 43 years，1841－1883．
The mean for the month was $42^{\circ} \cdot 1$ ，being $2^{\circ} \cdot 4$ higher than the average for the 20 years，1849－1868．

The mean Temperature of Evaporation for the month was $40^{\circ} \cdot 2$, being $2^{\circ} \cdot 3$ higher than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot 8$, being $2^{\circ} \cdot 4$ higher than
The mean Degree of Humidity for the month was 8.2 , being 0.4 greater than
The mean Elastic Force of Vapour for the month was $0^{\operatorname{in} \cdot 227}$, being $0^{\text {in }} \cdot 020$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grr}^{6} 6$, being $\mathrm{ogr}^{\mathrm{g}} 2$ greater than
The mean Weight of a Cubic Foot of Air for the month was 549 grains, being 5 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $9 \cdot 0$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.16. The maximum daily amount of Sunshine was $\gamma \cdot 1$ hours on Febraary 18. The highest reading of the Solar Radiation Thermometer was $100^{\circ} 2$ on February 20 ; and the lowest reading of the Terrestrial Radiation Thermometer was $25^{\circ} \cdot 0$ on February 29.
The mean daily distribution of Ozone was, for the $\tau 2$ hours ending 9 a.m., $2 \cdot 8$; for the 6 hours ending 3 p.m., 0.9 ; and for the 6 hours ending 9 p.m., 0.7 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 6, S. 10, and W. 10.
The Pressure apparatus was not in action during the greater part of the month of February. The mean daily Horizontal Movement of the Air for the month was 337 miles; the greatest daily value was 554 miles on February 9 ; and the least daily value was 78 miles on February 8.
 43 years, 1841-1883.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1884. } \end{gathered}$	Phases of the Moon．	$\underset{\substack{\text { Babo－} \\ \text { METER．}}}{ }$ 5 8 $\stackrel{5}{5}$ 部家家 田言弟 跑荡 兆家家总	Temperature．							Difference between the Air Temperature and Dew Point Temperature				Tximperintix．						鈿ectricity．	
			Of the Air．					$\begin{gathered} \text { OR } \\ \text { Evapo- } \\ \text { ration. } \end{gathered}$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$				Of Rad	iation．	Of the at Dep	Water wames tford．					
					$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$		Excess above Average of 20 Years．	Mean1 of 24 Hourly Values．	De－ duced Mean Daily Value．	Mean．	Greatest．	Least．		Highes in Sun＇s Rays．	Lowest on the Grass．						
		in．	\bigcirc	－	－	\bigcirc	－	－	－		\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc	in．		
Mar． 1	Perigee	29.846	42.4	27.7	14.7	$35 \cdot 0$	-5.3	32.6	28.8	6.2	12.1	1×7	77	94.9	$24^{\circ} 0$	4177	$4{ }^{16}$	0.000	$0 \cdot 5$	${ }^{*} \mathrm{P}$	
		29.877	$45 \cdot 7$	28.6	$17^{\circ} 1$	37.2	-3.2	$35 \cdot 4$	$32 \cdot 9$	$4 \cdot 3$	11.4	$0 \cdot 0$	85	$97 \cdot 8$	25.0	429	$42 \cdot 2$	$0 \cdot 000$	$3 \cdot 2$	${ }_{\sim} \mathrm{P}$	
3		29\％700	$43 \cdot 8$	$27 \cdot 3$	16.5	$37 \cdot 4$	－3．1	$36 \cdot 5$	$35 \cdot 3$	$2 \cdot 1$	$6 \cdot 7$	$0 \cdot 0$	92	50：5	$24^{\circ} \mathrm{O}$	419	41.8	$0 \cdot 047$	$4 \cdot 8$	vP，vN	
	First Qr．	29.495	52.0	$41 \cdot 3$	$10 \cdot 7$	$46 \cdot 1$	$+5.6$	$44^{6} 6$	$42^{\circ} 9$	$3 \cdot 2$	$8 \cdot 4$	$0 \cdot 2$	89	65：1	$40^{\circ} 0$	411	41°	$0 \cdot 172$	1505	$w P, w N: w P$	
5	${ }_{\text {dectinatest }}^{\text {Great }} \mathrm{N}$ ．	$29^{\circ} 904$	$50 \cdot 5$	$36 \cdot 6$	13.9	$42 \cdot 8$	$+23$	$39^{\circ} 9$	$36 \cdot 4$	6.4	12.6	1.4	79.	$87 \cdot 8$	31.5	$42 \cdot 1$	42.0	$0 \cdot 000$	0	vP	
6		30．002	50.4	$33 \cdot 6$	$16 \cdot 8$	$42 \cdot 3$	＋ 18	$40 \cdot 6$	$38 \cdot 5$	$3 \cdot 8$	9.5	0.2	87	83：2．	30.2	$42 \cdot 1$	420	$0 \cdot 000$	20	sP：vP，wN	
7		29：778	$54 \cdot 1$	$32 \cdot 1$	$22^{\circ}{ }^{\circ}$	415	＋0．9	39.4	$36 \cdot 8$	$4 \cdot 7$	13.6	$0 \cdot 2$	84	102：2	27^{2}	$42 \cdot 6$	$42 \cdot 5$	$0 \cdot 000$	$0{ }^{\circ} 0$	vP	
8		29.580	$50 \cdot 4$	34.6 38.6	15.8	$41 \cdot 2$	＋ 0.6	$39 \cdot 6$	$37 \cdot 6$	3.6	10.5	$0 \cdot 2$	88	80.1	$3 \mathrm{I}^{\circ} \mathrm{O}$	42.3	42.0	$0 \cdot 10$	00	vP	
9		29.349	$51 \cdot 0$	$38 \cdot 6$	12.4	$42 \cdot 7$	＋ 20	$40 \cdot 3$	37.4	$5 \cdot 3$	$15 \cdot 1$	$0 \cdot 0$	82	91：0	34.8	$43 \cdot 6$	$43 \cdot 4$	$0 \cdot 182$	$2 \cdot 2$	$\nabla \mathrm{P}, \mathrm{vN}: \nabla \mathrm{P}$	
10		$29^{1.142}$	51．5	37.2	14.3	$43 \cdot 9$	$+3.2$	41．3	$38 \cdot 3$	$5 \cdot 6$	12.6	0.5	80	101.3	3107	43.9	$43 \cdot 8$	0.252	$1{ }^{\circ} \mathrm{O}$	$\checkmark \mathrm{P}, \mathrm{vN}: ~ \vee P$	
11	Full	29.200	44^{6}	$36^{\circ} 1$	8.5	$40^{\circ} 9$	＋ 0.1	$39^{\circ} 6$	$38 \cdot 0$	$2 \cdot 9$	$6: 4$	0.2	90	56.6	$3 \mathrm{r} \cdot 9$	$44^{\cdot 5}$	$44^{\circ} 4$	0.631	3.8	vN：wN，wP ：vP	
12	In Equator	29.541	53.7	$36 \cdot 5$	17.2	$43 \cdot 7$	＋ 29	41.5	38.9	$4 \cdot 8$	1106	$0 \bigcirc 0$	83	98．2	$32 \cdot 1$	$44^{1} 1$	44°	$0 \cdot 000$.	$2{ }^{\circ} \mathrm{O}$		
13		29.880	$56 \cdot 6$	$42 \cdot 3$	14.3	$48 \cdot 6$	$+77$	$46 \cdot 6$	$44^{\circ} 5$	4.1	$8{ }^{\circ} 0$	$1 \cdot 3$	86	96•I．	$38 \cdot 6$	44.6	$44^{*} 4$	$0 \cdot 000$	$7 \cdot 5$	$w \mathrm{P}$ ：mP	
14		$29^{\circ} 95 \mathrm{I}$	$60 \cdot 5$	$46 \cdot 1$	$14^{\circ} 4$	$5 \mathrm{I} \cdot 5$	＋10．5	$48 \cdot 5$	45.5	$6 \cdot 0$	10.8	$2 \cdot 7$	80	102．2	39^{-3}	$45 \cdot 6$	$45 \cdot 5$	$0 \cdot 000$	4.5	$\mathrm{mP}: \mathbf{s P}$	
15		29.915	$68 \cdot 0$	$46 \cdot 6$	214	55\％2	＋14．1	51°	$47^{\circ} \mathrm{O}$	$8 \cdot 2$	19.1	$2 \cdot 5$	74	117.5	$40 \cdot 0$	$46 \cdot 3$	$46 \cdot 1$	$0 \cdot 000$	$4 \circ 0$	${ }_{v} \mathrm{P}$	
16		29.880	68.8	$41^{\circ} 6$	27.2	54.6	＋ 3.4	$49^{\circ} 1$	$43 \cdot 8$	1088	20.5	$1 \cdot 3$	67	116.4	$34^{\circ} 0$	47.2	$47^{\circ} \mathrm{O}$	$0 \cdot 000$	$00^{\circ} 0$	vP	
17	Apogee	29.876	$68 \cdot 1$	$39^{\circ} 2$	$28 \cdot 9$	53.7	＋12．4	49°	44.4	$9 \cdot 3$	18.9	1.5	71	122.5	$30^{\circ} 9$	$48 \cdot 6$	48.5	－0000	$0 \cdot 0$	$v \mathrm{P}$	
18		29.886	64.7	$47 \cdot 3$	17.4	54.3	＋129	$50 \cdot 4$	$46 \cdot 6$	77	17.5	$2 \cdot 1$	75.	115%	41．8	49.6	$49 \cdot 5$	0.000	20	vP	
19	GreatestDe． C S．	29.880	$59 \cdot 3$	42.4	$16 \cdot 9$	$49^{\circ} 4$	$+8.0$	$47^{\circ} \mathrm{O}$	$44^{\circ} 4$	$5 \cdot 0$	12.4	$0 \cdot 4$	84	111．8	$37^{\circ} 0$	50.1	50.0	0000	$3 \cdot 0$		
20	Last quarter．	29.755	53.5	40%	13.5	$46 \bullet 0$	＋ 4.5	41.5	$36 \cdot 3$	97	16.4	$2 \cdot 1$	70	$105 \cdot 4$	35.0	$50 \cdot 7$	$50 \cdot 0$	0.028	$0 \cdot 0$	vP ：wN， $\mathrm{vP}^{\text {P }}$	
21		29．785．	52.4	$37 \cdot 5$	$14^{\circ} 9$	43＊9	＋ 2.3	$40 \cdot 6$	36.7	$7 \cdot 2$	$13 *$	3.4	75	100\％	$32 \cdot$	$49 \cdot 9$	$49^{\circ} 8$	$0 \cdot 012$	0%	$\mathrm{vP}, \mathrm{\nabla N}$	
22		29.882	53.9	3r99	$22{ }^{\circ}$	43.5	＋188	$40 \cdot 3$	36．5	$7{ }^{\circ}$	$14^{\circ} \mathrm{O}$	20	76	95：7	27.1	496	49＇5	0.000	$3 \cdot 0$	$\mathrm{P}:$ vP	
23		29.920	$53 \cdot 9$	40°	13.9	$45 \cdot 8$	＋ 40	42.4	$38 \cdot 5$	7.3	150	2.2	76	$96 \cdot 8$	33.8	$49^{\prime} 1$	49°	$0 \cdot 000$	0.0	$\stackrel{\sim}{*}$	
24	．．	$29^{\circ} 970$	52.2	35°	17.2	$43 \cdot 6$	＋1．6	41.0	37.9	5.7	124	1.2	80	101．3	26.9	$48 \cdot 9$	48.5	$0 \cdot 000$	$0 \cdot 0$	จP	
25		29＊967	47^{2}	$34^{\circ} 5$	12.7	$40 \cdot 5$	－1．8	$38 \cdot 5$	$35 \cdot 9$	$4 \cdot 6$	10：8	0.5	84	92．9	$25 \cdot 0$	$47^{\circ 1}$	47°	0×000	$0 \cdot 0$	P	
26 I	In Equator	29.923	44.4	$36 \cdot 7$ 37.3	77	$40 \cdot 2$	-2.4	$38 \cdot 7$	$36 \cdot 8$	3.4	$6 \cdot 2$	$1 \cdot 1$	88	84.9	$33 \cdot 1$	477	$47^{\circ} 5$	$0 \cdot 011$	$2 \cdot 5$	P：vN， $\mathrm{wP}^{\text {P }}$	
27	New	29＊959	$42 \cdot 0$	37.3	4.7	$39 \cdot 6$	－3．4	36．5	32．5	$7 \cdot 1$	1100	3＇9	76	59\％o	$35 \cdot 0$	47.5	$46 \cdot 4$	$0 \cdot 000$	$4 \cdot 5$	vP	
28		29.906	43：2	35＊9	$7 \cdot 3$	39．8	－ 3.6	37.6	34.7	$5 \cdot 1$	81	2＇9	82	59.2	$34^{\prime} 1$	$46 \cdot 1$	45.4	$0 \cdot 000$	00	1	
29	Perigee	29.822	$47^{\circ} 1$	$36 \cdot 5$	10.6	41.5	-2.3	38.7	$35 \cdot 2$	$6 \cdot 3$	12\％4	$2 \cdot 3$	79	$72 \cdot 3$	30.4	465	45°	$0 \cdot 000$	$0 \cdot 2$	vP	
30		29.619	$52 \cdot 8$	$37 \cdot 0$	$15 \cdot 8$	$43 \cdot 8$	-0.5	41.6	$39^{\circ} \mathrm{O}$	$4 \cdot 8$	$10{ }^{\circ}$	$0 \cdot 2$	83	$91 \cdot 1$	$30 \cdot 8$	$44 \cdot 3$	44°	$0 \cdot 15$	$3 \cdot 5$	$\checkmark P$ ：$v P, ~ v N$	
31		29.384	$54^{\circ} 6$	4188	12.8	$46 \cdot 6$	＋1．8	$44^{1} 1$	$4^{1 \cdot 3}$	$5 \cdot 3$	1366	1．3	83	$92^{\circ}{ }^{\circ}$	37.2	$45 \% 1$	$45^{\circ} \mathrm{O}$	$0 \cdot 009$	4.2	vP，wN	
Means	．${ }^{\text {a }}$	29\％760	52.7	37%	$15 \cdot 3$	44.4	＋ 29	4188	$38 \cdot 7$	$5 \cdot 7$	123	I•3	$80 \cdot 8$	917	32.4	457	$45 \cdot 4$	$\begin{gathered} \stackrel{80 m}{1} \\ 1.369 \end{gathered}$	277		
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photegraphic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from $\mathbf{1 8 4 9} \mathbf{t 0} \mathbf{1 8 6 8}$ ．The temperature of the Dew Peint（Column 9 ） and the Degree of Humidity（Column 13）are deduced from the corresponding teanperatures of the Air and mraporation by ameans of Ghicher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns ir and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．
The values givem in Columns $3,4,5, \times 4,15,16$ ，and 17 ave derived from eye－readings of self－registering thermometers．
The meau reading of the Barometer for the month was $29^{\text {in }} \cdot \boldsymbol{\gamma 6 0}$ ，being $0^{\text {in }} \cdot 03^{8}$ higher than the average for the 20 years， $1854-1873$ ．
Temperature of the Air．
The highest in the month was $68^{\circ} \cdot 8$ on March 16；the lowest in the month was $27^{\circ} \cdot 3$ on March 3 ；and the range was $41^{\circ} \cdot 5$ ．
The mean of all the highest daily readings in the month was $57^{\circ} \cdot 7$ ，being $2^{\circ} \cdot 8$ higher than the average for the 43 years， $1841-1883$ ．
The mean of all the lowest daily readings in the month was $37^{\circ} .4$ ，being $2^{\circ} \cdot 2$ kigher than the average for the 43 years，1841－1883．
The mean of the daily ranges was $15^{\circ} \cdot 3$ ，being $0^{\circ} \cdot 6$ greater than the average for the 43 years，1841－1883
The mean for the month was $44^{\circ} \cdot 4$ ，being $2^{\circ} \cdot 9$ higher than the average for the 20 years， $1849-1868$ ．

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1884. } \end{gathered}$	Phases of the Moon．	Baro－METRB．	Temprrature．							Difference between the Air Temperature and Dew Point remperature．				Thmperaturb．					Daily Amount of Ozone．		
			Of the Air．					$\|$Of Ovapo－ ration． Mean of 24 Hourly Values．	Of the Dew Point． Do－ duced Mean Daily Value．				Of Radiation．	Of the Water of the Thames at Deptford．							
					$\begin{array}{\|l\|} \hline \text { Daily } \\ \text { Range. } \end{array}$	$\begin{array}{\|c\|c} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \end{array}$	Excess above Average of 20 Years．			Mean．	Greatest．	Least．		$\begin{aligned} & \text { Highest } \\ & \text { in } \\ & \text { Sun's } \\ & \text { Rays. } \end{aligned}$	$\begin{gathered} \text { Lowest } \\ \text { on } \\ \text { the } \\ \text { Grass. } \end{gathered}$	$\begin{aligned} & \text { 䒼 } \\ & \text { 荡 } \end{aligned}$	$\begin{aligned} & \text { 藅 } \\ & \stackrel{y}{c} \end{aligned}$				
		in．	－	－	－	－	\bigcirc	－	0	－	－	\bigcirc			－	－	－	－	in．		
Apr． 1	Dechranatiost N ．	29.434	62.5	44°	18.5	52.4	＋7＇1	$48 \cdot 8$	$45 \cdot 1$	$7 \cdot 3$	13.7	3.8	77	1217	$39^{\circ} \mathrm{O}$	$45 \cdot 6$	$45 \cdot 0$	$0 \cdot 008$	18．2	mP, vP	
	First Qr．	29.454	$68 \cdot 7$	$44^{\circ} 8$	23.9	$56 \cdot 4$	$+10.7$	51.8	47.5	8.9	18.4	2.7	72	$127 \cdot 1$	39.5	$48 \cdot 9$	$48 \cdot 8$	$0 \cdot 000$	$5 \cdot 8$	vP：vP，vN	
3		29.329	64.8	$46 \cdot 6$	18.2	$55 \cdot 7$	＋ 96	52.0	$48 \cdot 5$	$7 \cdot 2$	14.4	0.6	78	123.8	$39 \cdot 3$	$48 \cdot 9$	48.8	$0 \cdot 053$	$4{ }^{\circ}$	vN, vP	
4		29．314	63.4	417	217	$52 \cdot 3$	＋5．9	48.6	$44^{\circ} 8$	$7 \cdot 5$	$16 \cdot 3$	0×0	76	121.8	$35 \cdot 8$	49.5	49°	$0 \cdot 139$	8.0	wP ： $\boldsymbol{\nabla P} \mathbf{P}, ~ \vee N$	
5		29.201	$56 \cdot 1$	43.7	12.4	$49^{\circ} 9$	＋ $3 \cdot 3$	47.6	$45 \cdot 2$	4.7	$10 \cdot 4$	$1 \cdot 3$	85	$94^{\circ} \mathrm{O}$	$40 \cdot 3$	$50 \cdot 1$	$50^{\circ} 0$	$0 \cdot 000$	$19^{\circ} 8$		
6		29.408	59.9	44°	159	$49 \cdot 9$	$+3.2$	$48 \cdot 1$	$46 \cdot 2$	$3 \cdot 7$	$10^{\prime} 1$	0.4	87	102.8	41°	5r1	$50 \cdot 9$	0.238	$9 \cdot 2$	wP ： vP, vN	
7		29.404	53．7	$46 \cdot 2$	$7 \cdot 5$	$49^{\circ} 1$	＋ 2.3	$47^{\circ} 7$	$46 \cdot 2$	2.9	$7{ }^{\circ} 0$	00	90	65.9	$42 \cdot 8$	51．3	50.0	－ 197	3.0	vP，wN	
8	In Equator	29710	$56 \cdot 3$	43.0	13．3	$48 \cdot 9$	＋ 211	$47 \cdot 5$	$46 \cdot 0$	$2 \cdot 9$	$5 \cdot 6$	$0 \cdot 0$	90	$73 \cdot 3$	$40 \cdot$	51.6	$51 \cdot 2$	$0 \cdot 000$	$0 \cdot 0$	wP，wN：vP	
9	．．	29.771	$57 \cdot 6$	$37 \cdot 5$	20.1	49°	＋ 211	$45 \cdot 9$	$42 \cdot 6$	$6 \cdot 4$	15.4	$0 \cdot 0$	78	$125 \cdot 1$	29.5	51.9	51.4	$0 \cdot 000$	5＊0	${ }_{\sim} \mathbf{P}$	
10	Full	29．783	$53 \cdot 1$	$36 \cdot 5$	16.6	$44^{\circ} 7$	－ 2.2	$42^{\circ} \mathrm{O}$	38.8	$5 \cdot 9$	12.0	$0 \cdot 7$	80	104.8	29.5	52.4	52°	$\bigcirc \cdot 000$	000	vP	
11	．－	29.867	52.4	$38 \cdot 8$	13.6	$44^{\circ} 5$	－ 2.5	41.2	37.4	$7 \cdot 1$	11.8	2.5	75	109.9	34.6	$51 \cdot 7$	$5 \mathrm{I} \cdot 6$	$0 \cdot 000$	0×0	$m \mathrm{P}: \mathrm{vP}$	
12		29.862	53．1	$36 \cdot 3$	16.8	$43 \cdot 9$	-3.2	$42 \cdot 3$	$40^{\circ} 4$	$3 \cdot 5$	10.8	$0 \cdot 0$	87	$93 \cdot 9$	29.5	51.6	51.2	0.024	$0 \cdot 0$	vP	
13	Apogee	29.369	$52 \cdot 6$	$33^{\circ} 1$	19.5	42.5	-47	$40^{\circ} 7$	38.5	$4^{\circ} \mathrm{O}$	11.4	$0 \cdot 0$	86	108.0	27^{11}	5r．1	51.0	$0 \cdot 000$	00	mP ： $\mathrm{V} \mathbf{P}$	
14		29.866	52.5	$35 \cdot 3$	$17 \cdot 2$	$43 \cdot 7$	－ 37	41.6	$39^{\cdot 1}$	4.6	$10 \cdot 1$	$0 \cdot 0$	84	103.0	$30 \cdot 4$	$50 \cdot 1$	$50{ }^{\circ}$	0.040	$0 \cdot 0$	vP，vN	
15	Deccination S ．	29.760	50.2	$39 \cdot 8$	10.4	$44^{\circ} 6$	－ 29	42.4	39.8	$4 \cdot 8$	$8 \cdot 4$	$1 \cdot 1$	84	8I•9	38．0	49.9	49°	$0 \cdot 020$	$0 \cdot 0$	$\nabla \mathrm{P}, \mathrm{vN}: \nabla \mathrm{P}$	
16		29．675	50.0	$37^{\circ} 0$	13．0	$43 \cdot 4$	－ $4^{\circ} 2$	$41^{\circ} 1$	38.4	$5 \cdot 0$	11．3	$0 \cdot 7$	82	$90^{\circ} 7$	34.0	51．3	50．5	$0 \cdot 000$	$0 \cdot 0$	$\mathrm{mP}: \mathbf{v P}$	
17		29.773	$45 \cdot 7$	$35 \cdot 4$	10.3	39^{6}	－8．2	37.2	34^{-1}	$5 \cdot 5$	$10 \cdot 6$	$0 \cdot 7$	81	89°	$31 \cdot 3$	$50 \cdot 7$	49.0	$0 \cdot 019$	$1 \cdot 7$ 1.5	$\nabla P, \nabla N: \nabla P$	
18	Last Qr．	29.770	$46 \cdot 3$	$35 \cdot 3$	110	$39 \cdot 2$	$-8 \cdot 7$	34.9	29°	$10 \cdot 0$	14.5	$7 \cdot 2$	68	1121	$34^{\circ} 4$	49.9	47.8	$0 \cdot 000$	11.5	vP	
19	－．	29.685	$46 \cdot 2$	34.7	11．5	39．5	－8．5	$35 \cdot 3$	$29^{\circ} 8$	$9{ }^{\circ} 7$	$14^{\circ} 3$	$6 \cdot 0$	69	$105 \cdot 3$	32.1	$48 \cdot 9$	47.2	$0 \cdot 000$	$3 \cdot 8$	vP ：8P	
20		29.765	$49 \cdot 5$	$32 \cdot 1$	17.4	41.5	－6．6	$37^{\circ} 4$	32.3	$9 \cdot 2$	14.3	1.6	70	112.3	27.4	$48 \cdot 5$	$46 \cdot 5$	$0 \cdot 000$	$0 \cdot 0$		
21		29＊793	51．0	$30^{\circ} 9$	$20 \cdot 1$	$40 \cdot 6$	-7.6	37.9	$34 \cdot 5$	$6 \cdot 1$	15.5	$0 \cdot 0$	79	118.6	26.7	479	$46 \cdot 0$	0＇038	00	$\nabla \mathrm{P}: \mathbf{\nabla N}, \mathrm{vP}$	
22	In Equator	29－828	$49^{\circ} 1$	29.3	19.8	40°	－8．2	36.5	32.4	$7 \cdot 6$	${ }^{15} 5$	$0 \cdot 0$	72	113.8	23.0	$47 \cdot 6$	44：8	$0 \cdot 000$	0×0	mP ： vP	
23	．．	29.777	52.6	$27^{\circ} 0$	$25 \cdot 6$	$40 \cdot 3$	－8．0	$36 \cdot 7$	$32 \cdot 1$	$8 \cdot 2$	17.2	\bigcirc	72	124.3	$17^{\circ} 9$	$47 \cdot 5$	$44 \cdot 5$	$0 \cdot 000$	$0 \cdot 0$	sP：vP	
24		29.661	51.2	28.0	23.2	39.6	－ 87	$37 \cdot 1$	$33 \cdot 8$	$5 \cdot 8$	14.1	$0 \cdot 0$	80	$114{ }^{\circ} \mathrm{O}$	21.9	47.1	44.4	$0 \cdot 031$	$0 \cdot 0$	P：vP，vN	
25	New	29.679	49%	31－1	18.6	41.2	－722	$39^{\circ} 3$	$36 \cdot 9$	43	$9 * 7$	00	85	81.8	$26 \cdot 1$	$47 \cdot 3$	$44^{\circ} \mathrm{O}$	00000	$4^{\circ} 0$	mP	
26	Perigee	29.636	$53 \cdot 8$	37.4	16.4	$43 \cdot 5$	－ $4^{\circ} 9$	$40^{\circ} 9$	$37 \cdot 8$	$5 \cdot 7$	$15 \cdot 2$	$0 \cdot 2$	80	93.8	$34 \cdot 4$	$47 \cdot 1$	$44^{\circ} 8$	$0 \cdot 071$	$1 \cdot 0$	¢P ：vP，vN	
27		29.502	53.1	34.7	$18 \cdot 4$	$43 \cdot 9$	-4.5	$43 \cdot 0$	$41 \cdot 9$	$2 \cdot 0$	$9 \cdot 2$	$0 \cdot 0$	93	80.1	30°	$45 \cdot 1$	45.0	0.207	5\％	$\checkmark N, ~ v P$	
28	${ }_{\text {declination }}^{\substack{\text { Greatest } \\ \mathrm{N} .}}$	29.573	52.4	37.7	14.7	45．2	－3．3	43.6	4177	$3 \cdot 5$	8.2	000	88	94＊9	33．1	47.6	$46 \cdot 0$	$0 \cdot 006$	$6 \cdot 0$	vN：wN， vP	
29		29.600	59.8	33.7	$26 \cdot 1$	$46 \cdot 1$	－ 2.4	$44^{\circ} \mathrm{O}$	41.6	4.5	$13 \cdot 1$	00°	85	$129^{\circ} 1$	27.2	47.5	46.0	$0 \cdot 000$	$0 \cdot 0$	$\nabla P: \nabla N, \nabla P$	
30	．．	29.593	6I．7	37.6	24．I	$48 \cdot 3$	－0．3	$44^{\circ} 6$	$40 \cdot 6$	77	$16 \cdot 9$	00	75	122.1	31.4	$48 \cdot 5$	$46 \cdot 8$	$0 \cdot 017$	$0 \cdot 0$	$\mathbf{v P}: \mathbf{v P}, \mathbf{v N}$	
Means	．	29.645	54.3	37^{11}	17.2	45＊3	$-2 \cdot 1$	42.6	$39^{\circ} 4$	$5 \cdot 9$	12.5	1.0	$80 \cdot 3$	104.6	32.2	$49^{\circ} 3$	$48 \cdot 1$	$\begin{gathered} \mathrm{sam} \\ 1.108 \end{gathered}$	$3 \cdot 5$	\cdots	
Numler of Columufor Reference．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The resuits apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868．The temperature of the Dew Point（Column 9） and the Degree of Iumidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns 11 and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．
The values given in Columns 3，4，5，14，15，16，and 17 are derived from eye－readings of self－registering thermometers．
The mean reading of the Burometer for the month was $29^{\ln \cdot 645}$ ，being $0^{\text {in }} \cdot 158$ lower than the average for the 20 years，1854－1873．
Thmperature of the Air．
The highest in the month was $68^{\circ} \cdot 7$ on April 2；the lowest in the month was $27^{\circ} \cdot \circ$ on April 23；and the range was $41^{\circ} \cdot 7 \cdot$
The mean of all the highest daily readings in the month was $54^{\circ} \cdot 3$ ，being $3^{\circ} \cdot 3$ lower than the average for the 43 years，1841－1883．
The mean of all the lowest daily readings in the month was $37^{\circ} \cdot 1$ ，being $2^{\circ} \cdot 1$ lower than the average for the 43 years，1841－1883．
The mean of the daily ranges was $17^{\circ} \cdot 2$ ，being $1^{\circ} \cdot 2$ less than the average for the 43 years，1841－1883．
The mean for the month was $45^{\circ} \cdot 3$ ，being $2^{\circ} \cdot 1$ lower than the average for the 20 years， $1849-\mathrm{s} 868$ ．

The mean Temperature of Evaporation for the month was $42^{\circ} \cdot 6$, being $\mathrm{I}^{\circ} \cdot 3$ lower than
The mean Temperature of the Dew Point for the month was $39^{\circ} \cdot 4$, being $0^{\circ} \cdot 9$ lower than
The mean Degree of Humidity for the month was $80^{\circ} 3$, being 3.4 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{g r r} \cdot 8$, being ogr \cdot I less than
The mean Weight of a Cubic Foot of Air for the month was 544 grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 21$. The maximum daily amount of Sunshine was $9 \cdot 3$ hours on April 4 .
The highest reading of the Solar Radiation Thernometer was 129.1 on April 29; and the lowest reading of the Terrestrial Radiation Thermometer was $17^{\circ} \cdot 9$ on April 23 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 0$; for the 6 hours ending 3 p.m., $1 \cdot 0$; and for the 6 hours ending 9 p.m., 0.5 .
The Proportions of Wind referred to the cardinal points were N. io, E. 10, S. 7, and W. 2. One day was calm.
The Greatest Pressure of the Wind in the month was $155^{168} \cdot 0$ on the square foot on April 17 . The mean daily Horizontal Movement of the Air for the month was 246 miles; the greatest daily value was 522 miles on April 17 and 18; and the least daily value was 105 miles on April 29
Rain fell on 15 days in the month, amounting to $1^{\text {th }} \cdot 108$, as measured by gauge No. 6 partly sunk below the ground; being otn. 560 less than the average fall for the 43 years, 1841 -1883.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are dedaced from the photographic records. The average temperature (Column 7) is that detime and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaishers Hygrometrical Rables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Cometres The results on May 1 and 23 for Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measares of the Dry-balb and Wetbunt
Air and Evaporation Temperatures are deduced from eye-observations on account of failure of the photographic registers.
The values given in Columns $3,4,5,14,15,16$, and 17 are derived from eye-readings of self-registering thermometern.
The mean reading of the Barometer for the month was $29^{\text {ma }} \cdot 821$, being $\alpha^{\text {dn }} \cdot 044$ higher than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $80^{\circ} .5$ on May 24; the lowest in the month was $35^{\circ} .6$ on May 1 ; and the range was $44^{\circ} .9$.
The mean of all the highest daily readings in the month was $65^{\circ} \cdot 7$, being $\mathrm{r}^{\circ} .5$ higher than the average for the 43 years, 1841-1883
The mean of all the lowest daily readings in the month was $43^{\circ} \cdot 8$, being $0^{\circ} \cdot 1$ higher than the average for the 43 years, 1841-1883.
The mean of the daily ranges was $22^{\circ} \cdot 0$, being $\mathrm{i}^{\circ} .5$ greater than the average for the 43 years, 1841-1883.
The mean for the month was $54^{\circ} \cdot 2$, being $1^{\circ} \cdot 1$ higher than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $49^{\circ} \cdot 7$, being $0^{\circ} \cdot 8$ higher than
The mean Temperature of the Dew Point for the month was $45^{\circ} \cdot 4$, being $0^{\circ} \cdot 3$ kigher than The mean Degree of Humidity for the month was $72 \cdot 6$, being $2 \cdot 8$ less than
The mean Elastic Force of Vapour for the month was $0^{\operatorname{in}} \cdot 304$, being $0^{\text {in }} \cdot 003$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }} \cdot 4$, being the same as
The mean Weight of \dot{a} Cubic Foot of Air for the month was 537 grains, being 1 grain less than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was $0 \cdot 38$. The maximum daily amount of Sunshine was i3.4 hours on May ir.
The highest reading of the Solar Radiation Thermoneter was $142^{\circ} \cdot 3$ on May 24 ; and the lowest reading of the Terrestrial Radiation Thermometer was $29^{\circ} \cdot 8$ on May 1 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 5$; for the 6 hours ending 3 p.m., $1 \cdot 1$; and for the 6 hours ending 9 p.m., 0.5 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 9, S. 8, and W. 9.
I'he Greatest Pressure of the Wind in the month was $16^{1 \mathrm{bs}} \cdot 3$ on the square foot on May 4. The mean daily Horizontal Movement of the Air for the month was 323 miles; the greatest daily value was 651 miles on May 3 and 4 ; and the least daily value was ing miles on May 21 .
Rain fell on 10 days in the month, amounting to $0^{\text {in }} \cdot 959$, as measured by gauge No. 6 partly sunk below the ground; being $i^{\text {in. }} 03$ less than the average fall for the 43 years, 8841 -1883.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) average themperature (Column (Columat i3) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Jew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and 12 are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results for June in for Air and Evaporation Temperatures are deduced from eye-observations on account of failure of the photographic registers.
The values given in Columns $3,4,5,14,15,16$, and 17 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 856$, being $0^{1 \mathrm{n}} \cdot 028$ higher than the average for the 20 years, 1854-1873.
Telperature of the Air.
The highest in the month was $82^{\circ} .6$ on June 27 ; the lowest in the month was $42^{\circ} \cdot \eta$ on June 1 ; and the range was $39^{\circ} 9$.
The mean of all the highest daily readings in the month was $69^{\circ} 3$, being $\mathrm{x}^{\circ} \cdot 6$ lower than the average for the 43 years, 1841-1883.
The mean of all the lowest daily readings in the month was $49^{\circ} \cdot 1$, being $0^{\circ} \cdot 8$ lower than the average for the 43 years, 1841-1883.
The mean of the daily ranges was $20^{\circ} 2$, being $0^{\circ} \cdot 8$ less than the average for the 43 years, 1841-1883.
The mean for the month was $58^{\circ} \cdot 1$, being $1^{\circ \circ} 6$ lower than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was 54°, , being $0^{\circ} \mathrm{g}$ lover than
The mean Temperature of the Dew Point for the month was $5^{\circ} \cdot 8$, being $0^{\circ} \cdot 4$ lower than
The mean Degree of Humidity for the month was $77 \cdot 4$, being $4 \cdot \mathrm{I}$ greater than
The mean Elastic Force of Vapour for the month was on 0 371, being $0^{\text {in }} \cdot 006$ less than
the average for the 20 years, $1849-1868$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{855} \cdot 2$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 533 grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $6 . \%$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.27 . The maximum daily amount of Sunshine was ir 4 hours on Jane 26.
The highest reading of the Solar Radiation Thernometer was $142^{\circ} \cdot 9$ on June 27; and the lowest reading of the Terrestrial Radiation Thermometer was $32^{\circ} \cdot \mathbf{2}$ on June I .
The mean daily distribution of O zone was, for the 12 hours ending 9 a.m., 0.9 ; for the 6 hours ending 3 p.m., $0 \cdot 7$; and for the 6 hours ending 9 p.m., 0.6 .
The Prcportions of Wind referred to the cardinal points were N. 12, E. 6, S. 5, and W. 5. Two days were calm.
The Greatest Pressure of the Wind in the month was $5^{\text {brer }} \boldsymbol{7}$ on the square foot on June 14. The mean daily Horizontal Movement of the Air for the month was 193 miles ; the greatest daily value was 315 miles on June 3 ; and the least daily value was 85 miles on June 20 .
Rain fill on 8 days in the month, amounting to $\mathbf{2}^{\text {in }} \cdot 244$, as measured by gauge No. 6 partly sunk below the ground; being ${ }^{\text {in }} \cdot 207$ greater than the average fall for the 43 years, 1841-1883.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 ard 9 , and the Greatest and Least Differences (Columns is and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and $1 \boldsymbol{y}$ are derived from eye-readings of self-registering thermometers.
The observations of the temperature of the water of the Thamen were suspended from July 26 till December 2.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 781$, being $o^{\text {in }} \cdot 028$ lower than the average for the 20 years, 1854-1873.
Temperaturi of the Arr.
The highest in the month was $88^{\circ} \cdot 1$ on July 4 ; the lowest in the month was $42^{\circ} \cdot 3$ on July 26 ; and the range was $45^{\circ} .8$.
The mean of all the hiphest daily readings in the month was $75^{\circ} \cdot 3$, being $1^{\circ} \cdot 2$ higher than the average for the 43 years, $1841-1883$.
The mean of all the lowest daily readings in the month was 53°. 5 , being $0^{\circ} .4$ higher than the average for the 43 years, 1841-1883.
The mean of the daily ranges was $21^{\circ} \cdot 8$, being $0^{\circ} \cdot 8$ greater than the average for the 43 years, 1841-188.3.
The mean for the month was $63^{\circ} \cdot 2$, being $0^{\circ} \cdot 6$ higher than the average for the 20 years, $1849-1868$.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1884 } \end{gathered}$	Phases of the Moon.		temprrature.							Difference between the Air Temperature and Dew Point				Ttemperaturi.					Daily Amount of Ozone.		
			Of the Sir.					$\left\|\begin{array}{c}\text { Of } \\ \text { Evapo } \\ \text { ration. }\end{array}\right\|$	$\substack{\text { Of the } \\ \text { Dow } \\ \text { Point. }}$ De- duced Mean Daily Value..				Of Radiation.	Of the Water of the Thames at Deptford.							
					$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$					Mean.	Greatest.	Least.		Highest in Sun's Rays.	Lowest on the Grass.						
		in.	-	-	-	-	-	-	-	-	\bigcirc	-			\bigcirc	\bigcirc	-	-	in.		
Aug. 1	Apogee	29.899	$8 \mathrm{I}^{1} 1$	$55 \cdot 5$	25.6	67.9	$+5 \cdot 3$	62.9	$59^{\circ} \mathrm{O}$	$8 \cdot 9$	20.2	$0 \cdot 0$	73	138.8	$48 \cdot 2$.		$0 \cdot 000$	$0 \cdot 0$	wP : mP	
		29.785	$85 \cdot 3$	$56 \cdot 0$	$29 \cdot 3$	$68 \cdot 9$	+6.2	$62 \cdot 6$	57.7	11.2	22.6	$2 \cdot 1$	66	144 1	$48 \cdot 8$	\cdots		$0 \cdot 000$	$1 \bigcirc 0$	vP	
3	$\underset{\text { Dectination }}{\text { Greast }} \mathrm{s}$.	29.899	$75 \cdot 3$	52.7	22.6	62.4	-0.3	$56 \cdot 5$	$5 \mathrm{I} \cdot 4$	11.0	$20 \cdot 3$	$3 \cdot 0$	68	$129^{\circ} 0$	44.7	\cdots	\cdots	$0 \cdot 000$	4°	mP	
4		30.036	$75 \cdot 3$	49°	$26 \cdot 3$	$61 \cdot 6$	- I'I	55•1	49^{-5}	12.1	$24^{\circ} \mathrm{I}$	1.4	65	134.4	38.4	.	.	0*000	$0 \cdot 0$	$\mathbf{s P}: \mathbf{v P}, \mathbf{v N}$	
5		30.062	79°	$46 \cdot 1$	$33 \cdot 2$	62°	-0.7	55-6	$50 \cdot 1$	$11 \cdot 9$	24.5	1.5	65	146.9	$38 \cdot 7$	\cdots		$0 \cdot 000$	$0 \cdot 0$	vP	
6	Full	29.952	$79^{\circ} \mathrm{I}$	49°	$30^{\circ} 1$	$64 \cdot 5$	$+1 \cdot 8$	$59^{\cdot 1}$	54.6	$9^{\circ} 9$	$22 \cdot 8$	0.8	70	142%	$38 \cdot 9$	\ldots	\ldots	$0 \cdot 000$	$0 \cdot 0$	mP	
7		29.876	$86 \cdot 8$	$52 \cdot 7$	34^{11}	69.4	$+6.7$	$63 \cdot 5$	$58 \cdot 9$	105	23.2	$0 \cdot 4$	69	$130 \cdot 8$	$44^{\circ} \mathrm{O}$	\cdots	-	$0 \cdot 000$	$0 \cdot 0$	P : mP	
8		29.885	88.5	$59^{\circ} 2$	29.3	$72 \cdot 8$	+10.1	$65^{\circ} 4$	$59^{\circ} 9$	129	$26 \cdot 4$	$1 \cdot 9$	63	1471	$50 \cdot 2$	\cdots		$0 \cdot 000$	1.0		
9		29.834	$87^{\circ} \mathrm{O}$	58.6	28.4	71.0	$+8.3$	64.5	$59 \cdot 6$	11.4	$26 \cdot 3$	$1 \cdot 0$	67	144.9	$50 \cdot 0$.		0.032	$0 \cdot 0$	mP : vP	
10	In Equat	29.800	$83 \cdot 1$	59.2	23.9	70.2	+ $7 \cdot 5$	$64^{1} 1$	59.4	10.8	22.9	$0 \cdot 8$	69	146.1	52.9	\cdots	\cdots	0.0co	0.7	$\nabla \mathrm{P}, \mathrm{vN}: \mathrm{mP}$	
11		29.756	$94^{\circ} 2$	$58 \cdot 5$	$35 \cdot 7$	$75 \cdot 8$	+13.1	$65 \cdot 6$	$58 \cdot 3$	17.5	$31 \cdot 7$	$3 \cdot 0$	54	$150 \cdot 8$	$50 \cdot 6$	\cdots		-	$6 \cdot 5$	- $\mathbf{V P}$	
12		29769	$84^{\circ} \mathrm{O}$	63.2	20.8	$70 \cdot 4$	+ $7 \cdot 8$	64.7	$60 \cdot 3$	10.1	23.5	$2 \cdot 3$	70	$141^{\circ} 0$	$55 \cdot 6$.	-	$0 \cdot 000$	0.8	vP, vN : $\mathbf{v P}$	
13		29.812	81.9	58.7	23.2	68.0	$+5 \cdot 5$	62.5	58.2	9.8	21.2	$1 \cdot 7$	71	151.4	49°	.	.	$0 \cdot 000$	$0 \cdot 0$	sP: mP: sP	
14	Last Qr.	29.824	$75 \cdot 2$	$55 \cdot 8$	19.4	64.9	+ 25	$58 \cdot 9$	53.9	110	197	$1 \cdot 3$	68	$132{ }^{\circ}$	$48 \cdot 0$	\cdots	\cdots	$0 \cdot 024$	$0 \cdot 0$	$\text { } \mathbf{P P}: \mathbf{v P}, w N$	
15		29.950	79°	52.7	$26 \cdot 6$	$64 \cdot 1$	+ 1.8	$57 \cdot 2$	51.5	12.6	$25 \cdot 3$	$3 \cdot 6$	63	132.0	$44^{\circ} 6$.	.	$0 \cdot 000$	$0 \cdot 0$	$\mathbf{v P}, \mathbf{w}$	
16	GreatestDecN.: Perigee.	29.937	83.1	51.6	31.5	$66 \cdot 0$	+ 3.9	58.4	52.2	$13 \cdot 8$	$29^{\prime} 9$	$2 \cdot 2$	62	$146 \cdot 5$	$45 \cdot 2$	\cdots	\cdots	$0 \cdot 000$	00°	vP	
17		29.821	87^{\prime} I	$53 \cdot 7$	33.4	$68 \cdot 9$	$+7{ }^{\circ}$	$60 \cdot 4$	53.8	$15 \cdot 1$	$30 \cdot 1$	$2 \cdot 3$	58	152.1	$45 \cdot 3$			0	0.2	$\mathrm{P}: \mathrm{mP}$	
18		29.747	$84^{\cdot 2}$	54.5	$29 \cdot 7$	$67 \cdot 5$	+ 57	$60 \cdot 8$	$55 \cdot 5$	12.0	24.8	$2 \cdot 3$	65	151.I	$46 \cdot 8$	\ldots	\cdots	$0 \cdot 000$	1.5	vP	
19		29.727	$75 \cdot 5$	51.9	$23 \cdot 6$	62.4	+ 0.8	58.2	54.6	7.8	19.6	00	76	133.4	$43 \cdot 2$	\cdots	-•	0.081	$2 \cdot 3$	$\mathbf{v P}$: $\mathbf{v P}$, $\mathbf{\nabla N}$	
20	New	29.859	77°	$49^{\circ} 6$	27.4	62.6	+ 1.2	$57 \cdot 6$	53.4	$9 \cdot 2$	21.6	$0 \cdot 0$	72	$135 \cdot 2$	$39 \cdot 8$	\bullet	\cdots	$0 \cdot 000$	00	vP: vP, wN	
21		30.013	$75 \cdot 1$	53.5	21.6	64.2	+2.9	$59 \cdot 1$	$54 \cdot 8$	9.4	18.4	1.6	72	1194	$44^{\circ} 2$	-	-	-000	$0 \cdot 0$	$\nabla \mathrm{P}, \mathrm{vN}: \mathrm{wN}, \mathrm{vP}$	
22	In Equator	29.983	$8 \mathrm{I} \cdot 3$	5r.3	30°	$66 \cdot 0$	$+47$	$59^{1} 1$	53.5	12.5	$30 \cdot 1$	0.8	64	138.8	$44^{\circ} \mathrm{O}$	\cdots	-	-000	00	vP	
23	-	29.936	$83 \cdot 5$	54.5	$29^{\circ} 0$	$67 \cdot 6$	+6.4	6r11	56.0	11.6	$35 \cdot 7$	0.2	65	1438	$44^{\circ} 6$	\cdots	.	$0 \cdot 000$	0×0	จP: mP	
24	. .	29.879	88.1	$53 \cdot 6$	34.5	$70 \cdot 4$	$+9.3$	$60 \cdot 8$	53.4	17%	$35 \cdot 9$	$0 \cdot 4$	55	$147 \cdot 8$	$43 \cdot 9$.	.	$0 \cdot 000$	$0 \cdot 0$	จP : mP	
25	-	29.836	$69 \cdot 3$	$50 \cdot 8$	18.5	$60 \cdot 6$	-0.4	$56 \cdot 9$	$53 \cdot 7$	$6 \cdot 9$	11×7	$3 \cdot 0$	78	89*7	42°	\cdots	\cdots	$0 \cdot 020$	00°	จP: $w N$, wP	
26		29.922	$63 \cdot 7$	$45 \cdot 8$	17.9	$54^{1} \mathrm{I}$	-6.8	$49^{\circ} \mathrm{I}$	$44^{\circ} 2$	$9{ }^{9} 9$	179	$4{ }^{\circ}$	69	118.9	$37 \cdot 1$.	.	$0 \cdot 000$	$0 \cdot 0$	wP : vP, wN	
27		29.740	$59^{\circ} 1$	$50 \cdot 6$	$8 \cdot 5$	54.5	-6.3	$51 \cdot 7$	49°	$5 \cdot 5$	11.2	$0 \cdot 0$	8J	$80^{\circ} 4$	$46 \cdot 5$	\cdots	.	$0 \cdot 088$	$0 \cdot 0$	vP	
28	Yirst Qr.	29.506	71.5	$52 \cdot 3$	$19^{\circ} 2$	59.8	- 0.9	$56 \cdot 8$	54.2	$5 \cdot 6$	19.4	$0 \cdot 0$	83	131'1	$48 \cdot 0$	\cdots	.	0.320	00°	จP : \downarrow P, $\mathrm{vN}^{\text {N }}$	
29		29.577	$68 \cdot 1$	51.3	16.8	$57 \cdot 1$	-3.5	51.9	47'1	$10 \cdot 0$	19.4	3.4	69	$126 \cdot 2$	44.9	-	-	$0 \cdot 000$	$0 \cdot 0$	vP	
30		29.700	$68 \cdot 7$	51.6	$17^{1} 1$	$60 \cdot 1$	- 0.3	$57 * 4$	55\%	$5 \cdot 1$	99	0.4	84	$100 \cdot 2$	$44 \cdot 6$.	.	$0 \cdot 086$	0.5	vP	
31	\cdots	29.612	$70 \cdot 1$	59.1	11.0	$63 \cdot 8$	$+3.5$	61.6	59.8	40	7×9	$\bigcirc \bigcirc$	88	99\%	$58 \cdot 4$			0.016	$6 \cdot 0$	mP	
Means	. .	29.837	$78 \cdot 7$	53.6	$25 \cdot 1$	65. 1	+3.3	$59 \cdot 3$	54.6	10:5	22.5	1.5	$69 \cdot 1$	133.4	$45 \cdot 8$	-•		$\begin{gathered} \text { sum } \\ 0.667 \end{gathered}$	0.8		
Number of Solumin for Befcrence.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaishers Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columus 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
No observations of the temperature of the water of the Thames were made throughout the month.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 83$, being $0^{\text {tn }} \cdot 038$ higher than the average for the 20 years, 1854-1873.
Temprrature of the Air
The highest in the month was $94^{\circ} \cdot 2$ on August 11; the lowest in the month was $45^{\circ} \cdot 8$ on August 26 ; and the range was $48^{\circ} \cdot 4$.
The mean of all the highest daily readings in the month was $78^{\circ} \%$, being $5^{\circ} \cdot 8$ higher than the average for the 43 years, 1841-1883.
The mean of all the lowest daily readings in the month was $53^{\circ} \cdot 6$, being $0^{\circ} .4$ higher than the average for the 43 years, $1841-1883$.
The mean of the daily ranges was $25^{\circ} \cdot 1$, being $5^{\circ} \cdot 4$ greater than the average for the 43 years, $1841-1883$.
The mean for the month was $65^{\circ} \cdot 1$, being $3^{\circ} \cdot 3$ higher than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $59^{\circ} \cdot 3$, being $1^{\circ} \cdot 4$ higher than
The mean Temperature of the Dew Point for the month was $54^{\circ} \cdot 6$, being $0^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was $69 \cdot 1$, being 7.4 greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 427$, being $o^{\text {in }} \cdot 003$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\text {grr }} \cdot 7$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 525 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 4.6 .
The mean proportion of Sunshine for the month (constant sunshine being represented hy 1) was 0.46 . The maximum daily amount of Sunshine was $12 \cdot 3$ hours on Auguat 16. The highest reading of the Solar Radiation Thermometer was $152^{\circ} \cdot 1$ on August 17 ; and the lowest reading of the Terrestrial Radiation Thermometer was $37^{\circ} \cdot 1$ on Auguat 26. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 0.5 ; for the 6 hours ending 3 p.m., 0.2 ; and for the 6 hours ending 9 p.m., 0.1 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 7, S. 8, and W. ro. One day was calm.
The Greatest Pressure of the Wind in the month was $6^{1 \mathrm{bs}} \cdot 6$ on the square foot on August 25. The mean daily Horizontal Movement of the Air for the month we 197 miles; the greatest daily value was 370 miles on August 31 ; and the least daily value was 112 miles on August 21 .
Rain fell on 8 days in the month, amounting to $0^{\text {in }} \cdot 667$, as measured by gauge No. 6 partly sunk below the ground; being ino 75^{2} less than the average fall fors the 43 years, 184!-1883.

Gribnwich Mafnetical and Meteorological Observations, 1884.

MONTHandDAY,1884.	Phases of the Moon.		Trmprraturi.							Difference between the Air Temperature Temperatare Temperature.				Tympranturs.					Daily Amount of Ozone.	Electricity:	
			Of the Air.					Of Evapo ration. - Mean of 24 Hourly Values.	Of the Dew Point. De- duced Mean Daily Value.				Of Radiation.	Of the Water of the Thames at Deptford.							
					Daily Range	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{gathered}\right.$	Excess above Average of 20 Years.			Mean.	Greatest.	Least.		$\left\|\begin{array}{c} \text { Highest } \\ \text { in } \\ \text { Sun's } \\ \text { Rays. } \end{array}\right\|$	Lowest on the Grass.		容				
		is.	-	-	0	-	-	-	-	0	-	-			\bigcirc	-	-	-	in.		
Sept. 1		29*499	720	55.4	$16 \cdot 6$	$60 \cdot 1$	$0 \cdot 0$	58.4	$56 \cdot 9$	3.2	$8 \cdot 1$	$0{ }^{\circ} 0$	90	112.8	52.5	\cdots		0.452	$7 \cdot 3$	${ }^{W} \mathrm{P}: \mathrm{sP}^{\text {P }}$	
Sept. 2		29.571	$70 \cdot 0$	51.5	18.5	59°	- 10	55°	52.2	$6 \cdot 8$	16.0	0.8	78	130.9	$46 \cdot 0$	-	.	0.072	$2 \cdot 2$	$\nabla \mathrm{P}: \nabla \mathrm{FN}, 8 \mathrm{P}$	
3		29.504	$70^{\circ} 2$	$49 \cdot 8$	20.4	58.4	-14	54.7	5I*4	$7{ }^{\circ} 0$	16°	$0 \cdot 8$	78	133.7	$44^{\circ} 9$				$0{ }^{\circ}$		
		29.281	60°	49°	110	55\%	-47	52.9	50.9	$4 \cdot 1$	$10 \cdot 6$	0.8	86	73.0	42°	\bullet	\cdots	1.089	$0 \cdot 0$	$\nabla \mathrm{N}, ~ \nabla \mathrm{P}$	
4 5	Full	29.439	$66 \cdot 4$	46.6	$19^{\circ} 8$	54^{-8}	-4.7	50.6	$46 \cdot 6$	$8 \cdot 2$	17.5	$1 \times$	74	122.2	$39^{\circ} 1$.	.	0.000	$0 \cdot 0$	ap. ${ }^{\nabla+}$	
6	In Equator	$29^{\circ} 444$	$62 \cdot 1$	$43 \cdot 9$	18.2	55.2	-4.1	$53 \cdot 8$	52.4	$2 \cdot 8$	8.2	0.8	91	86.0	$35 \cdot 8$	\cdots	\cdots	0.214	8	sP: WP, WN	
7		29.500	$63 \cdot 7$	51.4	12.3	$57 \cdot 5$	- 1.5	53.0	48.9	8.6	179	1.8	72	100.2	$44^{\circ} 5$	-	-	000	$5 \cdot 2$	PP : sP	
8		29.938	$63 \cdot 3$	50.8	12.5	57.2	- 1.6	$55 \cdot 1$	$53 \cdot 2$	$4^{\circ} \mathrm{O}$	11.2	$0 \cdot 0$	86	101.0	$44^{\circ} 3$	\cdots	.	045	0		
9		30-008	69.6	$58 \cdot 3$	11.3	63.2	+47	61.2	59.5	3.7	$8 \cdot 5$	0.8	88	95\%	54.5	\cdots	-	$0 \cdot 000$	00	wP : wP, wN	
10	Perigee	30.058	71.4	50.5	20'9	61.6	$+3.3$	58.6	$56 \cdot 1$	5.5	17×3	00°	83	128.1	$41^{\circ} 0$	\cdots	\cdots	$0 \cdot 000$	00°	$P: m P$	
11		$30 \cdot 126$	$75 \cdot$	$49 \cdot 7$	$25 \cdot 3$	61.0	+ $2 \cdot 9$	57.4	$54 \cdot 3$	$6 \cdot 7$	17.7	$0 \cdot 0$	79	132.4	$40^{\circ} 4$	\cdots	\cdots	-000	0\%\%	$w P: m P$ vP	
12		$30 \cdot 111$	73.6	53.8	19.8	$61 \cdot 7$	$+3.7$	$57 \cdot 8$	54.5	$7 \cdot 2$	21.6	0.2	78	$125 \cdot 8$	$44^{\circ 8}$.	\cdots	0.000	0		
13		30.024	75.1	53.5	$21 \cdot 6$	63.3	$+5 \cdot 5$	59.4	56.1	$7 \cdot 2$	$19^{\prime 2}$	$0 \cdot 2$	78	134.3	43.8	-•	-	-000	$1 * 0$:mP	
14		29.902	$71 \cdot 0$	54.5	16.5	61.4	+ 3.8	59^{-1}	$57 \cdot 2$	$4 \cdot 2$	13.9	$0 \cdot 0$	86	101.8	$45 \cdot 0$.		-	$0 \cdot 0$	P:mP: wP	
15		$29 \cdot 844$	$78 \cdot 1$	54.9	23.2	64.3	+6.9	$61 \cdot 5$	59.2	$5 \cdot 1$	15.1	\bigcirc	83	$130 \cdot 6$	$45 \cdot 5$	\cdots		00	1.5	wP: mP	
16		29.940	$78 \cdot 6$	61.4	17.2	67.5	$+10{ }^{\circ}$	62.7	58.9	$8 \cdot 6$	20.9	1.4	74	134.7	$55 \cdot 5$	\cdots	\cdots	$0 \cdot 021$	$4 \cdot 5$	$w P: m P$	
17		30.071	83.5	58.0	25.5	69.5	+12.4	$65 \cdot 1$	$61 \cdot 7$	7.8	21.8	$0 \cdot 2$	76	133.4	$50 \cdot 3$	\cdots	\cdots	000	00		
18		30.176	80.2	57.6	22.6	67.5	+10.6	62.7	$58 \cdot 9$	$8 \cdot 6$	$21 \cdot 9$	0.2	74	132.7	$48 \cdot 9$			$0 \cdot 000$	$0 \cdot 0$		
19	In ${ }_{\text {Eew }}^{\text {Newator }}$	30.092	$68 \cdot 3$	53.8	14.5	60.2	$+3.4$	58.0	$56 \cdot 0$	4.2	10:8	00	87	114.6	$45 \cdot 2$	\cdots	-	$0 \cdot 000$	00	\mathbf{P} : $\mathbf{\nabla P}$	
20		29.909	70'7	$5 \mathrm{I} \cdot 6$	19.1	60.0	+3.4	$56 \cdot 9$	54.2	$5 \cdot 8$	14.4	$0 \cdot 0$	81	128.7	42.18	-	\cdots	$0 \cdot 000$	00	pP: mP	
21		29.583	$72 \cdot 7$	50.2	22.5	60.5	+ $4^{\circ} \mathrm{I}$	58.1	56.0	$4 \cdot 5$	14°	00	86	$127{ }^{1} 1$	39^{-8}		-	00000	$0 \cdot 5$	จP: mP	
22		29.630	$65 \cdot 1$	50.2	149	57.3	+1.1	53.4	$49 \cdot 8$	7.5	$17^{\circ} 3$	1×7	76	11900	$42^{\circ 1}$	\cdots	\cdots	$0 \cdot 030$	1.5	$\nabla \mathrm{P}$: $\nabla \mathrm{P}, \mathrm{VN}^{\text {N }}$	
23		$30 \cdot 001$	$64^{\cdot 1}$	$46 \cdot 9$	$17^{\circ} 2$	$53 \cdot 9$	-2.2	49.9	$46 \cdot 0$	7.9	$17^{\circ} 7$	2.6	75	116.9	$38 \cdot 5$ $38 \cdot 0$	-	-	$0 \cdot 000$	-20		
24		$30 \cdot 007$	63.2	477	15.5	$55 \cdot 4$	-0.5	$5 \mathrm{I}^{\circ}$	$46 \cdot 8$	$8 \cdot 6$	15.2	0.4	73	104.9	$38^{\circ} 0$	-	\cdots	0.026	O		
25	Apoge	29.968	$67^{\circ} 0$	48.0	$19^{\circ} 0$	55.0	-0.8	51.8	48.7	$6 \cdot 3$	160	0.6	80	129.2	39.8	\cdots	\cdots	-0.000	00	$\stackrel{\nabla P}{\boldsymbol{m P}}$: $\mathrm{\nabla P}$	
26	(tareater	29.802	$66 \cdot 9$	$48 \cdot 8$	181	$57 \cdot 3$	+1.6	54.6	52.2 51.6	$5 \cdot 1$ 3.1	$11 \cdot 7$	$1 \cdot 3$	83	116.2 88.0	$40 \cdot 4$ 378	.	.		100	\%PP	
27	First Qr.	29:788	61.9	$46 \cdot 4$	15.5	55.5	$0 \cdot 0$	$53 \cdot 5$	51.6	$3 \cdot 9$	$9{ }^{\circ} 1$	$0 \cdot 4$	87	88.0	37.8	\cdots		0.024	10		
28			6711	51.8	$15 \cdot 3$	59.3	+ 3.9	570	55\%	$4 \cdot 3$	$9{ }^{\circ} 0$	1.2	86	113.6	$44^{\circ} 4$.	\cdots	$0 \cdot 000$	8		
29		29.934	$63 \cdot 1$	50.0	$13 \cdot 1$	57.4 53.3	+ 2.2 $+\quad .6$	56.1	54.9 48.5	2.5 4.8	$5 \cdot 7$ 14.2	0.8 0.2	91 84	183 $10 \cdot 3$	$\begin{aligned} & 40^{\circ} 0 \\ & 32^{\circ} 4 \end{aligned}$	-.	-	0.099 0.004	5.2 4.0	$\underset{\nabla P}{W P}: \underset{\sim}{\mathbf{V P}}$	
30		29.977	$63 \cdot 3$	42.4	20.9	$53 \cdot 3$	- 1.6	$50^{\circ} 9$	$48 \cdot 5$	4.8	$14^{\circ} 2$	$0 \cdot 2$	84		324						
Means		29.834	69.2	51.3	18.0	59.4	$+20$	$56 \cdot 4$	53.6	$5 \cdot 8$	$14^{6} 6$	0.6	81'4	1157	$43 \cdot 3$. 8		$\begin{aligned} & \mathrm{sem} \\ & 2^{\circ} 090 \end{aligned}$	1.6		
Number of Column fo Peforence	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	30	

The results apply to the civil day.
The mean reading of the Garometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dow Foint (Column 9) average temperature and the Degree of Humidity (Column 13) are dedaced from the corresponding temperatarem of the Air and Dew Point Temperatures (Colamn 10) is the difference between the numbers in Columns 6 and 9 , and the Gneatest and Lemet The mean difference between the Are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
No observations of the temperature of the water of the Thames were made throughont the month.

Tempriature of the Arr.
The highest in the month was $83^{\circ} \cdot 5$ on September 17 ; the lowent in the month was $42^{\circ} \cdot 4$ on September 30 ; and the range was $41^{\circ} \cdot 1$.
The mean of all the highest daily readings in the month was $69^{\circ} \cdot 2$, being $\mathrm{I}^{0} \cdot 8$ higher than the average for the 43 years, 184I-1883.
The mean of all the lowest daily readings in the month was $51^{\circ} \cdot 3$, being $2^{\circ} \cdot 2$ higher than the average for the 43 years, $8841-1883$.
The mean of the daily ranges was $18^{\circ} \cdot 0$, being $0^{\circ} \cdot 3$ leas than the average for the 43 yeara, 1841-1883.
The mean for the month was $59^{\circ} \cdot 4$, being $2^{\circ} \cdot \circ$ higher than the average for the 20 yearn, $1849-1868$.

The mean Temperature of Evaporation for the month was $56^{\circ} \cdot 4$, being $2^{\circ} \cdot 1$ higher than
The mean Temperature of the Dew Point for the month was $53^{\circ} \cdot 6$, being $2^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was 81.4, being $1 \cdot 3$ greater than
The mean Elactic Force of Vapour for the month was $0^{\text {in }} \cdot 412$, being $0^{\text {in }} \cdot 033$ greater than
The mean Weight of Vapune in a Cubic Foot of Air for the month was $4^{\mathrm{gr}} \cdot 6$, being orr 4 greater than
The menn Weight of a Cubic Foot of Air for the month was 531 grains, being 1 grain less than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.9 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 32$. The maximum daily amount of Sunshine was $8 \cdot 9$ hours on September 18 .
The highest reading of the Solar Radiation Thermometer was $134^{\circ} \cdot 7$ on September 16; and the lowest reading of the Terrestrial Radiation Thermometer wall $32^{\circ} \cdot 4$ on September 30.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $1 \cdot 2$; for the 6 hours ending 3 p.m., 0.4 ; and for the 6 hours ending 9 p.m., $0 \cdot a$
The Proportions of Wind referred to the cardinal points were N. 3, E. 8, S. 9, and W. 9. One day was calm.
The Greatest Pressure of the Wind in the month was $16^{1 \mathrm{ls}} .5$ on the square foot on September 7 . The mean daily Horizontal Movement of the Air for the mometh man 257 miles ; the greatest daily value was 586 miles on September 7 ; and the least daily value was 113 miles on September 17 .
 43 years, 1841-1883.

MONTH and DAX. 1884.	Phases of the Moon.		Temperature.							Difference between the Air Temperature and Dew PointTemperature.				Tempimature.						Electricity.	
			Of the Air.					$\left\|\begin{array}{c}\text { Of } \\ \text { Evapo- } \\ \text { ration. }\end{array}\right\|$	Of the Dew Point. Deduced Mean Daily Value.				Of Radiation.	Of the Water of the Thames at Deptford.							
				$\begin{aligned} & \text { 菷 } \\ & \text { 官 } \end{aligned}$	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$		$\begin{array}{\|c\|} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 20 \text { Years. } \end{array}$			Mean.	Greatest.	Least.		Highest in Sun's Rays.	Lowest on the Grass.						
		in.	-	-	-	-	-	\bigcirc	\bigcirc	-	-	\bigcirc			\bigcirc	\bigcirc	-	-	in.		
Nov. 1		29.944	54.1	47°	7'1	50.4	+ 3.4	$49 \cdot 3$	48. 1	$2 \cdot 3$	$4 \cdot 6$	1×0	92	$61 \cdot 7$	40°	\cdots		$0 \cdot 000$	$5 \cdot 7$	$\cdots \mathrm{vP}$	
		29.751	$61 \cdot 2$	$43 \cdot 8$	17.4	53.0	+ $6 \cdot 3$	$5{ }^{\prime} 1$	$49^{\circ} 2$	$3 \cdot 8$	9	1×0	87	88.5	42.0	.		0.237	3.8	wP : VP , VN	
3	Full	29.894	$49 \cdot 8$	$34^{\circ} \mathrm{O}$	15.8	$43 \cdot 1$	-3.3	$40 \cdot 8$	38.0	$5 \cdot 1$	13.6	$0 \cdot 7$	82	$87 \cdot 9$	24.8	-	\cdots	$0 \cdot 000$	0%	wN, vP: sP	
	Perigee	29:755	$56 \cdot 2$	$35 \cdot 5$	20.7	$48 \cdot 4$	$+24$	$46 \cdot 8$	$45 \cdot 1$	3.3	100	$0 \cdot 0$	89	89.0	$27^{\circ} 0$	\cdots	\cdots	$0 \cdot 007$	$2 \cdot 0$		
5		29.723	$60 \cdot 3$	50.2	$10^{\circ} 1$	$55 \cdot 5$	+ 90	52.0	$48 \cdot 6$	6.9	14.2	$2 \cdot 7$	78	100.9	$44^{\circ} 9$.	.	$0 \cdot 000$	15.0	mP : sP_{P} : mP	
6	Declination N.	$29 \cdot 827$	$56 \cdot 8$	$48 \cdot 8$	$8 \cdot 0$	$5 \mathrm{I} \cdot 3$	+6.1	50.6	$49^{\circ} 9$	1.4	47	$0 \cdot 0$	95	63.0	$43 \cdot 5$.	. \cdot	$0 \cdot 330$	$1: 5$	wP	
7		29.705	$6 \mathrm{I} \cdot 0$	$42^{\circ} 0$	19°	52.0	$+7 \cdot 3$	$50 \cdot 3$	$48 \cdot 6$	3.4	$8 \cdot 0$	$1 \times$	88	101.1	35.0	\cdots	\cdots	$0 \cdot 085$	4.5	W : vP	
		$30 \cdot 131$	53.9	$37 \cdot 1$	16.8	$45 \cdot 4$	+ $1 \cdot 1$	$43 \cdot 0$	$40 \cdot 3$	$5 \cdot 1$	114	$0 \cdot 7$	83	87.4	$30 \cdot 4$.	.	0.000	$0 \cdot 0$	VP: sP	
9	Last Qr.	30.120	56.1	$44^{1} 1$	12.0	$50 \cdot 3$	$+6.5$	$47^{\circ} 6$	$44^{* 8}$	$5 \cdot 5$	$10 \cdot 0$	0.6	82	80°	$38 \cdot 6$	\cdots		0'002	$0 \cdot 0$	mP : sP	
10		30.326	$55 \cdot 9$	$46 \cdot 7$	$9{ }^{\circ} 2$	50.2	+6.8	$48 \cdot 5$	$46 \cdot 7$	3.5	11.6	$0 \cdot 0$	88	$96 \cdot 1$	37.5	\cdots	\cdots	0.014	$0 \cdot 0$	wP : vP	
11		30.234	$50 \cdot 3$	$39^{\circ} 8$	10.5	$45 \cdot 6$	+ 2.6	$44^{\circ} \mathrm{I}$	42.4	3.2	7.6	$1 \cdot 0$	89	79.4	$33 \cdot 9$.		$0 \cdot 000$	$0 \cdot 0$		
12	In Equator	30.123	$49^{\circ} 2$	44°	$5 \cdot 0$	45.9	$+3.3$	$43 \cdot 5$	$40 \cdot 8$	$5 \cdot 1$	$8 \cdot 0$	2.4	83	$57 \cdot 9$	4177	\cdots	\cdots	$0 \cdot 000$	00		
13		$30 \cdot 177$	48.0	43.4	4.6	$45 \cdot 3$	+ 3.0	$43 \cdot 3$	$41^{\circ} \mathrm{O}$	$4 \cdot 3$	$5 \cdot 9$	24	85	54.9	$42 \cdot 3$	\cdots	\cdots	$0 \cdot 000$	$0 \cdot 0$	-•	
14		30.276	$46 \cdot 3$	$35 \cdot$	11.3	$40 \cdot 9$	-1.1	39.5	37.8	$3 \cdot 1$	$9{ }^{\circ}$	0.2	89	63°	27^{5}	.		$0 \cdot 000$	$0 \cdot 0$		
15	.	30. 248	$43 \cdot 3$	$32 \cdot 3$	11.0	37*0	-4.8	35.5	33.4	3.6	79	0.6	87	68.2	25\%	.	-	$0 \cdot 000$	$0 \cdot 0$		
16		$30 \cdot 144$	39.9	31-3	$8 \cdot 6$	$37 \cdot 1$	-4.5	$35 \cdot 8$	$34^{\circ} \mathrm{O}$	$3 \cdot 1$	$6 \cdot 7$	0.6	89	$45 \cdot 0$	23.4	\cdots		$0 \cdot 000$	$0 \cdot 0$		
17	New	$30 \cdot 088$	$44^{\circ}{ }^{\circ}$	32.4	11.6	38.8	- 27	$37 \cdot 1$	34.8	$4^{\circ} 0$	$9 \cdot 2$	1.4	86	71.9	25.8	\cdots	\cdots	$0 \cdot 000$	$0 \cdot 0$		
18		30.138	$44^{*} 3$	34.6	9.7	$39 \cdot 8$	- 1 '7	$38 \cdot 5$	$36 \cdot 8$	3.0	$6 \cdot 2$	$0 \cdot 7$	90	$58 \cdot 2$	$27 \cdot 2$	\cdots	\cdots	0.021	$0 \cdot 0$	-: vN, mP	
19		30.271	$44^{\circ} 7$	$35 \cdot 7$	$9^{\circ} \mathrm{O}$	39.9	- 1	38.4	36.5	3.4	$8 \cdot 1$	$0 \cdot 7$	88	73.1	$30^{\circ} 0$	\cdots	\cdots	0.008	$0 \cdot 0$	- $\mathrm{P}^{\text {P }}$	
20	GreatestDe: ${ }^{\text {Apec.s. }}$	29.934	$44^{\circ} 3$	$35 \cdot 9$	8.4	$40 \cdot 9$	-0.4	38.7	$35 \cdot 9$	5*	7.4	- 6	83	53.9	$30 \cdot 7$.	.	0.025	$0 \cdot 0$	$\nabla P: v P, \nabla N$	
21	,	29.668	$42 \cdot 2$	$35 \cdot$	$7 \cdot 2$	$38 \cdot 4$	- 2.8	$36 \cdot 4$	$33 \cdot 7$	$4 \cdot 7$	$8 \cdot 3$	1.0	84	44.7	$28 \cdot 2$.	\cdots	0.030	$0 \cdot 0$	$\nabla \mathrm{P}, \mathrm{wN}$	
22		29.935	42°	$30 \cdot 7$	11.3	$37^{\circ} 1$	- $4^{\circ} \mathrm{O}$	$35 \cdot 3$	$32 \cdot 8$	$4 \cdot 3$	$6 \cdot 7$	$0 \cdot 8$	85	$58 \cdot 8$	$24 \cdot 3$	\cdots		$0 \cdot 000$	0.8	mP : VP	
23		29.949	$41 \cdot 2$	28.7	12.5	$36 \cdot 9$	- $4^{\circ} \mathrm{I}$	$35 \cdot 4$	$32 \cdot 3$	3.6	$6 \cdot 2$	$0 \cdot 0$	87	$5 \mathrm{~g} \cdot 3$	23.0	.		$0 \cdot 000$	2.2	mP : vP	
24	.	$29^{\circ} 955$	37.4	$27^{\circ} 2$	10.2	$33 \cdot 8$	-722	33.0	$3 \mathrm{I} \cdot 6$	$2 \cdot 2$	$3 \cdot 8$	$0 \cdot 0$	91	$41^{\circ} \mathrm{O}$	22.5	\cdots		008	$\bigcirc \bigcirc$	vP	
25	First Qr.	30.065	$35 \cdot 1$	24.5	10.6	$3 \mathrm{I} \cdot 6$	- $9 \cdot 3$	31.4	$30 \cdot 9$	0.7	$3 \cdot 1$	$0 \cdot 0$	97	$38 \cdot 1$	17.5	\cdots		-000	$0 \cdot 0$	-: mP	
26	..	$30 \cdot 084$	$42 \cdot 3$	$31 \cdot 3$	11.0	$37 \cdot 1$	-3.7	$36 \cdot 3$	$35 \cdot 2$	1'9	$5 \cdot 5$	$0 \cdot 0$	93	$46 \cdot 3$	27.3			0.003	0	$\begin{gathered} m P: v_{P} \end{gathered}$	
27	In Equator	29.908	$47^{\circ} 2$	$37 \cdot 1$	$10 \cdot 1$	$42 \cdot 9$	+2.I	$40 \cdot 7$	$38 \cdot 1$	$4 \cdot 8$	$8 \cdot 0$	$1 \cdot 4$	84	$60 \cdot 7$	32°			$0 \cdot 009$	$0 \cdot 0$	$m P: ~ v P, w N$	
28		29.604	$45 \cdot 3$	$35 \cdot 0$	$10 \cdot 3$	41.6	+0.7	$39 \cdot 3$	36.4	$5 \cdot 2$	$8 \cdot 4$	$2 \cdot 0$	83	$53 \cdot 3$	29°		\cdots	0.000	$0 \cdot 0$	P	
29	.	29.626	37.9	$30 \cdot 8$	$7 \cdot 1$	34.5	-6.5	33.2	$3 \mathrm{I} \circ$	$3 \cdot 5$	9.8	0.6	86	53.2	25.2			0.000	$0 \cdot 0$	$\underset{\mathrm{mP}}{\mathrm{vP}: \mathrm{sP}}$	
30	-•	29.819	$38 \cdot 0$	$28 \cdot 7$	$9 \cdot 3$	32.8	-8.4	32.5	32'I	$0 \cdot 7$	6.2	$0 \cdot 0$	98	54.1					$2 \cdot 0$		
Means	-•	29.981	$47^{\circ} 6$	$36 \cdot 8$	10.8	$42 \cdot 6$	- 0.1	$40 \cdot 9$	38.9	$3 \cdot 7$	$8 \cdot 0$	0.8	87%	$66 \cdot 4$	$30 \cdot 9$	\cdots		$\begin{gathered} \text { Sum } \\ 0^{\circ} 99^{3} \end{gathered}$	1.2	.	
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are doduced from the photographic records. The average temperature (Column ξ) is that determined from the reduction of the photographic records from 1849 to $\mathbf{1 8 6 8 \text { . The temperature of the Dew Point (Column } 9 \text {) }}$ and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns if and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-barb Thernometers.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
No observations of the temperature of the water of the Thames were made throughout the month.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 98 \mathrm{I}$, being $0^{\text {in }} \cdot \boldsymbol{2 1 0}$ higher than the average for the 20 jears, $1854-1873$.
Temperature or the Air
The highest in the month was $61^{\circ} \cdot 2$ on November 2 ; the lowest in the month was $24^{\circ} \cdot 5$ on November 25 ; and the range was $36^{\circ} \cdot \%$.
The mean of all the highest daily readings in the month was $47^{\circ} \cdot 6$, being $1^{\circ} \cdot 2$ lower than the average for the 43 years, $1841-1883$.
The mean of all the lowest daily readings in the month was $36^{\circ} \cdot 8$, being $0^{\circ} .6$ lower than the average for the 43 years, $184 \mathrm{I}-1883$.
The mean of the daily ranges was $10^{\circ} \cdot 8$, being $0^{\circ} \cdot 6$ less than the average for the 43 years, 1841-1883.
The mean for the month was $42^{\circ} \cdot 6$, being $0^{\circ} \cdot 1$ lower than the average for the 20 years, 1849-1868.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1884. } \end{gathered}$	Phasen of the Moon．		Tbmpreatubr．							Difference between the Air Temperature and Dew PointTemperature．				tempreaturb．					Daily Amount of Ozone．	Electricity．	
			Of the Air．					$\substack{\text { Or apo } \\ \text { ration．} \\ \text { ration } \\ \hline \\ \hline \\ \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values．} \\ \hline \\ \hline}$	Of the Dew Point． De－ duced Mean Daily Value．				Of Rad	diation．	Of the of the at De	Water Thames ptford．					
				$\begin{aligned} & \text { 葶 } \\ & \text { 淢 } \end{aligned}$	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values } \end{gathered}$	Excess above Average of 30 Years．			Mean．	Greatest．	Least．		Highest in Sun＇s Rays．	$\begin{array}{\|c\|c\|} \hline \text { Lowest } \\ \text { on } \\ \text { the } \\ \text { Grasg. } \end{array}$	$\begin{aligned} & \text { 䓂 } \\ & \text { 荡 } \end{aligned}$					
		in．	－	－	0	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc			\bigcirc	0	－	－	in．		
Dec． 1		29＊704	36.4	$32 \cdot 7$	3.7	34.8	-6.7	34.7	34.5	$0 \cdot 3$	$1 \cdot 1$	$0 \cdot 0$	99	37.3	$32^{\circ} 0$	．．	\cdots	0.245	$6 \cdot 0$	$\mathrm{N}: \mathbf{v} \mathbf{P}$	
	Full	29.582	49°	$32 \cdot 3$	$17^{\circ} \mathrm{O}$	40.2	－ 1.6	$40^{\circ} 0$	$3 \mathrm{~g} \cdot 8$	$0 \cdot 4$	$3 \cdot 1$	$0 \cdot 0$	98	$49^{\circ} 3$	$32 \cdot 3$		－	$0 \cdot 091$	1.2	vP	
		29.295	55^{1}	41.2	13.9	48.8	＋6．7	$47 \cdot 3$	$45 \cdot 6$	$3 \cdot 2$	$8 \cdot 4$	0.6	89	61°	$36 \cdot 9$	$40 \cdot 5$	$40 \cdot 4$	0.244	11．5	vP	
		$29^{\circ} 207$	51．2	39.5	117	$44^{\circ 8}$	$+2.4$	42.2	39^{2}	$5 \cdot 6$	12.3	$0 \cdot 0$	81	$62 \cdot 2$	$33 \cdot 0$	$40^{\circ} 9$	$40^{\circ} 9$	$0 \cdot 048$	2.2	vP	
5		29.600	47°	37.4	9.6	$42^{\prime} 7$	＋ 0.1	$40^{\circ} 4$	37.6	$5 \cdot 1$	$9 \cdot 2$	1.8	83	64^{6}	$33 \cdot 5$	$40^{\circ} 9$	$40^{\circ} 4$	$0 \cdot 080$	1.8	$m P=8 P$	
6	．．	29.539	54.2	47°	$7 \cdot 2$	51．5	＋ 8.8	$50 \cdot 4$	49°	2.2	$3 \cdot 8$	$1 \cdot 0$	92	$59^{\circ} \mathrm{O}$	$42 \cdot 8$	$41 \cdot 9$	$41 \cdot 3$	0.314	$15 \cdot 8$	wP，wN：wP	
7		29.668	$54^{\circ} 1$	$46 \cdot 3$	7×8	$50 \cdot 3$	＋ 7.5	$48 \cdot 3$	$46 \cdot 2$	4^{17}	7.4	1.6	86	67.0		$42 \cdot 8$	$42 \cdot 8$	$0 \cdot 022$	$6 \cdot 2$	mP	
8		29.640	54.7	$42 \cdot 2$	12.5	$48 \cdot 7$	＋ $5 \cdot 9$	$46 \cdot 8$	$44^{\circ} 8$	3.9	7.8	$1 \cdot 0$	87	54.7	39°	$43 \cdot 8$.	$43 \cdot 1$	0.252	$5 \cdot 2$	wP： $\boldsymbol{\nabla P}$	
9	Last Qr．	29788	$43 \cdot 0$	$34 \cdot 6$	$8 \cdot 4$	39＊7	－3．1	$38 \cdot 6$	$37 \cdot 2$	$2 \cdot 5$	$5 \cdot 5$	0.5	91	$43 \cdot 0$	$30 \cdot 9$	44.8	$44^{\circ} 2$	$0 \cdot 149$	$0 \cdot 0$	$w P, w N: ~ v N, ~ \vee P ~$	
10	In Equator	29.814	$50 \cdot 8$	34.9	15.9	$43 \cdot 3$	＋ 0.6	$41^{\circ} 9$	$40 \cdot 2$	$3 \cdot 1$	4.6	100	89	$51 \cdot 1$	30.2	$45 \cdot 2$	$43 \cdot 9$	$0 \cdot 126$	$1 \cdot 0$	WP ：$\vee \mathrm{P}$ ，wN	
11	促	29.436	$50 \cdot 6$	$44^{\circ} 9$	$5 \cdot 7$	47.8	＋5．3	$45 \cdot 7$	$43 \cdot 4$	4.4	$6 \cdot 3$	－0．2	86	58.6	$40 \cdot 0$	$45 \cdot 4$	$45 \cdot 4$	$0 \cdot 129$	$3 \cdot 0$	$m \mathrm{P}: \mathrm{vP}, \mathrm{wN}$	
12		$29^{* 881}$	$48 \cdot 1$	$40 \cdot 9$	$7 \cdot 2$	$46 \cdot 0$	$+3 \cdot 8$	$43 \cdot 8$	$41 \cdot 3$	47	$7 \cdot 6$	$2 \cdot 3$	85	$57 \circ$	32.6	$45 \cdot 3$	$45 \cdot 3$	$0 \cdot 004$	$0 \cdot 0$		
13		29．962	$54^{\circ} 4$	477	6.7	52＇0	$+10 \cdot 2$	$49^{\circ} 7$	47.4	4	$6 \cdot 2$	$2 \cdot 1$	84	67.6	$46 \cdot 7$	45.3	43.9	$0 \cdot 000$	1.5	WP	
14		29.795	52.5	$41 \cdot 1$	11.4	$49^{\circ} 5$	＋8．0	$47^{\circ} 6$	$45 \cdot 6$	3.9	$6 \cdot 8$	$1 \cdot 3$	87	$59 \cdot 5$	$38 \cdot 0$	$45 \cdot 4$	$45 \cdot 4$	0.188	$5 \cdot 2$	$\mathbf{w P}: \mathbf{v P}, \mathbf{v N}$	
15	．．	29.642	$49^{\circ} 4$	$35 \cdot 3$	$14^{\circ} \mathrm{I}$	$43 \cdot 3$	$+2.2$	$41 \cdot 2$	$38 \cdot 7$	4.6	$9{ }^{\circ}$	$1 \cdot 1$	83	$50 \cdot 9$	31°	$45 \cdot 8$	$45 \cdot 6$	0.027	$2 \cdot 2$		
16		29＇796	$43 \cdot 1$	$32^{\circ} \mathrm{I}$	110	38.4	-24	$36 \cdot 7$	34.4	$4^{\circ} 0$	$9 \cdot 2$	$2 \cdot 0$	86	58.0	26.6	$45 \cdot 3$	449		$0 \cdot 0$	sP	
17		29.521	$42 \cdot 8$	32.6	10.2	$38 \cdot 3$	-2.2	$36 \cdot 3$	$33 \cdot 6$	$4{ }^{4} 7$	$8 \cdot 3$	$1 \cdot 0$	84	53.2	$27 \cdot 8$ 27.3	$45 \cdot 3$	$44^{\circ} 9$	0.096	$0 \cdot 0$	$\nabla \mathrm{P}, ~ \nabla N: ~ \nabla P$	
18		29.653	49.2	$30 \cdot 3$	18.9	$39 \cdot 7$	-0.5	38． 1	$36 \cdot$	$3 \cdot 7$	711	$1 \cdot 3$	87	$49^{\circ} 4$	$27 \cdot 3$	43.8	43.7	0.22 I	0.2	$\nabla \mathrm{P}: ~ v P, ~ v N$	
19	－	29．335	$45 \cdot 6$	37.9	77	4199	＋199	39．2	$35 \cdot 6$	$6 \cdot 3$	11.2	$3 \cdot 0$	80	58.8	34.3	$44^{\circ} \mathrm{O}$	43.3	$0 \cdot 000$	0.8		
20		$28 \cdot 967$	$46 \cdot 2$	$36 \cdot 5$	97	$40 \cdot 9$	＋1•1	39.2 36.3	$37 \cdot 1$ 33.3	$3 \cdot 8$	$6 \cdot 7$	0.9	86	$46 \cdot 2$ 58.1	34.7 3	41.5	41.3	$0 \cdot 268$	$0 \cdot 0$	$\nabla \mathrm{P}, \nabla \mathrm{N}: \nabla \mathrm{N}, \mathrm{mP}$	
21		29＇774	410	$36 \cdot 1$	49	38.5	＋ $1 \cdot 1$	$36 \cdot 3$	$33 \cdot 3$	$5 \cdot 2$	$6 \cdot 9$	2.2	82	58．1	$32 \cdot 1$	$41^{\circ} 9$	$41^{\circ} 7$	$0 \cdot 000$	$0 \cdot 0$	マP	
22		30.011	42.7	35． 1	$7 \cdot 6$	38.4	－1．0	$36 \cdot 5$	33．9	4.5	711	1.2	85	$65^{\circ} 0$	317	38.9	377	00000	$0 \cdot 0$	P ：mP	
23		29.908	38：0	$34^{\circ} 0$	$4^{\circ} \circ$	$36 \cdot 3$	－3．0	34.5	3 I 9	4.4	$5 \cdot 8$	2.6	84	$40 \cdot 6$	33.7	$39^{\circ} 1$	37.7	$0 \cdot 011$	$0 \cdot 0$	wP：vP	
24		$29^{\circ} 918$	$38 \cdot 1$	$34 \cdot 3$	3.8	$35 \cdot 8$	－ 3.5	$33 \cdot 3$	$29^{\circ} 5$	$6 \cdot 3$	$9 \cdot 8$	4.4	77	$45 \cdot 1$	32.7	$39^{\circ} 9$	$38 \cdot 9$	$0 \cdot 000$	$0 \cdot 0$	$\nabla \mathrm{P}: \mathbf{s P}$	
25	In Equator：	29.822	$39^{\circ} 2$	$32 \cdot 3$	6.9	36.0	－3．2	34.8	33.0	$3 \cdot 0$	477	0.8	89	51.0	29°	$40^{\circ} 4$	$39^{\circ} 9$	$0 \cdot 019$	000	mP ： VP	
26	－．	29.906	36•0	$33 \cdot 2$	$2 \cdot 8$	34.5	－ 4.6	33：0	$30^{\circ} 5$	$4^{\circ} \mathrm{O}$	$6 \cdot 2$	$1 \cdot 1$	85	$39^{\prime 2}$	$33^{\circ} \mathrm{O}$	$39^{\circ} 9$	$38 \cdot 9$	$0 \cdot 000$	$0 \cdot 0$	wP ：mP	
27	．	30.021	$36 \cdot 8$	$33 \cdot 6$	$3 \cdot 2$	$35 \cdot 6$	-3.4	34.7	$33 \cdot 4$	2.2	$3 \cdot 7$	0.2	92	39＇I	33°	3.9 .9	$39^{\circ} 1$	$0 \cdot 000$	2.0	mP ：wP	
28		29.838	$36 \cdot 8$	34.8	$2 \cdot 0$	$36 \cdot 0$	－ 2.8	$35 \cdot 1$	33.7	$2 \cdot 3$	$3 \cdot 7$	$0 \cdot 7$	92	39＊9	$34 \cdot 8$	$40^{\circ} 9$	38.4	$0 \cdot 000$	6.2	wP：mP	
29	．	29.634	$36 \cdot 4$	33.5	29	$35 \cdot 1$	－ 3.6	33.8	31.8	$3 \cdot 3$	$4 \cdot 2$	2.5	87	$39^{\circ} 7$	33.0	$40 \cdot 9$	$38^{\circ} 9$	－000	0.8	mP	
30		29.757	35． 1	29.7	$5 \cdot 4$	33.8	－47	$33 \cdot 0$	31.6	$2 \cdot 2$	$4 \cdot 3$	－ 0	91	$38 \cdot 1$	24＊0	$40 \cdot 9$	$38 \cdot 3$	$0 \cdot 000$	00	จP	
31	$\left\|\begin{array}{\|c\|c} \mid \text { GroteentDeen. } \\ \text { Perigee. } \end{array}\right\|$	$30 \cdot 025$	$40^{\circ} 9$	$26 \cdot 7$	14.2	$33 \cdot 8$	-4.5	$33 \cdot 3$	32.5	$1 \cdot 3$	$5 \cdot 1$	00	95	54.5	20.9	40＇9	37.5	$0 \cdot 000$	$0{ }^{\circ}$	wP ：${ }_{\text {s }} \mathrm{P}$	
Means	．	29．692	$45 \cdot 1$	$36 \cdot 5$	8.6	41.2	＋ 0.5	39.6	$37 \cdot 5$	$3 \cdot 7$	$6 \cdot 6$	1.2	87.2	52.2	$\left\|\begin{array}{\|cc\|} (80 \text { days } \\ 32.9 \end{array}\right\|$	$\left\|\begin{array}{r} (20 \text { dayg }) \\ 42.5 \end{array}\right\|$	$\left\|\begin{array}{r} \text { (29 days } \\ 41.6 \end{array}\right\|$	$\begin{gathered} \text { 29un } \\ \mathbf{2 . 5 3 8} \end{gathered}$	2.4		
Number of Column for Reterence．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868．The temperature of the Dew Point（Column 9 ） and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column ro）is the difference between the numbers in Columns 6 and 9 and the Greatest and Least Differences（Columns II and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The result for December 27 for Differences（Columns 11 and 12）are deduced from the 24 hourly photographic measures of the D
The values given in Columns 3，4，5，14，15，16，and 17 are derived from eye－readings of self－registering thermometers．
The observations of the temperature of the water of the Thames were resumed on Deeember 3 ．
The mean reading of the Barometer for the month was $29^{\text {in }} \mathbf{6 9 2}$ ，being oin． 099 lower than the average for the 20 years，1854－1873．
Temperature of the Air．
The highest in the month was $55^{\circ} \cdot 1$ on December 3 ；the lowest in the month was $26^{\circ} \cdot 7$ on December 31 ；and the range was $28^{\circ} .4$
The mean of all the highest daily readings in the month was $45^{\circ} \cdot 1$ ，being $\circ^{\circ} \cdot 7$ higher than the average for the 43 years，1841－1883．
The mean of all the lowest daily readings in the month was $36^{\circ} \cdot 5$ ，being $\mathrm{I}^{\circ} \cdot 4$ higher than the average for the 43 years，1841－1883．
The mean of the daily ranges was $8^{\circ} \cdot 6$ ，being $0^{\circ} \cdot 7$ less than the average for the 43 years，1841－1883．
The mean for the month was $41^{\circ} \cdot 2$ ，being $0^{\circ} \cdot 5$ higher than the average for the 20 years，1849－1868．

Greenwich Magnetical and Meteorological Obsfrtations, 1884.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic
Records-continued.

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period. The readings at February $\mathbf{2 6}^{\mathrm{d}} .2 \mathbf{1}^{\mathrm{h}}$., February 28^{d}. 3^{h}., and December $26^{\mathrm{d}} .2 \mathrm{I}^{\mathrm{h}}$. are derived from the eye-observations, on account of temporary interruption of photographic registration.

Highest and Lowest Readings of the Barometer in each Month for the Year 1884. [Exiracted from the preceding Table.]

The highest reading in the year was $3^{\text {in }} 485$ on October 5.
The lowest reading in the year was $28^{\text {in }} \cdot 340$ on January 26. The range of reading in the year was $2^{\text {in }} \cdot 145$.

Monthly Results of Metrorological Elements for the Year 1884.

Monthly Mean Reading of the Barometer at every Hour of the Day, as deduced from the Photographic Records.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Hour, Greenwich Mean Solar reckoning).} \& \multicolumn{12}{|c|}{1884.} \& \multirow[t]{2}{*}{Yearly Means.}

\hline \& January. \& February. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \&

\hline Midnight \& $$
\begin{gathered}
\text { in. } \\
29^{\circ} 9^{27}
\end{gathered}
$$ \& $$
\stackrel{\text { in. }}{29 \cdot 723}
$$ \& $$
\begin{gathered}
\text { in. } \\
29 \cdot 773
\end{gathered}
$$ \& $$
29^{12} 650
$$ \& $$
\begin{gathered}
\text { in. } \\
29^{\circ} 819
\end{gathered}
$$ \& $$
\underset{29 \cdot 86 I}{ }
$$ \& $$
\begin{aligned}
& \text { in. } \\
& 29^{\circ} 790
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { in. } \\
& 29.852
\end{aligned}
$$ \& $$
\underset{29^{i n} .832}{ }
$$ \& $$
29 \cdot 895
$$ \& $$
29^{\circ} 994
$$ \& $2{ }^{\text {in. }} 6.64$ \& $$
\operatorname{in}_{29^{\circ} 817}
$$

\hline $\mathrm{i}^{\text {h }}$ a.m. \& $29^{\circ} 924$ \& 29\%721 \& 29.768 \& 29.645 \& 29.816 \& 29.858 \& 29.787 \& 29.847 \& 29.829 \& 29.889 \& 29.989 \& 29.687 \& 29.813

\hline 2 , \& 29.924 \& 29.721 \& $29 \cdot 762$ \& 29.641 \& 29.816 \& 29.852 \& 29.781 \& 29.844 \& 29.824 \& 29.882 \& $29^{\circ} 99^{\circ}$ \& 29.685 \& 29.810

\hline 3 \& $29^{\circ} 922$ \& $29^{\circ} 716$ \& 29.753 \& 29.638 \& 29.814 \& 29.849 \& 29.779 \& 29.839 \& 29.821 \& 29.880 \& 29.987 \& 29.678 \& 29.806

\hline 4% \& 29.914 \& $29^{\circ} 711$ \& 29.750 \& 29.635 \& 29.815 \& 29.849 \& 29.779 \& 29.834 \& 29.817 \& 29.878 \& 29.982 \& 29.669 \& 29.803

\hline 5 \& 29.913 \& $29^{\circ} 716$ \& 29.748 \& 29.636 \& 29.823 \& 29.852 \& 29.782 \& 29.836 \& 29.818 \& 29.879 \& 29.981 \& 29.665 \& 29.804

\hline 6 \& 29.915 \& 29.719 \& 29.751 \& 29.642 \& 29.828 \& 29.856 \& 29.787 \& 29.840 \& 29.826 \& 29.881 \& 29.983 \& 29.666 \& 29.808

\hline \& 29.923 \& 29*726 \& 29.759 \& 29.647 \& 29.834 \& 29.860 \& 29.791 \& 29.845 \& 29.834 \& 29.891 \& 29.986 \& 29.667 \& 29.814

\hline 8 \& 29.932 \& 29.737 \& 29.765 \& 29.649 \& 29.836 \& 29.864 \& 29.792 \& 29.848 \& 29.841 \& 29.899 \& 29.991 \& 29.673 \& 29.819

\hline 9 " \& 29.940 \& 29.744 \& 29.772 \& 29.652 \& 29.836 \& 29.865 \& 29791 \& 29.849 \& 29.846 \& 29.903 \& $29^{\circ} 993$ \& 29.682 \& 29.823

\hline 10 " \& 29.943 \& 29.751 \& 29.773 \& 29.651 \& 29.837 \& 29.865 \& 29788 \& 29.848 \& 29.848 \& 29.908 \& 29.994 \& 29.689 \& 29.825

\hline 11 " \& 29.941 \& $29^{\circ} 755$ \& 29.773 \& 29.649 \& 29.834 \& 29.865 \& 29.786 \& 29.846 \& 29.845 \& 29.908 \& 29.990 \& 29.687 \& 29.823

\hline Noon \& 29.925 \& 29.747 \& 29.771 \& 29.647 \& 29.828 \& 29.861 \& 29.781 \& 29.842 \& 29.843 \& 29.899 \& 29.981 \& 29.677 \& 29.817

\hline $1^{\text {b }}$. p.m. \& 29.911 \& $29^{\circ} 741$ \& 29763 \& 29.644 \& 29.821 \& 29.857 \& 29775 \& 29.836 \& 29.838 \& 29.896 \& 29.970 \& 29.666 \& 29.810

\hline 2 \% \& 29.904 \& 29.734

29 \& 29.756 \& 29.638 \& 29.817 \& 29.853 \& 29.772 \& 29.830 \& 29.833 \& 29.891 \& 29.962 \& 29.660 \& 29.804

\hline 3 \& 29.900 \& $29^{\circ} 730$ \& 29.750 \& 29.633 \& 29.812 \& 29.850 \& 29.769 \& 29.821 \& 29.827 \& 29.886 \& 29.961 \& 29.659 \& 29.800

\hline 4 " \& 29.897 \& $29^{\circ} 729$ \& 29.747 \& 29.631 \& 29.806 \& 29.847 \& 29.765 \& 29.817 \& 29.824 \& 29.887 \& 29.963 \& 29.664 \& 29.798

\hline \& 29.897 \& 29.729 \& 29.749 \& 29.632 \& 29.803 \& 29.844 \& $29^{\circ} 764$ \& 29.813 \& 29.824 \& 29.891 \& 29.968 \& 29.672 \& 29.799

\hline 6 \& 29.898 \& 29.735 \& 29.755 \& 29.636 \& 29.804 \& 29.846 \& $29 \cdot 766$ \& 29.815 \& 29.829 \& 29.898 \& 29.972 \& 29.682 \& 29.803

\hline \& 29.899 \& $29^{\circ} 740$ \& 29.762 \& $29^{\circ} 644$ \& 29.807 \& 29.848 \& 29.771 \& 29.822 \& 29.836 \& $29^{\circ} 901$ \& 29.976 \& 29.691 \& 29.808

\hline 8 \& 29.904 \& $29^{\circ} 742$ \& 29.763 \& 29.653 \& 29.816 \& 29.855 \& $29^{\prime} 778$ \& 29.833 \& 29.842 \& $29^{\circ} 901$ \& 29.978 \& 29.698 \& 29.814

\hline 9 " \& 29.905 \& 29.743 \& 29.763 \& 29.658 \& 29.822 \& 29.864 \& 29.787 \& 29.839 \& 29.844 \& 29.903 \& 29.981 \& 29.704 \& 29.818

\hline 10 \& 29.902 \& 29.743 \& 29.763 \& 29.659 \& 29.826 \& 29.865 \& 29789 \& 29.842 \& 29.846 \& 29.902 \& 29.982 \& - 29.709 \& 29.819

\hline 11 " \& 29.902 \& 29.742 \& 29*761 \& 29.660 \& 29.828 \& 29.865 \& 29.792 \& 29.841 \& 29.845 \& 29*901 \& 29.982 \& 29*711 \& 29.819

\hline Means \& 29*915 \& 29.733 \& 29.760 \& $29 \cdot 645$ \& 29.821 \& 29*856 \& 297781 \& 29.837 \& 29.834 \& 29.894 \& $29 \cdot 981$ \& 29.681 \& 29.811

\hline Numieri $\}$ $\left.\begin{array}{c}\text { of Days } \\ \text { employed. }\end{array}\right\}$ \& 3I \& 26 \& 31 \& 30 \& 3I \& 30 \& 31 \& 31 \& 30 \& 31 \& 30 \& 30 \& \cdots

\hline
\end{tabular}

Monthly Mean Temperature of the Air at every Houk of the Day, as deduced from the Photographic Records.

	1884.												Yearly Means.
	January.	Febraary.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$4{ }^{\circ} \cdot 8$	$4{ }^{1} \cdot 1$	$4 \mathrm{P} \cdot 5$	41.5	48.4	$5{ }^{\circ} \cdot 7$	$5{ }^{\circ} \cdot 5$	$58 \cdot 7$	$55 \cdot 8$	$4{ }^{\circ} \cdot 6$	$4{ }^{\circ} 7$	$4{ }^{\circ} \cdot 4$	$47^{\circ} 4$
$\mathrm{I}^{\text {b }}$. a.m.	$42 \cdot 7$	41°	$41 \cdot 3$	$41^{\circ} 2$	$47 \cdot 9$	$52 \cdot 2$	$56 \cdot 9$	58.1	$55 \cdot 4$	$46 \cdot 4$	$4{ }^{1} 4$	$40 \cdot 4$	47^{1}
2 "	42.4	$40 \cdot 7$	$41^{\circ} \mathrm{O}$	$40 \cdot 7$	47.4	$5 \mathrm{r} \cdot 8$	56.4	57.5	$55 \cdot 1$	$46 \cdot 2$	413	$40 \cdot 5$	$46 \cdot 8$
3 "	$42 \cdot 2$	$40 \cdot 6$	$40 \cdot 8$	$40^{\circ} 4$	$46 \cdot 7$	$51 \cdot 7$	56.1	$56 \cdot 9$	54.7	$46 \cdot 1$	$41^{\circ} \mathrm{O}$	$40^{\circ} 6$	$46 \cdot 5$
4 "	$42^{\circ} \mathrm{O}$	$40^{\circ} 4$	$40 \cdot 5$	$40 \cdot 2$	$46 \cdot 5$	51.3	$55 \cdot 9$	$56 \cdot 5$	$54 \cdot 6$	$46 \cdot{ }^{\circ}$	$40 \cdot 7$	$40 \cdot 6$	$46 \cdot 3$
5 5	$42 \cdot 2$	$40 \cdot 3$	$40 \cdot 2$ 3.8	40°	$46 \cdot 9$	51.8 53.2	56.5	56.4	$5{ }^{5} 4.4$	$46 \cdot 1$	$40 \cdot 5$	$40 \cdot 4$	$46 \cdot 3$ 46.8
6 \%	$42 \cdot 2$ $42 \cdot 3$	$40^{\circ} 0$	$39 \cdot 8$	40.4 4 4	$48 \cdot 6$	53.2	58.3 60.5	57.5	54.4 55.7	$46^{\circ}{ }^{\circ}$	40.4 402	40.4 40.4	$46 \cdot 8$ 478
7 \%	$42 \cdot 3$ $42 \cdot 5$	$39 \cdot 9$ $40 \cdot 1$	$40^{\circ} \mathrm{O}$ $41^{\circ} 3$	$42 \cdot 3$ 44.9	$51 \cdot \mathrm{r}$ 54.0	$55 \cdot 1$ 57.3	$60 \cdot 5$ 63.4	$60 \cdot 2$ 64.2	$55 \cdot 7$ 57	$46 \cdot 2$ 473	40.2 40.5	40.4 403	478 49
9 "	$43 \cdot 1$	$41 \cdot 2$	$4{ }_{4} 4.6$	44.9 47	56. 56	$5{ }^{5} 9 \cdot 1$	65.9	642 67%	60.5	47.1 49	41.6	40.5	49 51
10	44^{2}	$42 \cdot 7$	$46 \cdot 3$	$48 \cdot 8$	$58 \cdot 7$	$60 \cdot 6$	$68 \cdot 2$	$70 \cdot 7$	$63 \cdot$	51.1	$43^{\circ} \mathrm{O}$	$41 \cdot \mathrm{I}$	$53 \cdot 2$
11 "	45°	$44^{\circ} 4$	$48 \cdot 5$	49.9	$60 \cdot 5$	$62 \cdot 6$	69.0	$72 \cdot 6$	$64 \cdot 3$	$52 \cdot 6$	$44^{5} 5$	$42 \cdot 1$	547
Noon	$45 \cdot 8$	$45 \cdot 2$	49.7	51.2	$62 \cdot 0$	63.9	70.2	$74 \cdot 3$	$65 \cdot 6$	54°	$45^{\circ} 9$	$42 \cdot 6$	55.9
$\mathbf{1}^{\text {b }}$. p.m.	$46 \cdot 4$	$45 \cdot 4$	$50 \cdot 2$	51.2	$62 \cdot 3$	64.8	$71 \cdot 0$	74.8	66.1	$54 \cdot 3$	$46 \cdot 5$	$42 \cdot 9$	$56 \cdot 3$
2 "	$46 \cdot 3$	45.4	$50 \cdot 6$	$5 \mathrm{r} \cdot 3$	$62 \cdot 7$	$65^{\circ} 7$	71.3	$75 \cdot 1$	$66 \cdot 3$	54.4	$46 \cdot 4$	$43 \cdot 1$	56.5
3 "	463	$45 \cdot 2$	$50 \cdot 3$	$50 \cdot 7$	62.0	$65 \cdot 6$	70.4	74.9	$66 \cdot{ }^{\circ}$	54.1 5	$45 \cdot 7$	$42 \cdot 9$ 4.3	56.2
4 "	$46 \cdot 0$	44.7	49.3	$50 \cdot 1$	${ }^{61 \cdot 3}$	$65 \cdot 1$	$69^{\circ} 5$	$73 \cdot 7$	64.8	$52 \cdot 7$ 5.6	44.8 43	$42 \cdot 3$ $42 \cdot 0$	$55 \cdot 4$ 54.2
5 6	$45 \cdot 3$ 4.8	$43 \cdot 3$ 42.5	$48 \cdot 1$ 46.5	$49^{\circ} \mathrm{L}$	59.6 57	64.0 62.3	68.0 66.4	71.9 690	$63 \cdot 1$ 6.2	$51 \cdot 6$ $50 \cdot 3$	$43 \cdot 8$ $43 \cdot 1$	$42^{\circ} \mathrm{O}$ $41^{6} 6$	54.2 52.8
6 "	$44 \cdot 8$ 44.5	$42 \cdot 5$ 420	$46 \cdot 5$ $45 \cdot 1$	47 4 4	57% 55	$62 \cdot 3$ $60 \cdot 0$	$66 \cdot 4$ 64.7	69 66.4	$61 \cdot 2$ 59.3	$50 \cdot 3$ 494	$43 \cdot 1$ $42 \cdot 4$	$41 \cdot 6$ 41%	52.8 51.4
7 7 "	44.5 44.1	$42 \cdot 0$ 41.6	$45 \cdot 1$ $44 \cdot 2$	45.8 44.6	55.6 53.0	$60 \cdot 0$ 57.9	664 $62 \cdot 7$	66.4 63.9	59.3 58.3	49.4 48.6	42.4 42.1	41.1 40.8	51.4 50.1
9 "	$44^{\circ} \mathrm{O}$	41.3	443	43.5	$51 \cdot 2$	56.1	$60 \cdot 6$	61.9	$57 \cdot 4$	$47^{\circ} 9$	$41^{\circ} 7$	$40^{\circ} 6$	49^{11}
10 "	$43 \cdot 8$	$4 r^{1}$	$42 \cdot 5$	$42 \cdot 7$	50.1	55.0	59.2	$60 \cdot 9$	56.7	473	41.5	$40 \cdot 3$	+884
11 "	$43 \cdot 5$	$40 \cdot 9$	42^{1}	$4^{\circ} \mathrm{O}$	49°	53•8	58.3	597	$56 \cdot 1$	$46 \cdot 8$	41^{3}	$40^{\circ} 4$	$47 \cdot 8$
Means	$43 \cdot 9$	$42^{1} 1$	$44^{\circ} 4$	45*3	54.2	58.1	63.2	65:\%	59.4	49.3	$42 \cdot 6$	$41 \cdot 2$	50.7
$\left\{\begin{array}{c} \text { Number } \\ \text { of Dnys } \\ \text { employed. } \end{array}\right\}$	31	29	31	30	29	29	31	3r	30	3ı	30	31	-•

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Hour Greenwich Mean Solar Time (Civil
reckoning).} \& \multicolumn{12}{|c|}{1884.} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Yearly \\
Means.
\end{tabular}} \\
\hline \& January. \& February. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline Midnight \& \(4 \stackrel{\circ}{1} 7\) \& \(3{ }^{\circ} \cdot 9\) \& \(40^{\circ} 0\) \& \(\stackrel{\circ}{0}{ }^{\circ} 3\) \& \(4 \stackrel{\circ}{6 \cdot 7}\) \& \(5{ }_{1}^{\circ} \cdot 5\) \& \(55^{\circ} \cdot 8\) \& 56.5 \& \(54^{\circ} 9\) \& \(4 \stackrel{\circ}{*}^{\circ}\) \& \(\stackrel{\circ}{40} 5\) \& \(3{ }^{\circ} \cdot 1\) \& \(4 \stackrel{\circ}{\circ}^{\circ}\) \\
\hline \(1^{\text {h. a.m. }}\) \& 41.5 \& \(39 \cdot 7\) \& \(40 \cdot 0\) \& \(40 \cdot 1\) \& \(46 \cdot 3\) \& \(51 \cdot 2\) \& \(55 \cdot 3\) \& \(56 \cdot 0\) \& \(54 \cdot 5\) \& \(45^{\circ}\) \& \(40 \cdot 2\) \& \(39^{\circ}\) \& \(45 \cdot 7\) \\
\hline 2 " \& \(41 \cdot 3\) \& 3.96 \& \(39 \cdot 8\) \& \(39 \cdot 6\) \& \(46 \cdot 0\) \& 50.9 \& \(55^{\circ}\) \& \(55 \cdot 8\) \& \(54^{\circ} 2\) \& \(45^{\circ}\) \& \(40^{\circ} 1\) \& 39.2 \& \(45 \cdot 5\) \\
\hline 3 " \& \(41 \cdot 1\) \& \(39 \cdot 5\) \& 39.7 \& 39.4 \& 45•6 \& \(50 \cdot 8\) \& 55.0 \& \(55 \cdot 4\) \& \(53 \cdot 9\) \& 449 \& \(39^{\circ} 9\) \& \(39^{\circ} 2\) \& \(45 \cdot 4\) \\
\hline 4 " \& \(41 \cdot 1\) \& 39.4 \& 39.4 \& 39.4 \& \(45 \cdot 3\) \& \(50 \cdot 5\) \& \(54 \cdot 8\) \& \(55 \cdot 2\) \& \(53 \cdot 7\) \& \(44^{-8}\) \& \(39 * 7\) \& \(39 \cdot 2\) \& \(45 \cdot 2\) \\
\hline 5 " \& \(41^{\circ} 2\) \& 39.3 \& \(39 \cdot 1\) \& -39.3 \& \(45 \cdot 7\) \& \(50 \cdot 7\) \& \(55 \cdot 3\) \& \(55 \cdot 3\) \& \(53 \cdot 6\) \& \(45 \cdot 0\) \& 39.5 \& \(39 \cdot 1\) \& \(45 \cdot 3\) \\
\hline 6 " \& \(41 \cdot 3\) \& \(39^{\prime} 1\) \& \(38 \cdot 9\) \& \(39^{\circ} 7\) \& \(46 \cdot 9\) \& 5 r 7 \& \(56 \cdot 5\) \& \(56 \cdot 1\) \& \(53 \cdot 5\) \& \(44^{\prime 9}\) \& 39.5 \& \(39^{\circ} 0\) \& \(45 \cdot 6\) \\
\hline 7 " \& \(41^{\circ} 3\) \& \(38 \cdot 9\) \& \(38 \cdot 9\) \& 40\%9 \& \(48 \cdot 6\) \& \(52 \cdot 7\) \& \(58 \cdot 0\) \& \(57 \cdot 9\) \& \(54 \cdot 3\) \& \(45 \cdot 1\) \& \(39 \cdot 3\) \& \(39^{\circ} \mathrm{O}\) \& \(46 \cdot 2\) \\
\hline 8 " \& 415 \& \(39^{\prime}\) I \& \(40^{\circ} 0\) \& 42.4 \& 50.1 \& 54.0 \& 59.4 \& \(60 \cdot 1\) \& \(55 \cdot 7\) \& \(45 \cdot 9\) \& \(39 \cdot 6\) \& \(38 \cdot 9\) \& \(47^{2}\) \\
\hline 9 " \& \(42 \cdot 0\) \& \(39^{\circ} 8\) \& \(4 \mathrm{I}^{\circ} 5\) \& \(44^{1}\) \& 5I•6 \& 54.9 \& \(60 \cdot 5\) \& 6 C 5 \& \(57 \cdot 2\) \& \(47^{1}\) \& \(40 \cdot 3\) \& \(39^{\circ} \mathrm{O}\) \& \(48 \cdot 3\) \\
\hline 10 " \& \(42 \cdot 7\) \& \(40 \cdot 8\) \& \(43 \cdot 2\) \& \(44^{\circ} 8\) \& 52.4 \& \(55 \cdot 7\) \& \(6 \mathrm{I} \cdot 2\) \& \(62 \cdot 3\) \& 58.4 \& \(48 \cdot 1\) \& \(41 \cdot 3\) \& \(39 \cdot 5\) \& \(49^{\cdot 2}\) \\
\hline 11 " \& \(43 \cdot 3\) \& \(41^{17}\) \& 44.4 \& \(45 \cdot 3\) \& 5.3 \& \(56 \cdot 6\) \& 61.4 \& \(62 \cdot 5\) \& \(58 \cdot 7\) \& \(48 \cdot 8\) \& \(42 \cdot 2\) \& \(40^{\circ} \mathrm{I}\) \& \(49^{\circ} 9\) \\
\hline Noon \& \(43 \cdot 8\) \& \(42 \cdot 1\) \& \(44^{\circ} 9\) \& \(45^{\circ} 9\) \& \(53 \cdot 8\) \& 57.2 \& \(6 \mathrm{I} \cdot 4\) \& 62.8 \& \(59^{\circ} 2\) \& 49.4 \& 43.0 \& \(40 \cdot 4\) \& \(50 \cdot 3\) \\
\hline \(\mathrm{I}^{\text {h }}\). p.m. \& \(44^{\prime 2}\) \& \(42^{\circ}\) \& \(45^{\circ} \mathrm{I}\) \& \(45 \cdot 9\) \& \(54^{\circ} 1\) \& 57.5 \& 617 \& 62.8 \& \(59 \cdot 3\) \& \(49^{\circ} 5\) \& \(43 \cdot 3\) \& 40'7 \& \(50 \cdot 5\) \\
\hline 2 " \& \(44^{1} 1\) \& \(42 \cdot 1\) \& \(45 \cdot 1\) \& \(45^{1} 1\) \& 54.0 \& 57.7 \& 62.1 \& 63.0 \& \(59 \cdot 3\) \& \(49^{\circ} 5\) \& \(43 \cdot 2\) \& \(40 \cdot 8\) \& \(50 \cdot 6\) \\
\hline 3 " \& \(44^{3}\) \& \(41 \cdot 9\) \& \(44^{\circ} 8\) \& -45 8 \& \(53 \cdot 7\) \& 57*7 \& 61.8 \& \(63^{\circ} 0\) \& \(59^{\circ} \mathrm{I}\) \& \(49^{\circ} 4\) \& \(42 \cdot 8\) \& \(40 \cdot 7\) \& \(50 \cdot 4\) \\
\hline 4 " \& \(44 \cdot 1\) \& \(41 \cdot 5\) \& 44.4 \& 45.4 \& 53.1 \& 57.6 \& \(6 \mathrm{r} \cdot 5\) \& 62.5 \& \(58 \cdot 5\) \& \(48 \cdot 7\) \& 42.4 \& \(40 \cdot 5\) \& \(50^{\circ}\) \\
\hline 5 \% \& \(43 \cdot 7\) \& 40'7 \& \(43 \cdot 8\) \& \(45^{1} 1\) \& \(52 \cdot 6\) \& \(56 \cdot 9\) \& 60*9 \& \(6 \mathrm{I} \cdot 8\) \& \(58 \cdot 2\) \& \(48 \cdot 2\) \& 41.8 \& \(40 \cdot 2\) \& \(49^{5}\) \\
\hline 6 , \& 43.4 \& \(40^{\circ} 2\) \& \(43 \cdot 0\) \& \(44^{\circ} 2\) \& 51.7 \& \(56 \cdot 3\) \& \(6.0 \cdot 2\) \& 61.2 \& 573 \& 47.6 \& 41.4 \& 39.9 \& \(48 \cdot 9\) \\
\hline 7 7 \& \(43 \cdot 1\) \& \(39^{\circ} 9\) \& \(42 \cdot 1\) \& \(43 \cdot 1\) \& \(50 \cdot 7\) \& 55.3 \& 59.2
59.2 \& \(60 \cdot 1\) \& \(56 \cdot 5\) \& 47.1 \& \(40^{\circ} 9\) \& \(39 \cdot 5\) \& \(48 \cdot 1\) \\
\hline 8 \% \& \(42 \cdot 9\) \& 39.7 \& \(41^{\prime} 7\) \& \(42 \cdot 3\) \& \(49^{\circ} 4\) \& 54.4 \& 58.2 \& \(59^{\circ} 0\) \& \(56 \cdot 2\) \& \(46 \cdot 6\) \& \(40 \cdot 6\) \& \(39^{\circ} 4\) \& \(47 \cdot 5\) \\
\hline 9 " \& \(42 \cdot 8\) \& 39.6
39.5 \& \(41 \cdot 1\) \& 41.6 \& \(48 \cdot 3\) \& 53.6 \& 57.4
56.8 \& 58.2 \& \(55 \cdot 8\) \& \(46 \cdot 1\) \& \(40 \cdot 4\) \& \(39^{\circ} 2\) \& 47.0 \\
\hline 10 " \& \(42 \cdot 6\) \& 39.5 \& \(40 \cdot 6\) \& \(41^{\circ} \mathrm{O}\) \& 47.5 \& 53.0 \& \(56 \cdot 8\) \& 577 \& \(55 \cdot 4\) \& \(45 \cdot 7\) \& \(40 \cdot 2\) \& \(39^{\circ}\) \& \(46 \cdot 6\) \\
\hline 11 " \& 42.4 \& 39.5 \& \(40 \cdot 5\) \& \(40 \cdot 6\) \& \(46 \cdot 8\) \& 52.4 \& 56.3 \& \(57^{\circ} \mathrm{O}\) \& \(55 \cdot 1\) \& \(45 \cdot 3\) \& \(40^{\circ} 1\) \& \(39^{\circ}\) \& \(46 \cdot 3\) \\
\hline Means \& \(42 \cdot 6\) \& \(40 \cdot 2\) \& \(41 \cdot 8\) \& \(42 \cdot 6\) \& \(49^{-8}\) \& 54.2 \& \(58 \cdot 6\) \& \(59 \cdot 3\) \& \(56 \cdot 4\) \& \(46 \cdot 8\) \& \(40^{\circ} 9\) \& \(39 \cdot 6\) \& 477 \\
\hline \[
\left.\left\{\begin{array}{c}
\text { Number } \\
\text { of Days } \\
\text { employed. }
\end{array}\right\} \right\rvert\,
\] \& 31 \& 29 \& 31 \& 30 \& 29 \& 29 \& 31 \& 31 \& 30 \& 31 \& 30 \& 31 \& . \\
\hline \multicolumn{14}{|c|}{Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.} \\
\hline \multirow[t]{2}{*}{Hour Greenwich Mean Solar rime (Civil} \& \multicolumn{12}{|c|}{1884.} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Yearly \\
Means.
\end{tabular}} \\
\hline \& Jamuary. \& February. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline Midnight \& \(\stackrel{\circ}{4}\) \& \(38^{\circ} 4\) \& \(3{ }^{\circ} \cdot 1\) \& 38.8 \& \(44^{\circ} 9\) \& \(50^{\circ} \cdot 3\) \& \(54^{\circ} 3\) \& 54.5 \& \(5^{\circ} 4^{\bullet}\) I \& \(4^{8} 3 \cdot 7\) \& \(39^{\circ} \mathrm{O}\) \& \(3{ }^{\circ} \cdot 4\) \& \(\stackrel{\circ}{4} \cdot 5\) \\
\hline Ith. a.m. \& \(40 \cdot 1\) \& \(38 \cdot 0\) \& \(38 \cdot 3\) \& \(38 \cdot 7\) \& \(44 \cdot 5\) \& \(50 \cdot 2\) \& 53.9 \& \(54^{\cdot 1}\) \& \(53 \cdot 6\) \& \(43 \cdot 5\) \& \(38 \cdot 7\) \& 37.2 \& \(44^{\circ}\) \\
\hline 2 \% \& \(40^{\circ} 0\) \& \(38 \cdot 2\) \& \(38 \cdot 3\) \& \(38 \cdot 2\) \& 44.5 \& \(50 \cdot 0\) \& \(53 \cdot 7\) \& \(54: 3\) \& 53.3 \& \(43 \cdot 7\) \& \(38 \cdot 6\) \& \(37 \cdot 6\) \& \(44^{\circ} 2\) \\
\hline 3 " \& \(39^{\circ} 8\) \& \(38 \cdot 1\) \& \(38 \cdot 3\) \& 38.1 \& \(44^{\circ} 4\) \& 49.9 \& \(54^{\circ} \mathrm{O}\) \& \(54 \%\) \& \(53 \cdot 1\) \& 43.6 \& 38.5 \& 37.4 \& \(44^{1}\) \\
\hline 4 " \& \(40^{\circ} 0\) \& \(38 \cdot 1\) \& \(38 \cdot 0\) \& 38.4 \& \(44^{\circ}\) \& . \(49 \%\) \& \(53 \cdot 8\) \& \(54 \times 0\) \& \(52 \cdot 8\) \& \(43 \cdot 5\) \& \(38 \cdot 5\) \& 37.4 \& \(44^{\circ}\) \\
\hline \(5 "\) \& 400 \& \(38 \cdot 0\) \& 37.7
37 \& 38.4 \& \(44^{\circ} 4\) \& 49.6 \& \(54 \cdot 2\) \& \(54: 3\) \& \(52 \cdot 8\) \& \(43 \cdot 8\) \& \(38 \cdot 3\) \& 37.4 \& \(44^{1} 1\) \\
\hline 6 " \& \(40^{\circ} 2\) \& 37.9
37.6 \& 37.7 \& 38:8 \& \(45 \cdot 1\) \& 50.2 \& 54.9 \& 54.8 \& \(52 \cdot 6\) \& 437 \& 38.4 \& - 37.2 \& \(44^{\circ} 3\) \\
\hline 7 " \& \(40 \cdot 1\) \& 37.6
37.8 \& 37.5
38.3 \& \(38 \cdot 2\)
\(30 \cdot 5\) \& \(46: 0\) \& \(50 \cdot 4\) \& 55.8 \& \(55 \% 9\) \& 53.0 \& \(43 \cdot 9\) \& \(38 \cdot 2\)
38.5 \& . 37.2 \& 44.6 \\
\hline 8 " \& \(40 \cdot 3\) \& 37.8 \& \(38 \cdot 3\) \& \(39^{\circ} 5\) \& \(46 \cdot 3\) \& 51.0 \& 56.0 \& \(56 \cdot 7\) \& \(53 \cdot 9\) \& \(44^{\circ} 4\) \& 38.5 \& \(37 \cdot 1\) \& 45.0 \\
\hline 9 " \& \(40 \cdot 7\) \& 38.0 \& \(39^{\circ}\) \& 404 \& \(46 \cdot 7\) \& \(51 \cdot 1\) \& 56.1 \& 56.6 \& 54.4 \& \(44^{\circ} 9\) \& \(38 \cdot 7\) \& \(37 \cdot 1\) \& \(45 \cdot 3\) \\
\hline 10 " \& \(40^{\circ} 9\) \& 38.6
38.5 \& . \(39 \cdot 7\) \& \(40 \cdot 5\) \& 468 \& 51.5 \& .55.7 \& \(55 \cdot 9\) \& \(54 \cdot 5\) \& \(45 \%\) \& \(39^{\circ} 3\) \& 37.5 \& \(45 \cdot 5\) \\
\hline 11 " \& \(41 \cdot 3\) \& 38.5 \& 39.9 \& \(40^{\circ} 4\) \& \(47^{\circ} 0\) \& \(5 \mathrm{I} \cdot 5\) \& 55\% \& 55:0 \& \(54^{\circ} 0\) \& \(45 \cdot 0\) \& \(39 \cdot 5\) \& 37.6 \& \(45 \cdot 4\) \\
\hline Noon \& \(41 \cdot 5\) \& 38.5 \& \(39 \cdot 8\) \& \(40^{\circ} 4\) \& \(46 \cdot 7\) \& 51.6 \& 54.6 \& 54.5 \& 54.0 \& \(44^{\circ} 9\) \& 3977 \& 37.8 \& \(45 \cdot 3\) \\
\hline \(\mathrm{l}^{\text {h. }}\). p.m. \& \(4{ }^{1 \times 7}\) \& \(38 \cdot 1\)
\(38 \cdot 3\) \& 397 \& \(40 \%\) \& \(47 \%\) \& 51.5 \& 547 \& 54.2 \& \(53 \cdot 8\) \& \(44^{\circ} 8\) \& 397 \& \(38 \cdot 1\) \& \(45 \cdot 3\) \\
\hline 2 " \& \(4{ }^{1 \cdot 6}\) \& \(38 \cdot 3\) \& \(39^{\circ} 4\) \& \(40 \% 7\) \& \(46 \cdot 5\) \& 51.2 \& 55.2 \& \(54 \cdot 3\) \& \(53 \cdot 6\) \& 44.7 \& \(39 \cdot 6\) \& \(38 \cdot 1\) \& \(45 \cdot 3\) \\
\hline 3 " \& \(42^{\circ} \mathrm{O}\) \& \(38 \cdot 1\)
37 \& - 39.0 \& \(40 \cdot 7\) \& \(46 \cdot 6\) \& \(5 \mathrm{5} \cdot 3\) \& 55.2 \& \(54: 5\) \& \(53 \cdot 5\) \& \(44^{\circ} 8\) \& \(39 \cdot 5\) \& \(38 \cdot 1\) \& \(45 \cdot 3\) \\
\hline \(4 "\) \& 119
+4.8 \& 37.8
37.6 \& . \(39^{\circ} 1\). \& \(40 \cdot 5\) \& \(46 \cdot 0\) \& 5ı.5 \& 55.3 \& 54.3 \& 53.3 \& 4478 \& 39.6
30.5 \& \(38 \cdot 3\)
\(38 \cdot 0\) \& 45.2 \\
\hline 5 5 \& 41.8 \& \(37 \cdot 6\)
37.4 \& \(39 \cdot 1\)
.39 .1 \& \(40 \cdot 7\) \& \(46 \cdot 5\) \& \(5 \mathrm{I} \cdot 0\) \& 55.3 \& 54.2 \& \(54 \cdot 1\) \& \(44^{\circ} 8\) \& 39.5 \& \(38 \cdot 0\) \& 45.2 \\
\hline 6 " \& 41.8 \& 37.4
\(\times 37.3\) \& - \(39.1{ }^{\circ} \mathrm{C}\) \& \(40 \cdot 3\) \& 46:3 \& \(5 \mathrm{I} \cdot 1\) \& . \(55 \cdot 2\) \& 55.1 \& \(53 \cdot 9\) \& \(44^{\circ} 8\) \& \(39^{\circ} 4\) \& 37.8 \& 45.2 \\
\hline 7 7 \& 415
41.5 \& \(37 \cdot 3\)
\(\cdot 37 \cdot 3\) \& \(38 \cdot 6\)
\(38 \cdot 8\) \& \(40 \cdot 0\) \& \(46 \cdot 1\). \& \(5 \mathrm{I} \cdot 2\) \& 54.6 \& 55*0 \& \(54 \circ 0\) \& 44.6 \& 39.1
38.8 \& 37.5 \& 45.0 \\
\hline 8 " \& 41.5 \& \(37 \cdot 3\)
37.5 \& \(38 \cdot 8\)
\(38 \cdot 5\) \& 39.6 \& \(45 \cdot 8\) \& \(5 \mathrm{r} \cdot 3\) \& 54.7 \& \(54^{\circ} 9\) \& \(54 \cdot 3\) \& \(44^{\circ} 5\) \& \(38 \cdot 8\) \& \(37 \cdot 7\) \& 44.9 \\
\hline 9 " \& \(41^{\circ} 4\) \& \(37 \cdot 5\)
37.5 \& \(38 \cdot 5\)
\(38 \cdot 3\) \& \(39^{\circ} 3\) \& \(45 \cdot 3\) \& \(51 \cdot 3\) \& \(54 \cdot 6\) \& 55•1 \& 54.4 \& \(44^{1} 1\) \& \(38 \cdot 8\)
38 \& 37.4 \& \(44^{\circ} 8\) \\
\hline 10 " \& \(41 \cdot 2\) \& 37.5
37.8 \& \(38 \cdot 3\)
\(38 \cdot 5\) \& 39

3 \& $44^{\circ} 7$ \& $51 \cdot 1$ \& 54.7 \& 54.9 \& 54.2 \& $43 \cdot 9$ \& $38 \cdot 3$
$38 \cdot 6$ \& $37 \cdot 3$ \& 44.6

\hline 11 " \& $41 \cdot 1$ \& $37 \cdot 8$ \& $38 \cdot 5$ \& $38 \cdot 9$ \& $44^{\circ} 4$ \& $51 \cdot 0$ \& 54.5 \& $54 \cdot 6$ \& $54 \cdot 2$ \& $43 \cdot 6$ \& $38 \cdot 6$ \& $37 \cdot 2$ \& 44.5

\hline Means \& $40^{\circ} 9$ \& 37×9 \& $38 \cdot 7$ \& 39.6 \& $45 \cdot 7$ \& $50^{\circ} 9$ \& $54 * 8$ \& 54.8 \& $53 \cdot 7$ \& $44^{3} 3$ \& $38 \cdot 9$ \& 376 \& 44^{8}

\hline
\end{tabular}

Monthly Mean Degree of Humidity（Saturation $=100$ ）at every Hour of the Day，as deduced hy Glaisher＇s Tables from the corresponding Air and Evaporation Temperatures．

	1884.												Yearly Means．
	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	91	90	89	91	88	92	89	86	94	90	91	90	90
$1^{\text {b }}$ ．a．m．	90	90	90	91	89	93	90	86	94	90	91	89	90
2 ＂	91	91	90	91	90	94	91	89	94	92	91	$9{ }^{\circ}$	91
3 ＂	91	91	91	92	92	94	92	90	94	92	91	89	92
	93	92	91	94	92	94	93	91	94	92	92	89	92
5 ＂	92	92	91	94	92	92	92	93	94	92	92	90	92
6 ＂	93	93	93	94	88	90	88	91	94	92	93	89	91
	92	92	91	89	83	85	85	86	91	92	93	89	89
	92	92	90	82	75	79	77	77	87	90	93	89	85
9 ＂	91	89	84	77	69	75	71	67	81	86	90	88	81
10 ＂	88	85	79	73	65	72	64	59	74	80	86	87	76
	87	79			61	67	62	54	69	76	83	85	
Noon	85	77	69	67	57	64	58	50	67	71	80	84	69
$\mathrm{I}^{\text {b }}$ ．p．m．	85	76	68	67	57	62	56	49	65	70	78	83	68
2 ＂	85	76	66	67	55	59	57	49	64	70	78	82	67
3 ＂	86	76	65	69	57	59	59	49	64	71	79	83	68
	87	76	68	70	57	61	60	50	66	75	82	86	70
5 \％	88	80	71	73	62	63	64	54	73	78	84	86	73
6 ＂	$9{ }^{\circ}$	83	76	76 81	66	67	67 70	61 67	77 83	82 84	87 88	87 87	77 80
7 \％	89 91	84 86	78 81 81	81 83	71 76	72 79	70 76	67 73	83 86	84 86	88 89	87 89	80 83
9 ＂	90	87	83	85	81	84	81	79	89	87	90	89	85
10 ＂	90	87	86	86	82	87	86	82	92	90	90	90	87
11 ＂	91	89	88	89	85	90	87	84	93	89	91	89	89
Means ．．．．	90	86	81	81	75	78	76	71	82	84	88	87	82

Total Amount of Sunshine registered in each Hour of the Day in each Monte，as derived from the Records of Campbele＇s Self－registering Instrument，for the Year 1884.

$\begin{aligned} & \text { 1884, } \\ & \text { Month. } \end{aligned}$	Registered Duration of Sunshine in the Hour ending																$\begin{gathered} \text { Total } \\ \text { registered } \\ \text { Duration } \\ \text { of Sun- } \\ \text { shine in } \\ \text { each } \\ \text { Month. } \end{gathered}$	Correspond－ gate Period which the Sun was Horizon．	$\begin{gathered} \text { Mean } \\ \text { Altitude } \\ \text { of the } \\ \text { Sun } \\ \text { at Noon. } \end{gathered}$
	$\begin{gathered} \text { gi } \\ \text { ⿷匚 } \\ \text { تin } \end{gathered}$		㐫	$\stackrel{\text { g }}{\substack{\text { g } \\ \text { ¢ }}}$	$\begin{aligned} & \text { gig } \\ & \text { gí } \end{aligned}$	岗	穊	容	$$		$\begin{gathered} \text { gi } \\ \text { - } \end{gathered}$	$\begin{aligned} & \text { gig } \\ & \text { : } \end{aligned}$	4	－		旡			
	h	${ }^{\text {h }}$	h	h	${ }^{\text {b }}$	${ }^{\text {b }}$	${ }^{\text {b }}$	h	b	h	b	${ }^{\text {b }}$	${ }^{\text {h }}$	b	${ }^{\text {h }}$	${ }^{\text {h }}$	h	h	
January ．．						1．5	$3 \cdot 1$	3．9	4.3	$3 \cdot 3$	$0 \cdot 5$	．	．\cdot	．	．		$16 \cdot 6$	259．1	18
February ．		．		$0 \cdot 1$	$3 \cdot 7$	$6 \cdot 1$	$9 \cdot 0$	$7 \cdot 4$	$6 \cdot 0$	$7 \cdot 0$	$5 \cdot 1$	$1 \cdot 9$	．	．	－	．	$46 \cdot 3$	$288 \cdot 7$	26
March		．		$0 \cdot 9$	$5 \cdot 2$	$9 \cdot 9$	12.2	13.9	II 5	11.4	$9 \cdot 5$	$7 \cdot 7$	$3 \cdot 6$	－	\cdots	．	$85 \cdot 8$	$366 \cdot 9$	37
April ．．．．		\cdots	． 0.8	$6 \cdot 1$	10.7	$10^{\circ} 0$	$10^{\circ} 2$	9.7	$9^{\circ} \mathrm{O}$	$8 \cdot 5$	$6 \cdot 7$	$6 \cdot 1$	$7 \cdot 5$	$2 \cdot 6$	\cdots		$87 \cdot 9$	$414^{\circ} 9$	48.
May ．		$0 \cdot 9$	$10 \cdot 1$	12.6	$15 \cdot 1$	15\％7	$16 \cdot 1$	18.0	$16 \cdot 6$	17.2	$16 \cdot 4$	$16 \cdot 0$	13.1	12.6	$3 \cdot 3$	\cdots	183.7	$482 \cdot 1$	57
June		$2 \cdot 1$	$5 \cdot 1$	$8 \cdot 4$	$8 \cdot 9$	11.4	11．8	11.2	11．1	13.5	13.2	$12 \cdot 3$	10.7	12.0	$2 \cdot 6$		134.3	$494 \cdot 5$	62
July ．	0.1	$2 \cdot 0$	$6 \cdot 5$	$10 \cdot 8$	11.0	13.6	$10^{\prime} 2$	11.0	$11^{\prime} 7$	11－8	$10^{\circ} 7$	$9^{\circ} \mathrm{O}$	8.5	$6 \cdot 3$	$3 \cdot 2$	O． 1	$126 \cdot 5$	$496 \cdot 8$	60
August		0.5	$7 \cdot 6$	$17^{\circ} 2$	17.8	18.9	$19^{\circ} 2$	18.9	19^{-3}	$17 \cdot 8$	$18 \cdot 8$	17＇9	17.0	12.2	$0 \cdot 3$		$203 \cdot 4$	449 1	52
September	－	．	．．	1.4	$7 \cdot 3$	$13 \cdot 1$	14.8	13.2	14.8	15•1	$14^{\circ} 3$	$13 \cdot 3$	$10 \cdot 9$	$\bigcirc \cdot 9$	．		119＇1	$376 \cdot 9$	41
October		．			$2 \cdot 0$	8．1	8.2	$10 \cdot 4$	11.4	8.4	$7 \cdot 9$	$2 \cdot 8$	$\bigcirc 1$	．	－		$59 \cdot 3$	$328 \cdot 7$	30
November		－			$0 \cdot 4$	4.2	$7 \cdot 8$	$7 \cdot 4$	8．1	$6 \cdot 4$	3.9	0.4			\cdots	－	$38 \cdot 6$	264.4	20
December		．				0.6	$2 \cdot 7$	$5 \cdot 8$	$3 \cdot 0$	$1 \cdot 2$	．．		．．	\cdots	．．	．	13.3	$24^{2} 7$	16
The hours are reckoned from apparent noon．																			
The total registered duration of sunshine during the year was 1114.8 hours；the corresponding aggregate period during which the Sun was above the horizon was 4464.8 hours；the mean proportion for the year（constant sunshine $=1$ ）was therefore 0.250 ．																			

(I.)-Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noon
on every Day of the Year.

1884.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
12345	$\begin{aligned} & 52 \cdot 15 \\ & 52 \cdot 15 \\ & 52 \cdot 15 \\ & 52 \cdot 13 \\ & 52 \cdot 13 \\ & 52 \cdot 10 \end{aligned}$		$50 \cdot 77$ $50 \cdot 76$ $50 \cdot 73$ 5071 5070	$50 \cdot 15$	49.70	49.50	$49 \cdot 72$	50.33	51.21	$52 \cdot 15$	$52 \cdot 86$	53.0453
				$50 \cdot 13$	$49 \cdot 68$	$49 \cdot 52$	$49 \cdot 73$	$50 \cdot 35$	$51 \cdot 24$	$52 \cdot 17$	52.90	
				$50 \cdot 12$	$49 \cdot 67$	49 52	$49 \cdot 75$	$50 \cdot 36$	$51 \cdot 28$	$52 \cdot 20$	52.88	53.09
				50.08	$49 \cdot 67$	$49 \cdot 50$	49.76	$50 \cdot 40$	$51 \cdot 28$	$52 \cdot 23$	$52 \cdot 91$	$53 \cdot 07$
				$50 \% 7$	$49 \cdot 65$	$49 \cdot 5$ I	$49 \cdot 78$	$50 \cdot 43$	51-33	$52 \cdot 26$	$52 \cdot 94$	$53: 07$
6	$52 \cdot 10$	51.36	$50 \cdot 68$	$50 \% 5$$50 \% 1$	$49 \cdot 65$	$49 \cdot 50$	$49 \cdot 78$	$50 \cdot 45$	51.36	52.29	$52 \cdot 95$	$\begin{aligned} & 53 \because 08 \\ & 53 \because 08 \end{aligned}$
7	$52 \cdot 05$	51.30	$50 \cdot 65$		$49 \cdot 64$	49.50	$49 \cdot 80$	$50 \cdot 50$$50 \cdot 53$	$51 \cdot 39$$51 \cdot 45$	$52 \cdot 32$52.3452	52.98	
			$50 \cdot 63$	505050	$49 \cdot 63$	$49 \cdot 5 \mathrm{I}$	$49 \cdot 83$				$52 \cdot 98$	$\begin{aligned} & 53.08 \\ & 53.06 \end{aligned}$
19	$\begin{aligned} & 52 \cdot 0 \\ & 52.02 \end{aligned}$	$\begin{aligned} & 5 \mathrm{I} \cdot 28 \\ & 5 \mathrm{I} \cdot 27 \end{aligned}$	$\begin{aligned} & 50 \cdot 60 \\ & 50.58 \end{aligned}$		49.6449.63	49.5049.51	49 49 49 8	$\begin{aligned} & 50 \cdot 55 \\ & 50 \cdot 57 \end{aligned}$	$\begin{array}{llll}51 & 47 \\ 51 & 4 \\ 51\end{array}$	$52 \cdot 35$	$52 \cdot 99$	53.04
				$\begin{aligned} & 50 \circ 00 \\ & 49^{\circ} 97 \end{aligned}$						$52 \cdot 35$	$52 \cdot 99$	53 -05
11	51.98	51.2451.22	$50 \cdot 55$$50 \cdot 55$	49 49 49 9	49.6349.63	49.53	$49 \cdot 87$	50.62	51.55	$52 \cdot 38$	52.99	53.0453.04
12	5194					$\begin{array}{r}49 \cdot 54 \\ 49 \\ \hline\end{array}$	498749.90	$50 \cdot 63$50.67	51.5851.5851.62	52.4352.44	53.0053	
13	51.94	$51 \cdot 21$51$51 \cdot 17$	$\begin{aligned} & 50 \cdot 54 \\ & 50 \cdot 53 \end{aligned}$	49.91	49.63 49.60							53.04 53.06
14	$\begin{aligned} & 51091 \\ & 51889 \end{aligned}$			494949	$49 \cdot 58$49.58	$\begin{aligned} & 49 \cdot 55 \\ & 49 \cdot 54 \end{aligned}$	$\begin{aligned} & 49^{\circ} 93 \\ & 49 \end{aligned}$	$50 \cdot 68$ $50 \cdot 71$	$\begin{aligned} & 51 \cdot 64 \\ & 51 \cdot 60 \end{aligned}$	$52 \cdot 47$52.51	$53 \cdot 02$$53 \cdot 01$	$\stackrel{53}{ } 53.04$
15		$51 \cdot 17$ 51 1.13	$\begin{aligned} & 50 \cdot 53 \\ & 50 \cdot 50 \end{aligned}$									
16	51.85	51.1051.08	$50 \cdot 49$$50 \cdot 46$	49864985	49.6049.58	$49 \cdot 55$49.56	$\begin{array}{r} 49 \cdot 95 \\ 49 \cdot 97 \end{array}$	$\begin{aligned} & 50 \cdot 75 \\ & 50 \cdot 79 \end{aligned}$	51 74515156	$52 \cdot 55$ $52 \cdot 57$	53.0153.04	$52 \cdot 98$$52 \cdot 98$
17	51.84											
18	51.83	$51 \cdot 06$	$50 \cdot 44$50.42	$\begin{aligned} & 49.83 \\ & 49.82 \end{aligned}$	$\begin{aligned} & 49 \cdot 57 \\ & 49.57 \end{aligned}$	$\begin{array}{r} 49 \cdot 56 \\ 49 \cdot 58 \end{array}$	$49 \cdot 99$$50 \% 00$	50.8050.83	51.8151.80	52.6052.62	$53 \% 4$53.04	$52 \cdot 97$$52 \cdot 97$
19	51.80	51 51										
20	5178		$50 \cdot 37$	49.82	$\begin{aligned} & 49 \cdot 07 \\ & 49 \cdot 57 \end{aligned}$	$\begin{array}{r} 49.58 \\ 49 \end{array}$	50 •03	$50 \cdot 86$	51.84	$52 \cdot 64$	53 -07	$52 \cdot 93$
21	$\begin{aligned} & 51 \cdot 77 \\ & 5174 \\ & 5172 \\ & 51.72 \\ & 51.67 \\ & 51 \end{aligned}$	$\begin{aligned} & 51 \cdot 00 \\ & 50099 \\ & 50 \cdot 96 \\ & 50.93 \\ & 50 \cdot 90 \end{aligned}$	$\begin{aligned} & 50 \cdot 35 \\ & 50.34 \\ & 50 \cdot 32 \\ & 50.29 \\ & 50 \cdot 27 \end{aligned}$	$\begin{aligned} & 49 \cdot 80 \\ & 49 \cdot 79 \\ & 4978 \\ & 4976 \\ & 497 \end{aligned}$	$49 \cdot 57$$49 \cdot 57$49.5649.5649.53	$\begin{aligned} & 49 \cdot 58 \\ & 49 \cdot 60 \\ & 49.63 \\ & 49.62 \\ & 49 \cdot 63 \end{aligned}$	$50 \cdot 05$ $50 \cdot 07$ $50 \cdot 09$ $50 \cdot 10$ 50•14	50.89 $50 \cdot 93$ 50 •97 51 . 00 $51 \cdot 02$	$\begin{aligned} & 5 \mathrm{I} \cdot 87 \\ & 5 \mathrm{I} \cdot 88 \\ & 5 \mathrm{I} 92 \\ & 5 \mathrm{I} 95 \\ & 5 \mathrm{I} 98 \end{aligned}$	$\begin{aligned} & 52 \cdot 65 \\ & 52 \cdot 67 \\ & 52.68 \\ & 52.70 \\ & 52.72 \end{aligned}$	$53 \cdot 05$ $53 \cdot 08$ $53 \cdot 05$ $53 \cdot 04$ 53 •○3	$\begin{aligned} & \mathbf{5 2} \cdot 93 \\ & 52.93 \\ & 52.90 \\ & 52.99 \\ & 52.89 \\ & \mathbf{5 2} \cdot 87 \end{aligned}$
22												
23												
24												
25												
26	$\begin{aligned} & 51 \cdot 63 \\ & 51.57 \\ & 51 \cdot 57 \\ & 51.56 \\ & 51 \\ & 51.55 \\ & 51 \cdot 53 \end{aligned}$	$50 \cdot 87$ $50 \cdot 85$ $50 \cdot 82$ $50 \cdot 79$	$50 \cdot 24$ $50 \cdot 21$ $50 \cdot 20$ $50 \cdot 17$ $50 \cdot 17$ $50 \cdot 15$	$\begin{aligned} & 497^{\prime} 7 \\ & 4972 \\ & 4971 \\ & 4970 \\ & 4970 \end{aligned}$	$\begin{aligned} & 49 \cdot 55 \\ & 49 \cdot 55 \\ & 49 \cdot 53 \\ & 49 \cdot 52 \\ & 49 \cdot 52 \\ & 49 \cdot 52 \end{aligned}$	$\begin{aligned} & 49 \cdot 65 \\ & 49.67 \\ & 49.68 \\ & 49.68 \\ & 49.70 \end{aligned}$	$50 \cdot 15$ $50 \cdot 17$ $50 \cdot 21$ $50 \cdot 23$ $50 \cdot 26$ $50 \cdot 29$		$\begin{aligned} & 52 \cdot 01 \\ & 52 \cdot 04 \\ & 52 \cdot \circ 7 \\ & 52 \cdot 10 \\ & 52 \cdot 12 \end{aligned}$	$\begin{aligned} & 52.76 \\ & 52.76 \\ & 52.82 \\ & 52.81 \\ & 52.84 \\ & 52.84 \\ & 52.86 \end{aligned}$	$53 \cdot 05$ $53 \cdot 07$ $53 \cdot 06$ $53 \cdot 04$ 53 •04	$\begin{aligned} & \mathbf{5 2} \cdot 85 \\ & 52.84 \\ & 52.83 \\ & 52.80 \\ & 52.78 \\ & 52.78 \\ & 52.77 \end{aligned}$
27												
28												
29												
30												
31												
Means.	51.86	$51 \cdot 14$	$50 \cdot 46$	$49 \cdot 89$	49.60	$49 \cdot 57$	49×7	$50 \cdot 75$	$51 \cdot 68$	$52 \cdot 52$	53 -00	$52 \cdot 97$
. The mean of the twelve monthly values is $51^{\circ} \cdot 20$.												

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

1884.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }^{1}$	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
1	50.32	$48{ }^{\prime 9} 2$	$4^{8 \cdot 0}$	$47 \cdot 70$	$48 \cdot 21$	$49 \cdot 56$	51.81	54.63	$56 \cdot 56$	$57 \cdot 13$	$55 \cdot 98$	$53 \cdot 81$
2	$50 \cdot 28$	$48 \cdot 82$	48.05	$47 \cdot 70$	$48 \cdot 21$	$49 \cdot 66$	51.89	54.72	56.63	$57 \cdot 13$	$55 \cdot 96$	53.73
3	$50 \cdot 27$	48.80	48.00	$47 \cdot 73$	$48 \cdot 20$	$49 \cdot 74$	52 \%o	54.70	$56 \cdot 67$	$57 \cdot 13$	$55 \cdot 91$	53.70
4	$50 \cdot 19$	$48 \cdot 78$	47.99	$47 \% 71$	$48 \cdot 21$	49.81	$52 \cdot 10$	$54 \cdot 75$	$56 \cdot 65$	$57 \cdot 12$	55.78	53.56
5	$50 \cdot 10$	$4^{8} \cdot 72$	47×96	$47 \% 70$	$48 \cdot 20$	$49 \cdot 92$	$52 \cdot 17$	54.82	$56 \cdot 73$	$57 \cdot 11$	$55 \cdot 76$	53.44
6	$50 \cdot 66$	$48 \cdot 70$	4797	$47^{\prime 72}$	$48 \cdot 19$	$49^{\circ} 99$	$52 \cdot 22$	$54 \cdot 89$	56.78	$57 \cdot 13$	55.73	$53 \cdot 38$
7	49 '99	$48 \cdot 66$	4790	477^{71}	$48 \cdot 20$	$50 \cdot 10$	$52 \cdot 32$	54.98	56.80	$57 \cdot 15$	55.65	53.27
8	$49{ }^{\circ} 91$	48 61	$47 \cdot 89$	$47{ }^{73}$	$48 \cdot 22$	$50 \cdot 16$	52.48	$55 \cdot 04$	$56 \cdot 85$	$57 \cdot 11$	$55 \cdot 52$	$53 \cdot 12$

Greenwich Magnetical and Metrorohogical Observations, 1884.
(II.) -Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1884.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	${ }^{\circ}$	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
9	$49 \cdot 88$	$48 \cdot 61$	47.83	4774	$48 \cdot 24$	$50 \cdot 22$	$52 \cdot 59$	55.08	56.91	57.07	55.48	$52 \cdot 98$
10	$49 \cdot 81$	$48 \cdot 60$	$47 \cdot 82$	$47 \cdot 76$	$48 \cdot 27$	$50 \cdot 34$	$52 \cdot 61$	$55 \cdot 10$	56.94	56.99	55%	52.90
11	$49 \cdot 77$	$48 \cdot 53$	47.78	47.79	48.29	50.44 50.52	$52 \cdot 72$ 52.80 53	55.24 55.24	56.99 57.00	$56: 98$	$55 \cdot 32$ $55 \cdot 25$	52.80
12	$49 \cdot 69$	$48 \cdot 52$	$47 \cdot 76$	47.81	48.30	50.52 50.60	$52 \cdot 80$ 53	55.24 55.31	$57^{\circ} \mathrm{O}$	57.00	55.25	52.69
13	$49 \cdot 64$	48.52	47.71	47.82 47 4	48.30 48.30	50.60 50.65	53.00 53.06	$55 \cdot 31$ 55.32	57.01 56.98	56.96	$55 \cdot 19$ $55 \cdot 11$	52.62 52.52
14 15	49.60 .49 .54	$48 \cdot 48$ $48 \cdot 45$	47.70 47.66	$47 \cdot 87$ 47.91	$48 \cdot 30$ 48.32	$50 \cdot 65$ 50	$53 \cdot 06$ $53 \cdot 14$	$55 \cdot 32$ $55 \cdot 39$	$56 \cdot 98$ 57	$56 \cdot 98$ $56 \cdot 95$	$55 \cdot 11$ $55 \cdot 04$	$52 \cdot 52$ 52.43
16	49-50	$48 \cdot 40$	$47 \cdot 64$	$47 \cdot 92$	48.40	$50 \cdot 73$	$53 \cdot 24$	$55 \cdot 49$	57.05	$56 \cdot 93$	$54 \cdot 98$	$52 \cdot 32$
17	$49 \cdot 47$	$48 \cdot 38$	$47 \cdot 60$	$47 \cdot 95$	$48 \cdot{ }^{4}$	$50 \cdot 80$	$53 \cdot 34$	55.59	57.06	56.90	$54 \cdot 92$	$52 \cdot 23$
18	$49 \cdot 41$	$48 \cdot 37$	$47 \cdot 59$	$47 \cdot 98$	$48 \cdot 44$	$50 \cdot 83$	53.44	$55 \cdot 64$	$57 \cdot 10$	56.83	54 :89	$52 \cdot 17$
19	$49 \cdot 39$	$48 \cdot 36$	$47 \cdot 57$	48.02	48.50	$50 \cdot 91$	53.51	$55 \cdot 69$	56.99	56.80	$54 \cdot 82$	$52 \cdot 11$
20	$49 \cdot 37$	$48 \cdot 33$	47 51	$48 \cdot 07$	$48 \cdot 58$	$50 \cdot 98$	53.63	$55 \cdot 76$	57 - ${ }^{\text {¢ }}$	$56 \cdot 68$	54×76	$52 \cdot 1$
21	$49 \cdot 31$	$48 \cdot 29$	$47 \cdot 51$	$48 \cdot 09$	$48 \cdot 65$	51.05	$53 \cdot 73$	55.82	57.02	$56 \cdot 62$	54.70	51.93
22	$49 \cdot 28$	$48 \cdot 29$	47*53	$48 \cdot 11$	$48 \cdot 72$	51.06	53.87	$55 \cdot 97$	56.98	56.60	54.60	5190
23	$49 \cdot 27$	$48 \cdot 27$	$47 \cdot 53$	$48 \cdot 12$	$48 \cdot 80$	$51 \cdot 20$	53.91	56.06	$56 \cdot 98$	$56 \cdot 50$	54.52	5180
24	$49 \cdot 18$	$48 \cdot 20$	$47 \cdot 52$	$48 \cdot 16$	48.90	$51 \cdot 27$	54.00	$56 \cdot 14$	$57^{\circ} 00$	56.42	54.44	51.75
25	$49 \cdot 16$	$4{ }^{\prime} 19$	$47 \cdot 52$	$48 \cdot 16$	$48 \cdot 92$	5ı 31	$54 \bigcirc 9$	$56 \cdot 12$	57 -1	$56 \cdot 35$	$54 \cdot 33$	$51 \cdot 69$
26	49.08	$48 \cdot 18$	$47 \cdot 57$	$48 \cdot 18$	49.04	51.41	$54 \cdot 15$	$56 \cdot 19$	57.07	$56 \cdot 33$	54.30	51.60
27	$49 \cdot 2$	$48 \cdot 12$	$47 \cdot 55$	$48 \cdot 18$	$49 \cdot 12$	51.51	$54 \cdot 20$	$56 \cdot 22$	57.08	$56 \cdot 23$	54.27	$51 \cdot 53$
28	49.02	$48 \cdot 10$	47.59	$48 \cdot 19$	$49 \cdot 18$	$5 \mathrm{I} \cdot 59$	54.31	$56 \cdot 33$	$57 \cdot 11$	$56 \cdot 17$	$54 \cdot 15$	51.46
29	49.1	$48 \cdot 07$	$47 \cdot 61$	$48 \cdot 20$	49-28	51.63	54.38	56.40	$57 \cdot 11$	$56 \cdot 12$	54.02	51.39
30	48.98		47.63	$48 \cdot 21$	$49 \cdot 39$	$51 \cdot 71$	54.48 54.56	$56 \cdot 47$ 56.55	$57 \cdot 11$	$56 \cdot 10$ $56 \cdot 07$	53.90	51.30
31	$48 \cdot 93$		$47 \cdot 65$		$49 \cdot 46$		$54 \cdot 56$	$56 \cdot 55$		$56 \cdot 07$		$51 \cdot 21$
Means .	$49 \cdot 56$	$48 \cdot 46$	$47{ }^{72}$	$47{ }^{\circ}{ }^{3}$	$48 \cdot 56$	$50 \cdot 68$	$53 \cdot 22$	$55 \cdot 54$	$56 \cdot 94$	$56 \cdot 76$	55.02	52.43
The mean of the twelve monthly values is $51^{\circ} \cdot 90$.												

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

1884.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	-
1	$47 \cdot 90$	$47^{\circ} 08$	$46 \cdot 73$	47.60	$48 \cdot 40$	$53 \cdot 60$	$56 \cdot 80$	$59 \cdot 51$	61.53	60.35	$55 \cdot 60$	$50 \cdot 86$
2	$47 \cdot 82$	$47^{\circ} \mathrm{O}$	$46 \cdot 68$	$47 \cdot 60$	$48 \cdot 43$	$53 \cdot 69$	$56 \cdot 99$	$59 \cdot 58$	61:50	$60 \cdot 21$	55.50	$50 \cdot 69$
3	- 47 79	$47^{\circ} \mathrm{O} 8$	$46 \cdot 53$	$47 \cdot 62$	$48 \cdot 46$	53.74	57.22	$59 \cdot 51$	61.41	$60 \cdot 10$	$55 \cdot 31$	$50 \cdot 54$
4	47.67	$47 \cdot 13$	$46 \cdot 44$	47.68	$48 \cdot 52$	53.78	57.45	$59 \cdot 61$	61.25	$5{ }^{5} 9.99$	55.27	$50 \cdot 31$
5	$47 \cdot 58$	$47 \cdot 18$	46-33	$47 \cdot 80$	$48 \cdot 60$	$53 \cdot 90$	$57 \cdot 60$	$59 \cdot 79$	$61 \cdot 25$	59; 83	$55 \cdot 22$	$50 \cdot 16$
6	47.55	47^{11}	$46 \cdot 29$	$47 \cdot 98$	$48 \cdot 69$	53.91	$57 \cdot 76$	59.91	$61 \cdot 18$	59:70	55.09	50 -06
7	47.56	$47 \cdot 10$	$46 \cdot 24$	$48 \cdot 16$	$48 \cdot 79$	54.00	58.02	$60 \cdot 06$	61.03	$59 \cdot 54$	$55 \cdot 07$	49 '96
8	$47 \cdot 60$	47.09	$46 \cdot 22$	$48 \cdot 32$	48.88	$54 \cdot 03$	$58 \cdot 28$	$60 \cdot 19$	$61 \cdot 0$	$59 \cdot 38$	54.94	$49 \cdot 88$
19	47.54 47.67	47.09 47.08	$46 \cdot 20$	$48 \cdot 50$ 48.58	$48 \cdot 95$ 49.08	54.00 54.03	58.47 58.52	$60 \cdot 29$ 60.36	60.82	59.16	54.90	$49 \cdot 81$
10	$47 \cdot 67$	47.08	$46 \cdot 22$	$48 \cdot 58$	49 '08	54×3	$58 \cdot 52$	$60 \cdot 36$	$60 \cdot 70$	$58 \cdot 92$	$54 \cdot 83$	$49 \cdot 85$
11	47.68	47.06	$46 \cdot 10$	$48 \cdot 68$	$49 \cdot 19$	54.06	58.72	$60 \cdot 62$	$60 \cdot 59$	58.80	54.72	49 '90
12	$47 \cdot 68$	47.07	$46 \cdot 17$	$48{ }^{8} 76$	$49 \cdot 34$	54.05	58.88	$60 \cdot 71$	$60 \cdot 52$	$58 \cdot 67$	54.64	$49 \cdot 85$
13	$47 \cdot 69$	47.04	$46 \cdot 19$	$48 \cdot 81$	49.57	54.02	$59 \cdot 13$	$60 \cdot 94$	$60 \cdot 51$	58'42	54.54	$49 \cdot 89$
14 15	47.65 47.58	47 4602	$46 \cdot 23$ $46 \cdot 30$	$48 \cdot 88$ $48 \cdot 9$	$49 \cdot 85$ $50 \cdot 16$	54.05 $54 \cdot \mathrm{l}$	$59 \cdot 18$ $59 \cdot 22$	$61 \cdot 08$ 61.26	60.47 60.52	58.21	54.47	$49 \cdot 84$
	47	4699								57.94	54.33	$49 \cdot 82$

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1884.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
16	4749	$46 \cdot 9$	$46 \cdot 40$	48 91	$50 \cdot 50$	54.29	$59 \cdot 29$	61.44	$60 \cdot 58$	57.70	54.21	$49 \cdot 83$
17	47.44	47.01	$46 \cdot 51$	$48{ }^{\circ} 9$	$50 \cdot 78$	54.50	$59 \cdot 37$	$61 \cdot 61$	60.61	57.46	$54 \cdot 10$	$49 \cdot 85$
18	$47{ }^{\circ} 2$	$47 \cdot 03$	$46 \cdot 70$	$48 \cdot 90$	$50 \cdot 97$	54.69	$59 \cdot 46$	61.69	60.71	57.28	53.90	49:86
19	$47{ }^{\circ} \mathrm{O}$	$46 \cdot 99$	$46 \cdot 88$	$48 \cdot 89$	$51 \cdot 25$	$54 \cdot 88$	$59 \cdot 48$	$61 \cdot 70$	$60 \cdot 63$	$57 \cdot 13$	$53 \cdot 69$	$49 \cdot 78$
20	$47 \cdot 38$	$46 \cdot 92$	47×8	$48 \cdot 87$	$51 \cdot 50$	$55 \cdot 00$	$59 \cdot 54$	61.80	$60 \cdot 76$	57 -00	$53 \cdot 48$	$49 \cdot 59$
21	$47 \cdot 36$	$46 \cdot 83$	$47 \cdot 27$	48.80	$51 \cdot 79$	$55 \cdot 11$	$59 \cdot 56$	$61 \cdot 85$	60.88	$56 \cdot 92$	$53 \cdot 22$	49.42
22	$47 \cdot 35$	$46 \cdot 80$	$47 * 47$	$48 \cdot 76$	51 99	$55 \cdot 25$	$59 \cdot 6$	61.98	$60 \cdot 86$	$56 \cdot 91$	53.00	$49 \cdot 31$
23	47.35	46.80	47.50	$48 \cdot 70$	$52 \cdot 16$	55.38	$59 \cdot 56$	62 이	$60 \cdot 90$	$56 \cdot 79$	52.79	$49 \cdot 19$
24	$47 \cdot 31$	$46 \cdot 80$	47.64	$48 \cdot 66$	$52 \cdot 32$	55.50	$59 \cdot 52$	$62 \cdot 03$	$60 \cdot 92$	$56 \cdot 70$	52.52	$49 \cdot 06$
25	$47 \cdot 39$	$46 \cdot 85$	$47 \cdot 68$	$48 \cdot 6$	52.40	$55 \cdot 63$	$59 \cdot 54$	61.90	$60 \cdot 90$	$56 \cdot 58$	$52 \cdot 29$	48:91
26	$47 \cdot 49$	$46 \cdot 90$	$47 \cdot 73$	$48 \cdot 53$	$52 \cdot 68$	$55 \cdot 83$	$59 \cdot 58$	$61 \cdot 90$	$60 \cdot 89$	$56 \cdot 50$	$52 \cdot 05$	$48 \cdot 79$
27	$47 \cdot 36$	$46 \cdot 87$	47×71	$48 \cdot 47$	$52 \cdot 88$	$56 \cdot 07$	$59 \cdot 54$	61.90	$60 \cdot 79$	$56 \cdot 31$	51.81	$48 \cdot 64$
28	47.33	$46 \cdot 84$	$47{ }^{\prime 72}$	$48 \cdot 42$	$53 \cdot 03$	$56 \cdot 20$	$59 \cdot 57$	61.88	60.70	$56 \cdot 26$	$51 \cdot 54$	$48 \cdot 50$
29	47.30	$46 \cdot 80$	$47 \cdot 70$	$48{ }^{40}$	$53 \cdot 21$	$56 \cdot 36$	$59 \cdot 5 \mathrm{I}$	61.88	$60 \cdot 59$	$56 \cdot 02$	51.27	$48 \cdot 34$
30	$47 \cdot 20$		47.68	$48 \cdot 41$	53.40	$56 \cdot 58$	59.51	6180	60.44	$55 \cdot 91$	51 Or	$48 \cdot 20$
31	$47 \cdot 10$		$47 \cdot 62$		53.60		$59 \cdot 51$	61 70		$55 \cdot 78$		$48 \cdot 03$
Means	$47 \cdot 50$	$46 \cdot 98$	$46 \cdot 84$	$48 \cdot 47$	$50 \cdot 62$	$54 \cdot 68$	58-85	61×5	$60 \cdot 85$	$57 \cdot 95$	$53 \cdot 84$	$49 \cdot 57$
The mean of the twelve monthly values is $53^{\circ} \cdot 10$.												

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year.

1884.												
Days of the Month.	January.	February.	March.	Aprii.	May.	June.	July.	August.	September.	October.	November.	December.
d	${ }^{\circ}$.	${ }^{\circ}$	-	${ }^{\circ}$	-	-	-	${ }^{\circ}$	${ }^{\circ}$	-	-	-
1	4400	$44 \cdot 63$	$43 \cdot 26$	$45^{\circ} 80$	$47{ }^{\circ} 04$	$55 \cdot 86$	61.29	61.93	$62 \cdot 93$	$60 \cdot 27$	52.78	$45 \cdot 29$
2	$43 \cdot 70$	44.90	$43 \cdot 03$	$46 \cdot 23$	$47 \cdot 26$	$55 \cdot 90$	$61 \cdot 61$	62.51	62.99	$60 \cdot 00$	52.90	4.5 \%o
3	$43 \cdot 52$	44.80	$42^{\circ} 90$	$46 \cdot 97$	47.51	$56 \cdot 03$	$62 \cdot 0$	62.92	62.80	$59 \cdot 62$	$52 \cdot 95$	44.92
4	$43 \cdot 70$	$44 \cdot 30$	$4{ }^{2} 71$	$47 \cdot 62$	$47 \cdot 93$	$56 \cdot 11$	$62 \cdot 29$	$63 \cdot 27$	62.49	$59 \cdot 31$	52.90	$45 \cdot 30$
5	44.12	44^{2} 2	$42 \cdot 99$	48.11	$48 \cdot 13$	$56 \cdot 15$	$62 \cdot 73$	$63 \cdot 35$	62.20	$58 \cdot 82$	$52 \cdot 65$	$45 \cdot 62$
6	44.54	44.39	$43 \cdot 22$	48.52	$48 \cdot 32$	55.80	$63 \cdot 12$	$63 \cdot 35$	$61 \cdot 62$	58.42	$52 \cdot 70$	$45 \cdot 57$
7	$44 \cdot 82$	44.49	$43 \cdot 23$	48.60	$48 \cdot 33$	$55 \cdot 40$	$63 \cdot 12$	$63 \cdot 60$	61. 20	$58 \cdot 20$	$52 \cdot 96$	$45 \cdot 93$
8	44.92	$44 \cdot 30$	$43 \cdot 3 \mathrm{I}$	$48 \cdot 65$	$48 \cdot 49$	$55 \cdot 10$	$63 \cdot 19$	$64 \% 1$	$60 \cdot 93$	58.04	52.90	$46 \cdot 37$
9	44.72	$44 \cdot 26$	$43 \cdot 41$	$48 \cdot 60$	$48 \cdot 74$	54.90	63.41	64.58	60.81	57.87	52.61	$46 \cdot 78$
10	44×83	$44 * 3$	$43 \cdot 53$	$48 \cdot 62$	$49^{\circ} 41$	$54 \cdot 81$	$63 \cdot 67$	64.98	$60 \cdot 91$	$57 \cdot 31$	$52 \cdot 38$	$46 \cdot 73$
11	$44 \cdot 96$	$44 \cdot 51$	$43 \cdot 69$	$48 \cdot 69$	$50 \cdot 29$	54.80	63.89	$65 \cdot 51$	61.29	$56 \cdot 82$	$52 \cdot 34$	$46 \cdot 89$
12	$44 \cdot 81$	44^{-28}	$43 \cdot 77$	$48 \cdot 6 \mathrm{I}$	$51 \cdot 23$	55 or	$63 \cdot 56$	$65 \cdot 78$	61.51	$55 \cdot 92$	$52 \cdot 22$	$46 \cdot 41$
13	44.41	$44 \cdot 19$	$43 \cdot 84$	$48 \cdot 53$	$52 \cdot 20$	$55 \cdot 60$	$63 \cdot 50$	$66 \cdot 22$	61.78	$55 \cdot 31$	52.00	$46 \cdot 51$
14	$44 \cdot 07$	$44 \cdot 32$	$44^{\cdot 23}$	$48 \cdot 27$	52.91	56.30	$63 \cdot 23$	$66 \cdot 27$	61.86	$54 \cdot 81$	$51 \cdot 82$	$46 \cdot 8 \mathrm{I}$
15	$44 * 9$	$44 \cdot 58$	$44 \cdot 81$	48.08	$53 \cdot 20$	57.04	$63 \cdot 25$	$66 \cdot 19$	$62 \cdot 10$	54.42	51.50	$47 \cdot 20$
16	$44 \cdot 27$	$44 \cdot 76$	$45 \cdot 48$	$47 \cdot 99$	$53 \cdot 38$	57.50	$63 \cdot 30$	66 \% 5	$62 \cdot 26$	54.42	$50 \cdot 8 \mathrm{I}$	
17	44.29	$44 \cdot 37$	$46 \cdot 10$	$47^{\circ} 90$	53.74	57.69	$63 \cdot 28$	65.91	62.62	$54 \cdot 68$	50.27	$46 \cdot 62$
18	44.21	44.02	$46 \cdot 60$	$47 \cdot 62$	54.25	57.59	$63 \cdot 19$	$65 \cdot 99$	$63 \cdot 19$	54.90	$49 \cdot 70$	$46 \cdot 18$
19	$44 \cdot 20$	$43 \cdot 72$	$47 \cdot 10$	$47 \cdot 30$	$54 \cdot 68$	57.60	$62 \cdot 89$	66.00	$63 \cdot 24$	$55 \cdot 16$	$49 \cdot 27$	$45 \cdot 58$
20	$44 \cdot 26$	$43 \cdot 62$	$47 * 40$	$47 \cdot 10$	$54 \cdot 70$	$57 \cdot 61$	$62 \cdot 66$	$65 \cdot 90$	63.40	$55 \cdot 18$	$48 \cdot 92$	$45 \cdot 19$

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1884.												
Days of the Month.	Jannary.	February.	March.	April.	May.	June.	Joly.	August.	September.	October.	November.	December.
" d	-	-	-	-	-	-	-	-	-	-	-	-
21	$44 \cdot 31$	$43 \cdot 91$	$47^{\circ} 40$	$46 \cdot 99$	54.64	57.89	$62 \cdot 45$	65.49	$63 \cdot 30$	$55 \cdot 13$	$48 \cdot 60$	$45 \cdot 1$
22	$44 \cdot 51$	$44 \cdot 34$	47•18	$46 \cdot 97$	54.69	$58 \cdot 22$	62.44	$65 \cdot 40$	63.03	55.04	$48 \cdot 20$	44.87
23	$44 \cdot 73$	$44 \cdot 59$	$47{ }^{\circ} \circ$	$46 \cdot 81$	55 -00	$58 \cdot 57$	$62 \cdot 33$	$65 \cdot 21$	62.82	54.81	47.71	44.61
24	$45 \cdot 10$	44.64	$46 \cdot 81$	$46 \cdot 72$	$55 \cdot 50$	58.90	62.40	$65 \cdot 38$	62.40	$54 \cdot 50$	47.27	44.40
25	45 -03	$44 \cdot 63$	$46 \cdot 72$	$46 \cdot 60$	$55 \cdot 87$	$59 \cdot 20$	$62 \cdot 30$	$65 \cdot 39$	$61 \cdot 92$	$54 \cdot 20$	$46 \cdot 75$	$44 \cdot 13$
26	$44 ` 70$	$44^{\circ} 47$	$46 \cdot 49$	$46 \cdot 54$	$56 \cdot 32$	$59 \cdot 62$	$62 \cdot 05$	$65 \cdot 31$	61.56	53.85	$46 \cdot 20$	43.86
27	44.34	$44 \cdot 18$	$46 \cdot 20$	$46 \cdot 43$	$56 \cdot 35$	$59 \cdot 88$	6170	$64 \cdot 59$	61. 23	$53 \cdot 65$	$45 \cdot 81$	$43 \cdot 60$
28	44.09	43.90	$45 \cdot 92$	$46 \cdot 59$	$56 \cdot 36$	$60 \cdot 32$	61.49	64.00	61.00	53.42	$4{ }^{5} 73$	43.40
29 30	$43 \cdot 70$ $43 \cdot 68$	$43 \cdot 52$	$45 \cdot 70$ $45 \cdot 57$	$46 \cdot 72$ $46 \cdot 80$	$56 \cdot 38$ $56 \cdot 19$	$60 \cdot 70$ 61.06	$61 \cdot 34$ 61 61.45	$63 \cdot 50$ $63 \cdot 23$	$60 \cdot 72$ 60.60	$53 \cdot 28$ 52.97	$45 \cdot 78$ $45 \cdot 61$	$43 \cdot 23$ $43 \cdot 11$
31	$44 \cdot 21$		$45 \cdot 59$		$55 \cdot 90$		61 61 61	63 63		52.97 52.71		$43 \cdot 11$ 4299
Means.	$44 \cdot 35$	$44 \cdot 32$	45 이	47.50	$52 \cdot 42$	$57 \cdot 24$	$62 \cdot 61$	64.67	62.02	$55 * 90$	$50 \cdot 14$	$45 \cdot 33$
The mean of the twelve monthly values is $52^{\circ} \cdot 63$.												

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year.

1884.												
Days of the Month	January.	February.	March.	Aprii.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	-
1	$38 \cdot 0$	$45 \cdot 7$	38.0	493	$48 \cdot 1$	$55 \cdot 9$	678	$67 \cdot 5$	$62 \cdot 2$	$57^{\circ} 2$	$50 \cdot 0$	$36 \cdot 8$
2	$39 \cdot 2$	43.0	39.8	$52 \cdot 3$	49.5	59.4	67°	$70^{\circ} 0$	62°	$56^{\circ} \mathrm{O}$	$53 \cdot 6$	$39 \cdot 0$
3	$43 \cdot 2$	38°	$38 \cdot 8$	$53 \cdot 7$	51.0	$59 \cdot 2$	$68 \cdot 2$	$65 \cdot 9$	58.0	$55^{\circ} 4$	49°	$47 \cdot 1$
4	45°	$43 \cdot 1$	$43 \cdot 1$	51.9	$49 \cdot 3$	$57 \cdot 1$ 57	$71 \cdot 2$	$64 \cdot 3$	$57^{\circ} \mathrm{O}$	$54^{\circ} \mathrm{O}$	49°	45°
5	45°	44°	$42 \cdot 2$	$51 \cdot 3$	$50 \cdot 0$	$57 \cdot 8$	71.4	$65 \cdot 6$	$57{ }^{\circ}$	$53 \cdot 1$	$52 \cdot$	$42 \cdot 1$
6	$46 \cdot 4$	$43 \cdot 9$	417	51.7	$48 \cdot 1$	52.8	$66 \cdot 8$	$66 \cdot 3$	57 \%	$55 \cdot 3$	51.8	$47^{\circ} 2$
7	$44^{\circ} 1$	$40 \cdot 8$	41.5	$49^{\circ} \mathrm{O}$	$49 \cdot 2$	$53 \cdot 9$	$66 \cdot 8$	69°	57.8	$56 \cdot$	$53 \cdot 6$	47°
8	417	41.8	$42 \cdot 2$	49°	$52 \cdot 2$	$55 \cdot 3$	$70 \cdot 1$	72.	$59 \cdot 3$	$55 \cdot 2$	$48 \cdot 0$	48.0
9	44^{7}	$45 \cdot 1$	$42 \cdot 2$	50%	$53 \cdot 1$	$52 \cdot 2$	$72 \cdot 6$	$72 \cdot 3$	619	$51 \cdot 2$	50%	$43 \cdot 0$
10	$45 \cdot 1$	$43 \cdot 9$	$43 \cdot 3$	$4^{8 \cdot 3}$	$56 \cdot 1$	$55 \cdot 4$	679	70 -	$62 \cdot 9$	48 -2	50.6	43 -
11	44°	41.8	419	47.8	59.6	58.9	$66 \cdot 0$	$73 \cdot 7$	62.7	46%	$49 \cdot 1$	$45 \cdot 9$
12	$40 \cdot 1$	$43 \cdot 6$	$43^{\circ} \cdot 2$	$48 \cdot 3$	$60^{\circ} \mathrm{O}$	$61 \cdot 1$	$65^{\circ} 4$	72.9	$63 \cdot 3$	$48 \cdot 2$	$48 \cdot 3$	$43 \cdot 6$
13	$40 \cdot 9$	$45 \cdot$	$46 \cdot$	$45 * 9$	58.0	$62 \cdot 2$	679	71.6	63.0	$45 \cdot 9$	$47^{\circ} 9$	$48 \cdot 1$
14	$42 \cdot 1$	46°	$48 \cdot 3$	$46 \cdot 2$	57.3	63.0	$66 \cdot 7$	$68 \cdot 1$	$64^{\circ} \mathrm{O}$	$48 \cdot 8$	$46 \cdot 3$	$49{ }^{\circ}$
15	44°	44°	$50 \cdot 0$	$46 \cdot 8$	$55 \cdot 8$	$62 \cdot 0$	$66 \cdot 2$	$65 \cdot 9$	64.9	$50 \cdot 9$	$43 \cdot 2$	$45 \cdot 8$
16	$40 \cdot 7$	39.9	$50 \cdot 5$	$46 \cdot 7$	59.0	$61 \cdot 2$	$65 \cdot 8$	68.0	$66 \cdot 5$	54.2	42%	41.2
17	$41 \cdot 3$	$40 \cdot 0$	51.0	$44^{\circ} 1$	$60 \cdot 5$	$59 \cdot 9$	$65 \cdot 1$	$69 \cdot 8$	68.0	55%	$42 \cdot 6$	$40 \cdot 8$
18	$42 \cdot 1$	$39 \cdot 7$	51.9	$43 \cdot 8$	$58 \cdot 2$	$58 \cdot 8$	64%	$68 \cdot 8$	$70 \cdot 3$	55%	$43 \cdot 1$	$39 \cdot 3$
19	$43 \cdot 1$	$42 \cdot 1$	$50 \cdot 2$	$43 \cdot 9$	58.0	$60 \cdot 9$	$61 \cdot 2$	674	$64 \cdot 3$	54.2	$42 \cdot 3$	$41 \cdot 3$
20	43 -0	$45 \cdot 1$	$47 \cdot 8$	$44 \cdot 5$	$55 \cdot 9$	61.0	$63 \cdot 2$	64.9	$64 \cdot 1$	$52 \cdot$	$42 \cdot 1$	$40 \cdot 9$
21	44.5	$44^{\circ} 1$	$45 \cdot 8$	$45 \cdot 2$	57.9	62.1			64.0	51.8		$39 \cdot 2$
22	$45 \cdot 9$	$4.5 \cdot 7$	$45 \cdot 1$	44.3	$59^{\circ} \mathrm{O}$	62.9	65%	$66 \cdot 2$	$61 \cdot 1$ 59	$52 \cdot$	$39 \cdot 6$	39%
23	$48 \cdot 7$	$44^{\circ} 3$	$45^{\circ} \mathrm{O}$	$44^{\circ} \mathrm{O}$	$60^{\circ} 9$	63.4	64%	$68 \cdot 1$	59.3	$49 \cdot 5$	$40^{\circ} \mathrm{O}$	$39 \cdot 1$
24	$42 \cdot 1$	44% 42	$44^{4} 4^{\circ} \mathrm{O}$	$44^{\circ} \mathrm{O}$	$62 \cdot 9$ 58.9	$63 \cdot$ 63		69.2 67.6	59 58 8	$49^{\circ} 9$	$38 \cdot$ 35	39°
25	$42 \cdot 9$	$42 \cdot 1$	$44^{\circ} 1$	$44 \cdot 2$	$58 \cdot 9$	$63{ }^{\circ}$	$61 \cdot 2$	67.6	$58 \cdot 1$	$47^{\circ} 4$	$35 \cdot 3$	$38 \cdot 1$

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year-concluded.

1884.												
- Days of the Month.	January.	February.	March.	April.	Маг.	Jane.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
26	418	$4 \mathrm{I} \cdot 3$	$43 \cdot 7$	$48 \cdot 2$	60%	63.4	$60 \cdot 6$	$60 \cdot 8$	$59 \cdot 8$	$50 \cdot 4$	37.7	37.4
27	$39 \cdot 1$	$40 \cdot 1$	$42 \cdot 3$	$45 \cdot 8$	59.9	$66 \cdot 8$	$60 \cdot 0$	$60 \cdot 0$	$58 \cdot 5$	$46 \cdot 8$	$42 \cdot 1$	$37 \cdot 9$
28	39.3	$39 \cdot 5$	$43 \cdot 1$	479	$56 \cdot 9$	$67^{\circ} 9$	61.8	62.4	$60 \cdot 1$	54%	$42 \cdot 1$	$38 \cdot 2$
29	$43 \cdot 8$	$39 \cdot 1$	$43 \cdot 1$	$46 \cdot 4$	$55 \cdot 5$	66°	$62 \cdot 7$	$60 \cdot 1$	$60 \cdot 9$	$46^{\circ} \mathrm{O}$	$38 \cdot 7$	$38 \cdot 1$
30	$48 \cdot 1$		$44^{\circ} 3$	$49{ }^{\circ}$	$57 \cdot 2$	$65 \cdot 1$	$64 \cdot 7$	62.3	$55 \cdot 9$	49.4	$36 \cdot 7$	$37^{\circ} \mathrm{O}$
31	$47^{1} 1$		47^{1}		$56 \cdot 4$		$65 \cdot 9$	65 -		$52 \cdot 8$		$35 \cdot 9$
Means.	$43 \cdot 1$	$42 \cdot 6$	$44^{\circ} 6$	$47 \cdot 5$	$55 \cdot 9$	$60 \cdot 4$	$65 \cdot 6$	$67 \cdot 1$	$6 \mathrm{I} \cdot 4$	517	$44^{\circ} 9$	417

The mean of the twelve monthly values is $52^{\circ} \cdot \mathbf{2 1}$.
(VI.)-Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{1884.}

\hline Days of the Month. \& January. \& Febraary. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December.

\hline d \& - \& \bigcirc \& - \& \bigcirc \& - \& - \& - \& - \& 0 \& - \& - \& -

\hline 1 \& $35 \cdot 3$ \& $47 \cdot 3$ \& 41.2 \& $60 \cdot 1$ \& 56.4 \& $59 \cdot 3$ \& $75 \cdot 2$ \& $77 \cdot 8$ \& 614 \& $60 \cdot 6$ \& $52 \cdot 1$ \& $35 \cdot 5$

\hline 2 \& $39 \cdot 4$ \& $39^{\circ} 2$ \& $44^{\circ} \mathrm{2}$ \& 64.5 \& $55 \cdot 6$ \& $67 \cdot 3$ \& $72 \cdot 7$ \& $83 \cdot 3$ \& $66 \cdot 5$ \& $58 \cdot 9$ \& $58 \cdot 2$ \& 42 -

\hline 3 \& $49^{\circ} 2$ \& $36 \cdot 6$ \& $40 \cdot 3$ \& $63 \cdot 7$ \& $55 \cdot 9$ \& 61.3 \& $80 \cdot 1$ \& 69.1 \& $65 \cdot 6$ \& $57 \cdot 2$ \& $49^{\circ} 9$ \& د94

\hline 4 \& $47 \cdot 8$ \& $47^{\circ} 2$ \& 46.4 \& $59 \cdot 1$ \& $55 \cdot 9$ \& 57% \& 83.0 \& 69.0 \& $55 \cdot 1$ \& 59.6 \& $53 \cdot 5$ \& $45 \cdot 9$

\hline 5 \& 47.1 \& 449 \& 478 \& $55 \cdot 3$ \& $55 \cdot 5$ \& $60 \cdot 3$ \& $77{ }^{\circ} 9$ \& $73 \cdot 8$ \& 61.0 \& $54 \cdot 8$ \& 59.4 \& $45 \cdot 1$

\hline 6 \& $50 \cdot 4$ \& 44° \& $48 \cdot 1$ \& $58 \cdot 6$ \& $53 \cdot 8$ \& $52 \cdot 0$ \& 69.4 \& $74 * 9$ \& $60 \cdot 8$ \& 58.0 \& $5 \mathrm{I} \cdot 2$ \& 53 -

\hline 7 \& $44 \cdot 8$ \& 40.4 \& $48 \cdot 2$ \& $49 \cdot 3$ \& $57^{\circ} \mathrm{O}$ \& $55 \cdot 9$ \& $73 \cdot 5$ \& 81.1 \& 58.4 \& $58 \cdot 9$ \& $60 \cdot 4$ \& 51.8

\hline 8 \& $42 \cdot 6$ \& $42^{\circ} \mathrm{O}$ \& 478 \& $5 \mathrm{I}^{\circ} 9$ \& $61 \cdot 3$ \& 579 \& 81.6 \& $85 \cdot 1$ \& $63 \cdot 8$ \& $58 \cdot 8$ \& 51.8 \& $48 \cdot 2$

\hline 9 \& $47 \cdot 6$ \& $50 \cdot 0$ \& $44^{\circ} 9$ \& $55 \cdot 4$ \& $60 \cdot 9$ \& 51.2 \& $83 \cdot 1$ \& $83 \cdot 5$ \& 67.5 \& $52 \cdot 1$ \& 54.6 \& $40 \cdot 1$

\hline 10 \& $49 \cdot 3$ \& $46 \cdot 7$ \& $45 \cdot 8$ \& $49 \cdot 6$ \& $69 \cdot 2$ \& 61.0 \& 697 \& $75 \cdot 6$ \& 68.4 \& $42^{\circ} 1$ \& $52 \cdot 8$ \& $45 \cdot 1$

\hline 11 \& $46 \cdot 8$ \& 44^{8} \& $42 \cdot 5$ \& $48 \cdot 8$ \& 74•1 \& $69 \cdot 0$ \& $70 \cdot 9$ \& 87.8 \& $70 \cdot 5$ \& $44^{\circ} 2$ \& $50 \cdot 1$ \& $48 \cdot 5$

\hline 12 \& $40 \cdot 6$ \& $48 \cdot 1$ \& $50 \cdot 2$ \& $50 \cdot 3$ \& $72 \cdot 9$ \& $72 \cdot$ \& $66 \cdot 3$ \& $79^{\circ} 4$ \& $70 \cdot 7$ \& 48.4 \& $48 \cdot 5$ \& 45.4

\hline 13 \& 43.4 \& $52 \cdot 9$ \& $53 \cdot 5$ \& 47% \& $62 \cdot 1$ \& $72 \cdot 8$ \& 79.4 \& 78.8 \& 73.2
68.5 \& 49.2 \& $47^{\circ} \mathrm{F}$ \& $52 \cdot 8$

\hline 14 \& 44.6 \& $44^{4} 3^{\circ} \mathrm{7}$ \& $58 \cdot 2$
64.2 \& 49
47
4 \& $61: 4$
57 \& $69 \cdot 6$
$65 \cdot 5$ \& 73
68.4
68 \& 73.6
71.6 \& $68 \cdot 5$
74.6 \& $54 \cdot 3$
$54 \cdot 2$ \& $45 \cdot 8$
$43 \cdot 4$ \& $51 \cdot 5$
$45 \cdot 3$

\hline 15 \& $47^{\circ} 5$ \& $43^{\circ} \mathrm{O}$ \& $64 \% 2$ \& 479 \& $57 \cdot 5$ \& \& 68.9 \& 71.6 \& $74 *$ \& $54 \cdot 2$ \& $43 \cdot 4$ \& $45 \cdot 3$

\hline 16 \& $42 \cdot 0$ \& $39 \cdot 2$ \& 64.7 \& 47.1 \& $67 \cdot 6$ \& $60 \cdot 0$ \& $68 \cdot 9$ \& $78 \cdot$ \& $74 \cdot 1$ \& 58.4 \& 39.9 \& $40 \cdot 9$

\hline 17 \& $40 \cdot 2$ \& $40 \cdot 9$ \& $65 \cdot 5$ \& $45 \cdot 0$ \& $71 \cdot 3$ \& $64 \cdot 2$ \& $68 \cdot 1$ \& 79 I \& $78 \cdot 4$ \& $58 \cdot 3$ \& $42 \cdot 6$ \& $38 \cdot 8$

\hline 18 \& $4{ }^{3} 7$ \& $43 \cdot 3$ \& 619 \& $44^{\circ} \mathrm{O}$ \& $60 \cdot 1$ \& 59.0 \& $68 \cdot 2$ \& 74.8 \& $80 \cdot 1$ \& $58^{\circ} \mathrm{O}$ \& 44% \& $39^{\circ} 9$

\hline 19 \& $46 \cdot 2$ \& $48 \cdot 2$ \& $56 \cdot 2$ \& $45 \cdot 3$ \& 63.4 \& 67.5 \& $62 \cdot 2$ \& $70 \cdot 8$ \& 67° \& $59 \cdot 6$ \& 44% \& $43 \cdot 3$

\hline 20 \& $46 \cdot 3$ \& $51 \cdot 6$ \& $50 \cdot 2$ \& $46 \cdot 7$ \& $62 \cdot 8$ \& $65 \cdot 1$ \& 68.4 \& $70 \cdot 9$ \& $70 \cdot 5$ \& 51.7 \& $42 \cdot 2$ \& $38 \cdot 1$

\hline 21 \& $49^{\circ} 2$ \& $46 \cdot 9$ \& $50 \cdot 1$ \& $47 \cdot 6$ \& $69 \cdot 8$ \& 68.4 \& 67.8 \& $69 \cdot 5$ \& $70 \cdot 7$ \& $52 \cdot 5$ \& 42.0 \& $40 \cdot 1$

\hline 22 \& 497 \& $50 \cdot 7$ \& $49 \cdot 7$ \& $48 \cdot 3$ \& $70 \cdot 8$ \& $69 \cdot 6$ \& $73 \cdot 3$ \& $76 \cdot 3$ \& 62.0 \& $56 \cdot 7$ \& $38 \cdot 5$ \& $40 \cdot 1$

\hline 23 \& $51 \cdot 9$ \& $48 \cdot 1$ \& $48 \cdot 5$ \& 49.5 \& 74.3 \& $68 \cdot 7$ \& 67.2 \& 79.0 \& 59.9 \& $53 \cdot 6$ \& $40 \cdot 5$ \& 37.7

\hline 24 \& 41.2 \& $46 \cdot 2$ \& $49 \cdot 5$ \& $49 \cdot 3$ \& $77 \cdot 2$ \& $69 \cdot 3$ \& $65 \cdot 1$ \& 81.7 \& 61.8 \& $50 \cdot 9$. \& $36 \cdot 6$ \& $38 \cdot 6$

\hline 25 \& $45 \cdot 9$ \& $45^{\prime} 7$ \& $46 \cdot 3$ \& $48^{1} 1$ \& $55 \cdot 8$ \& $64 \cdot 7$ \& $63 \cdot 8$ \& $67 \cdot 3$ \& $60 \cdot 9$ \& $49 \cdot 3$ \& 31.4 \& $39 \cdot 3$

\hline 26 \& $42 \cdot$ \& 44^{13} \& $42{ }^{\circ}$ \& $56 \cdot 4$ \& $67 \cdot 8$ \& 7199 \& $64 \cdot 2$ \& $62 \cdot 3$ \& $63 \cdot 3$ \& $53 \cdot 3$ \& $36 \cdot 9$ \& 36%

\hline 27 \& $38 \cdot 2$ \& $4{ }^{3} \cdot 2$ \& 41.4 \& $48 \cdot 6$ \& $69 \cdot 8$ \& $75 \cdot 9$ \& 6ı 1 \& 59.8 \& 61.4 \& $49^{\circ} 7$ \& $45 \cdot 2$ \& $37^{\circ} \mathrm{O}$

\hline 28 \& 4 P 8 \& $40 \cdot 2$ \& $42 \cdot 5$ \& $50 \cdot 0$ \& 56.4 \& $78 \cdot 4$ \& 67.5 \& $66 \cdot 3$ \& $65 \cdot 4$ \& $60 \cdot 6$ \& $43 \cdot 3$ \& $37^{\circ} \mathrm{I}$

\hline 29 \& $52 \cdot 3$ \& $40 \cdot 6$ \& $44 \cdot 2$ \& $56 \cdot 6$ \& 54.7 \& $69 \cdot 1$
70.8 \& $65 \cdot 7$ \& 62.5 \& $63 \cdot 9$
59.3 \& 49.1 \& 37.4
3.4 \& $36 \cdot 2$

\hline 30
31 \& 54.2
50.8 \& \& $48 \cdot 2$
51.4 \& $60 \cdot 1$ \& $65 \cdot 9$
$58 \cdot 3$ \& $70 \cdot 8$ \& 69%
74.7 \& 66.4
68.9 \& $59 \cdot 3$ \& 55
58

\circ \& $34 \cdot 8$ \& 34
$35 \cdot 9$
35

\hline Means \& $45 \cdot 5$ \& 45 - \& $49 \cdot 5$ \& $51 \cdot 8$ \& $63 \cdot 1$ \& $65 \cdot 2$ \& $71 \times$ \& 74^{11} \& $66 \cdot 2$ \& $54 * 4$ \& 46 \% \& $42 \cdot 5$

\hline \multicolumn{13}{|c|}{The mean of the twelve monthly values is $56^{\circ} \cdot 19$.}

\hline
\end{tabular}

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer in the Year 1884.
(It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Cbanges of the Direction of the Wind-concluded.

Excess of Motion in each Month.

	Direct.	Retrograde.
July ...	2250	
August. .	$967 \frac{1}{2}$	
September	-	
October		22, $\frac{1}{2}$
November	$697 \frac{1}{2}$	
December.		45

The whole excess of direct motion for the year was $10102 \frac{1}{2}$.

Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day.
(Each result is the Mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)

1884.												
Days of the Month	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
1	+ 262	+ 8	+ 556	+ 300	+ 299	+ 339	+ 230	+ 197	+ 223	$+335$.	+ 75
2	+ 264	+ 199	+ 600	+ 135	+ 212	+ 22	- 47	+ 286	+ 339	$+164$	+ 126	+ 361
3	+ 72	+ 575	+ 92	+ 114	+ 79	+ 111	+ 195	+ 397	+ 283	$+215$	+ 395	+ 270
4	+ 82	+ 220	$+21$	+ 57	- 7	- 296	+ 318	+ 212	-. 257	+ 432	+202	+ 379 .
5	+ 65	+ 249	+ 302	+ 212	- 299	-434	+ 219	+ 281	$+373$	+ 351	+ 285	+ 442
6	+ 192	+ 325	+ 477	- 24	.	- 500	+ 26	+ 350	+ 260	+ 103	+137	+ 89
7	+ 215	$+324$	+ 390	+ 65	-	+ 4	+ 274	+ 358	+ 363	+ 298	+ 126	+167
8	+ 297	+ 144	+ 355	+ 139	.	- 128	+ 245	+ 308	+ 251	+ 206	+ 420	
9	+ 237	+ 42	+ 158	+ 262		- 224	+ 290	+ 281	+ 70	+ 76	+ 317	+ 53
10	+ 377	+ 121	+ 134	+ 283	.	+ 199	+ 57	+ 198	+ 223	- 28	+ 103	+ 164
11	+ 370	+ 142	- 401	+ 283	.	+ 236	+ 106	+ 301	+ 217	+ 235	.	+176
12	+ 432	+ 261	+ 420	+ 279	-•	+ 268	+ 110	+ 205	+ 200	+ 90		+ 374
13	+ 388	+ 177	+ 258	+ 357	.	+ 167	+ 286	+ 415	+ 98	$+450$..	+ 244
14	+ 270	+ 162	+ 330	+ 189	\cdots	+179	+ 169	+ 239	+ 157	$+355$.	+ 167
15	+ 102	$+347$	+ 210	+ 327	.	$+333$	+ 252	+ 247	+ 208	+ 368	-	+ 436
16	+ 179	+ 376	+ 282	+ 405	\cdots	+ 196	+ 200	$+397$	+ 269	+164	\cdots	+ 473
17	+ 278	$+465$	+ 276	+ 226	.	$+334$	+ 196	$+343$	+ 277	+221	-	+ 335
18	+ 298	+ 524	+ 319	+ 307	.	+ 236	+ 263	+ 257	+ 212	$+210$	-	+ 98
19	+ 424	+ 15	+ 282	+ 469	$+253$	+167	+ 176	+ 177	+ 187	$+377$	+ 279	+317
20	+ 254	+ 227.	+ 219	+ 497	+ 95	+118	+ 210	+ 275	+ 352	+ 274	+ 156	- 30
21	+ 234	+ 123	+ 27	$+470$	+ 281	+141	$+\quad 97$	+ 111	+ 321	+ 364	+ 161	+ 273
22	+ 71	+ 112	$+393$	+ 457	+ 244	+ 150	+ 227	+ 246	+ 264	$+430$	+ 266	+ 294
23	+ 47	+ 232	$+350$	+ 508	+ 352	+ 144	+ 244	+ 342	+ 504	+ 416	$+324$	+ 181
24	+ 342	+ 253	+ 415	+ 478	+ 355	+ 175	- 61	+ 203	+ 419	+216	+ 273	+ 358
25	+ 246	+ 288	+ 353	+ 413	+ 136	+ 76	+ 173	+ 102	+ 412	+ 254		+ 384
26	+ 53	+ 422	+ 243	+ 231	+147	+ 216	+ 145	-•	+ 423	+ 348	$+242$	+ 245
27	+ 282	$+346$	+ 380	- 78	+ 283	+ 252	- 150	.	+ 388	+ 444	+ 238	+ 179
28	+ 449	$+334$	+ 355	+ 237	+ 422	+ 157	+ 128	$+242$	+ 267	+ 280	+ 260	+ 257
29	+ 182	+ 444	+ 396	+ 290	+ 354	+ 174	+ 48	+ 316	+ 140	+ 620	+ 360	$+335$
30	$+143$		+ 298	+ 236	+ 198	+ 228	+ 124	+ 241	+ 406	+ 549	+217	+ 251
31	$+68$		+ 269		+ 349		+ 145	+ 211		+ 347		+ 398
Means	+ 23 I	+ 257	+ 283	+ 271	+ 209	+ 101	+ 158	$+267$	$+262$	+ 296	+ 244	+ 258
				The mean	the tw	ve mont	values	is +236 .				

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Dat. (The results depend on the Photographic Register, using all days of complete record. The scale employed is arbitrary : the sign + indicates positive potential.)

Hour, Greenwich Mean Solar Time (Civil reckoning).	1884.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November	December.	
Midnight	+	$+243$	$+373$	+	+301	$+160$	+ 310	$+370$	+ 318	+ 330	+ 199	+ 250	+ 289
$\mathbf{1}^{\text {h }}$. a.m.	+217	+ 181	+ 289	$+318$	$+307$	+ 233	+ 300	$+349$	+ 266	+ 306	$+215$	+ 207	+ 266
2 "	$+195$	+ 206	+ 208	+ 292	+ 280	+ 266	+ 281	$+347$	+ 230	+ 298	+ 209	+ 176	+ 249
3	+ 145	+ 167	+ 170	+ 258	$+267$	+ 244	+ 262	+ 334	+ 219	+ 285	$+215$	+ 169	+ 228
	+ 168	+ 169	+ 140	$+248$	+ 263	+ 177	+ 278	$+304$	+ 204	+ 272	+ 211	$+108$	+ 212
	+ 178	+ 176	+ 109	+ 251	+ 248	+ 209	+267	+ 222	+171	+ 271	+ 189	+ 112	$+200$
6 "	+175	+ 172	+144	+ 275	+ 278	$+250$	+ 257	$+312$	+ 175	+ 254	+ 183	+ 167	+ 220
7 "	+185	+ 220	+ 200	+ 295	$+252$	$+171$	$+230$	$+305$	+177	+ 244	+ 197	+ 191	+ 222
8 "	+ 202	+ 252	+ 267	+ 268	$+231$	+ 147	+ 297	+ 306	+ 228	+ 258	+ 220	+ 210	+ 240
9 "	+ 202	+ 264	+ 287	+ 297	+ 224	+ 44	+ 153	+277	+ 264	$+280$	$+243$	+ 256	+ 233
10 "	+ 215	+ 210	+ 283	+211	$+132$	- 56	+ 4^{8}	+ 139	+ 224	$+250$	+ 288	+ 269	+ 184
	+ 178	+ 249	+ 269	+ 76	+ 149	- 39	+ 40	+ 187	+ 150	+ 215	+ 294	+ 229	+ 166
Noon	+ 246	+ 268	+ 234	$+82$	+ 135	- 25	+ 12	+171	$+143$	+ 28I	+ 32 I	+ 220	+ 174
$\mathrm{s}^{\text {h }}$. p.m.	+ 282	+ 239	+221	+ 165	+ 174	+ 23	-	+ 180	+ 221	+ 233	$+376$	+ 258	+ 197
	+254	+ 206	+ 242	+227	+ 136	$+38$	+ 84	+ 167	$+231$	+ 305	$+318$	$+342$	+ 213
	+ 271	+ 191	$+242$	+ 278	+ 22	- 44	- 77	+ 158	+ 264	+ 321	+ 284	$+329$	+ 187
4 "	+ 285	+ 352	+201	$+237$	$+50$	$+60$	- 60	+ 165	+ 315	+ 246	+ 271	$+342$	+ 205
5 "	+ 234	$+345$	+ 277	$+316$	+ 47	$+\quad 34$	- 44	+ 191	+ 340	+ 273	$+275$	+ 313	+217
6 "	$+233$	+ 371	+ 321	$+358$	+ 177	- 99	+ 22	+ 136	+ 336	+ 298	+ 284	$+347$	+ 232
7 "	+ 269	$+341$	$+435$	+ 319	$+238$	-4^{5}	+ 135	+ 264	+ 371	+ 396	+ 261	$+362$	+ 279
8 "	+ 289	+ 350	$+473$	+ 341	+ 286	+ 68	+ 159	$+341$	+ 391	$+375$	+ 238	$+376$	+ 307
9 "	+ 288	$+348$	$+483$	+ 399	+ 278	+ 185	+ 268	$+388$	$+372$	+ 361	+ 216	$+342$	+ 327
10 "	+ 295	+ 33i	+ 506	+ 361	+ 248	+ 244	+ 266	+ 409	+ 332	+ 381	+ 182	+ 316	$+323$
" ${ }^{\prime}$	+ 279	$+323$	+411	+ 280	+ 284	+ 189	$+306$	+ 384	$+335$	+ 361	+ 176	+ 306	+ 303
Means	+ 231	+ 257	$+283$	+ 271	+ 209	+ 101	+ 158	+ 267	+ 262	+ 296	+ 244	+ 258	+ 236
$\left.\begin{array}{c} \text { Number of } \\ \text { Days em- } \\ \text { ployed } \end{array}\right\}$	31	29	31	30	18	30	31	29	30	31	20	30	

Monthly Mean Electrical Potential of the Atmosphere, from Thomson’s Electrometer, on Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded oin.o20. The scale employed is arbitrary : the sign + indicates positive potential.)

Hour, Greenwich Mean Solar Time (Civilreckoning).	1884.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November	December.	
Midnight	+ 255	+ 122	$+275$	+ 252	+ 73	- 307	+ 291	$+345$	+ 358	+ 266	+ 163	+ 267	+ 197
$\mathrm{I}^{\text {h }}$ a.m.	+ 187	+ 38	- 43	+ 265	+ 150	- 27	+ 266	+ 295	+ 290	+ 224	+ 210	+ 189	+ 170
2 "	+ 164	+ 111	- 285	+ 285	+ 120	+ 144	+ 257	$+273$	+ 233	$+221$	+ 215	+ 186	$+160$
3 "	+ 67	+ 38	- 402	+ 245	$+103$	+ 26	+ 207	+ 290	+221	+ 187	+ 213	+ 148	+ 112
	+ 129	+ 81	- 442	+ 270	+ 137	-140	+ 242	+ 280	+ 195	+ 181	+ 197	+ 29	+ 97
	$+160$	+ 82	- 505	+ 238	+ 120	+ 19	+ 211	+ 277	+ 129	+ 168	+ 153	+ 17	+ 89
	+ 173	+ 57	-318	+ 300	+ 130	+ 80	+ 176	+ 222	+172	+ 146	+ 140	+ 113	$+116$
	+ 166	+ 142	-188	+ 295	+ 153	20	+ 100	+ 202	+ 195	+ 158	+ 192	+ 153	+ 129
8 "	+181	+ 169	+ 22	+ 231	$+210$	- 83	$+245$	+ 243	+ 237	+ 163	+167	+ 167	+ 163
9 "	+ 157	+ 174	+ 65	+ 292	+ 180	-293	+ 36	+ 292	+ 250	+ 144	+ 177	+ 216	+ 141
10 "	+ 166	+ 23	+ 220	+ 130	+ 117	-489	- 38	+192	+ 165	+ 50	+ 228	+ 223	+ 82
11	+ 146	+ 99	+ 108	\bigcirc	+ 147	- 284	+ 14	+168	- 44	- 23	+ 120	+ 147	+ 50
Noon	+ 161	+ 168	+ 55	-213	+ 260	-271	-96	+ 118	- 20	+ 194	+ 122	+ 101	+ 48
$\mathrm{I}^{\text {h }}$. p.m.	+181	+ 81	+ 143	+ 15	+ 163	- 30	- 54	+ 228	+ 67	+ 51	+ 202	+127	+98
	+ 109	- 7	+ 82	+ 57	- 260	- 64	+ 94	+ 165	+129	+ 209	+ 110	$+264$	+ 74
3%	+ 154	- 78	$+95$	+ 230	- 380	- 294	- 229	+ 103	+172	+ 278	+ 132	+ 256	$+\quad 37$
	+ 164	+ 268	- 17	+ 123	- 557	- 110	- 148	+125	+ 261	- 36	$+\quad 75$	+ 311	+ 38
	+ 58	+ 228	+ 113	$+255$	- 310	-300	- 126	+210	+ 339	+ 40	+ 127	+ 245	$+\quad 73$
6 "	+ 65	+ 269	$+248$	+ 315	- 217	- 959	- 46	-320	+ 291	+ 140	+117	+ 287	+ 16
7 "	+ 119	+239	$+305$	$+75$	+ 7	-739	+ 129	+ 195	+ 361	+ 280	+137	$+316$	+ 119
8 »	+167	+ 263	$+340$	+ 155	-143	- 463	+ 106	+ 248	+ 400	+ 289	+173	+ 371	+ 159
9 "	+ 191	+ 247	+ 355	+ 260	- 110	- 47	+ 266	$+303$	$+393$	+ 308	+193	$+333$	+ 224
10 "	+214	+ 203	+ 365	$+365$	-157	+ 13	+ 191	$+338$	+ 345	+ 307	+ 80	+ 311	+215
11 "	+192	+ 223	+ 298	+ 160	- 7	-177	+ 259	+ 333	+371	+ 306	+ 55	+ 315	+ 194
Means	+ 155	+ 135	$+37$	+ 192	3	- 201	$+\quad 98$	+214	$+230$	+ 177	+ 154	$+212$	+117
$\left.\begin{array}{c} \text { Number of } \\ \begin{array}{c} \text { Days em- } \\ \text { ployed } \end{array} \\ \hline \end{array}\right\}$	14	12	6	11	3	7	14	6	10	9		15	-•

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days, at every Hour of the Dar.
(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the sign + indicates positive potential.)

Hour, Greenwich Mean Solar Time (Civilreckoning).	1884.												YearlyMeans.
	January.	February.	March.	April.	May.	June	July.	August.	September.	October.	November.	December.	
Midnight	+ 272	$+350$	$+4^{15}$	$+382$	+ 326	$+317$	+ 330	$+383$	$+248$	+ 414	+ 144	+ 206	+316
$\mathbf{1}^{\text {b }}$. a.m.	+ 252	$+303$	+ 378	$+349$	$+335$	+ 322	$+342$	$+370$	+ 214	+ 393	+ 180	+ 180	+ 301
2 "	+ 23 I	+ 305	+ 328	$+316$	$+3_{14}$	+ 308	+ 310	$+375$	+ 192	+ 369	+ 197	+ 118	$+280$
3 "	+ 219	+ 292	+311	+ 301	$+323$	+ 311	$+316$	+ 353	+198	$+356$	+ 229	+ 154	+ 280
4 "	+211	+ 279	+ 290	+ 281	+ 309	$+274$	+ 311	$+320$	+ 191	$+337$	+ 233	$+160$	+ 266
5 "	+ 205	+ 282	+ 280	+ 287	+ 292	+ 274	+ 313	+212	+177	$+338$	+221	+ 189	+ 256
	+ 182	+ 295	+ 272	+ 293	+ 328	+ 312	+ 325	$+346$	+ 166	$+320$	+ 216	+ 198	$+271$
7 "	+ 220	+ 315	+ 306	+ 315	+ 282	$+230$	$+352$	$+339$	+ 148	+ 289	+ 223	+ 196	+ 268
	+ 228	+ 342	+ 338	+ 327	+ 231	$+216$	$+346$	+ 328	+ 195	+ 291	+ 271	+ 218	$+278$
9 "	+ 244	+ 359	+ 359	+ 336	$+223$	+ 159	+ 263	+ 275	+ 229	$+344$	$+320$	+ 265	+ 281
10 "	+ 267	+ 386	+ 327	+ 284	+ 132	+ 90	+ 182	+ 124	+213	$+352$	+ 384	+ 285	+ 252
11 "	+ 198	$+393$	+ 331	+ 255	$+168$	$+42$	+ 92	+ 192	+ 228	+ 313	+ 446	+ 295	+ 246
Noon	+ 338	$+374$	+ 298	+ 273	+ 159	$+62$	+ 110	+ 185	+ 236	$+327$	$+486$	+ 305	+ 263
$\mathbf{l}^{\text {h }}$. p.m.	$+382$	+ 384	+ 227	+ 257	+ 199	+57	+ 41	+ 166	+ 275	+317	$+506$	$+360$	+ 264
	+ 399	+ 388	+ 319	$+330$	+ 214	+ 81	$+\quad 73$	+ 165	+ 251	$+364$	$+474$	+ 405	+ 289
3 "	+ 389	+ 399	$+313$	$+315$	+ 184	+ 43	+ 8	+ 168	$+303$	$+360$	+ 449	$+378$	+ 276
4 "	+ 405	+ 425	+ 321	$+29^{3}$	+ 190	+ 124	- 52	+ 171	$+332$	$+375$	+ 457	$+351$	+ 283
5 "	+ 393	$+433$	+ 355	$+377$	+ 230	+ 147	-43	+ 182	+ 331	+ 382	$+430$	+ 386	$+300$
6 "	$+382$	+ 452	$+433$	$+393$	+ 279	$+169$	+ 36	+ 251	$+364$	$+372$	$+463$	+ 412	$+334$
7 "	+ 422	$+435$	+ 494	$+457$	$+376$	+ 173	+ 82	+ 280	+ 384	$+446$	+407	+ 401	$+363$
8 "	+ 428	+ 444	+ 536	+ 484	+ 409	+ 229	+ 163	+ 368	+ 385	+ 42 I	+ 334	$+385$	+ 382
9 "	+ 405	+ 449	$+533$	+ 491	$+400$	$+263$	+ 268	+ 413	+ 344	+ 387	+273	+ 358	$+382$
10 "	+ 414	+ 445	+ 557	+ 316	+ 382	+ 319	+ 330	+ 440	+ 334	+ 408	+289	+ 343	+ 381
II "	$+400$	+ 415	$+493$	+ 314	$+382$	+ 298	+ 342	+ 410	+ 324	+ 374	+ 286	+ 325	+ 364
Means	$+312$	$+373$	$+367$	$+334$	+ 278	+ 201	+ 202	+ 284	+ 261	+ 360	+ 330	+ 286	+ 299
$\left.\begin{array}{c} \text { Number of of } \\ \text { Days em- } \\ \text { ployed } \end{array}\right\}$	13	13	20	15	12	21	12	22	16	18	7	11	

Amount of Rain collected in each Month of the Year 1884.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{$$
\begin{gathered}
\text { 1884, } \\
\text { MONTH. }
\end{gathered}
$$} \& \multirow{3}{*}{Number
of
Rainy
Days.} \& \multicolumn{8}{|c|}{Monthly Amount of Rain collected in each Gauge.}

\hline \& \& Selfregistering Gauge of Osler's Anemometer \& Second Gauge at Osler's Anemometer \& On the Roof of the Octagon Room. \& On the Roof of the Magnetic Observatory. \& On the Roof of the Photographic Thermometer Shed. \& Gauges \& tly sunk in \& ground.

\hline \& \& No. 1. \& No. 2. \& No. 3. \& No. 4. \& No. 5. \& No. 6. \& No. 7. \& No. 8.

\hline \& \& in. \& tn. \& in. \& $\mathrm{in}^{\text {, }}$ \& ${ }^{\text {in. }}$ \& in. \& in. \& in.

\hline January.............. \& 15 \& $0 \cdot 869$ \& 0.831 \& $1 \cdot 165$ \& 1452 \& 1714 \& 1771 \& 1.677 \& 1.740

\hline February.............. \& 13 \& 0.841 \& 0.841 \& 1.165 \& $1 \cdot 245$ \& 1.391 \& 1496 \& 1.413 \& $1 \cdot 457$

\hline March \& 11 \& - 0942 \& 0.951 \& 1.023 \& $1 \cdot 175$ \& 1.332 \& 1.369 \& $1 \cdot 252$ \& 1.334

\hline April. \& 15 \& $0 \cdot 770$ \& $0 \cdot 794$ \& $\bigcirc \cdot 936$ \& 11009 \& 1.103 \& 1-108 \& 1.007 \& $1 \cdot 050$

\hline May. \& 10 \& 0.614 \& - 0.565 \& 0.685 \& 0.843 \& - 942 \& $\bigcirc \cdot 959$ \& $0 \cdot 890$ \& . $0 \cdot 941$

\hline June.. \& 8 \& $1 \cdot 938$ \& 1.896 \& 2.060 \& $2 \cdot 160$ \& $2 \cdot 235$ \& $2 \cdot 244$ \& $2 \cdot 200$ \& $2 \cdot 210$

\hline July................. . \& 16 \& $1 \cdot 285$ \& I $\cdot 059$ \& 1.360 \& 1.593 \& $1 \cdot 705$ \& 1771 \& 1.678 \& 1720

\hline August \& 8 \& $0 \cdot 468$ \& 0.413 \& 0.582 \& 0.630 \& 0.655 \& 0.667 \& 0.647 \& 0.656

\hline September. \& 12 \& 1-178 \& $1 \cdot 151$ \& 1.620 \& $1 \cdot 992$ \& 2.081 \& 2 *090 \& $2 \cdot 076$ \& 2.085

\hline October \& 12 \& 0.544 \& 0.519 \& 0.669 \& $0 \cdot 961$ \& $1 \cdot 025$ \& 1 \% 041 \& $1 \cdot 019$ \& 1.020

\hline November \& 12 \& 0.562 \& 0.543 \& $0 \cdot 751$ \& $0 \cdot 906$ \& - 9.988 \& - 993 \& - 990 \& 1.003

\hline December \& 18 \& 1 280 \& 1.258 \& 18823 \& $2 \cdot 085$ \& $2 \cdot 350$ \& $2 \cdot 538$ \& $2 \cdot 495$ \& 2.511

\hline Sums \& 150 \& 11-291 \& 10.821 \& 13.839 \& $16 \cdot 051$ \& 17.521 \& $18 \cdot 047$ \& $17 \cdot 344$ \& 17.727

\hline $$
\text { Height of }\left\{\begin{array}{c}
\text { above the } \\
\text { ground. }
\end{array}\right.
$$ \& \}.. \& pt. in.
50.8 \& $$
\begin{aligned}
& \text { ft. in in } \\
& 50.8
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { ft. in. } \\
& 38.4
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { ft. in. } \\
& 21,9
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { fthin in } \\
& 10.0
\end{aligned}
$$ \& t.

0.0 .5
0.5 \& tr. in.
0.5
0.5 \&

\hline $$
\begin{gathered}
\text { receiving } \\
\text { Surface }
\end{gathered}\left\{\begin{array}{c}
\text { above mean } \\
\text { sea level. }
\end{array}\right.
$$ \& \}.. \& ${ }_{\text {ft. in. }}^{205.6}$ \& ${ }^{\text {frt. in. }} \mathbf{}$ \& \[

$$
\begin{aligned}
& \text { it. in. } \\
& \text { re3. }
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { ft. in. } \\
& 164 \cdot 10
\end{aligned}
$$
\] \& ${ }_{155.3}^{\text {ta }}$ in. \& ${ }^{\text {cta }}$ in. ${ }^{\text {in. }}$ \&

\hline
\end{tabular}

\qquad
-

OBSERVATIONS

of

LUMINOUS METEORS.

1884.

Path of Meteor through the Stars.
1

Appeared near ζ Ursæ Majoris shot towards γ Draconis. Shot from ζ Leonis towards y Ursæ Majoris.

A large meteor travelling N.E. from direction of Ursa Major. At its disappearance it broke into three large pieces.
From direction of a point 2° below γ Persei passed 10° above β Andromedæ.
From direction of a Persei passed midway between δ and ϵ Cassiopeiæ.
From direction of β Urse Minoris towards Capella.
Disappeared near a point midway between a and β Ursæ Majoris moving from direction of a point near a Persei (curved path).
From direction of Polaris towards γ Cephei.
From near γ Ursm Minoris towards a Draconis.
From direction of δ Cassiopeiæ towards η Persei.
From near η Urse Majoris disappeared near ϵ Böotis.
Appeared near ، Cephei disappeared beyond α Cassiopeiæ.
From direction of α Draconis passed between and disappeared beyond ζ and ϵ Ursæ Majoris.
From direction of γ Persei towards Capella.
From direction of a point about 8° above γ Andromedæ towards a point midway between β Pegasi and α Andromedæ. Appeared midway between α and β Cassiopeix and moved towards η Pegasi.
Appeared midway between α and β Cassiopeiæ and shot towards a point 10° above η Pegasi.
From direction of a point between ϵ and δ Cassiopeiæ shot across Polaris towards β Ursæ Minoris.
From a point 2° or 3° below γ Andromedæ towards a point 7° or 8° Delow β Andromedæ.
Passed midway between γ Pegasi and a Andromedæ moving to left.
Passed a few degrees above a Andromedæ moving towards a Pegasi.
From direction of a point 2° above β Ursæ Minoris shot towards α Lyræ.
From Capella shot nearly perpendicularly downwards.
From a few degrees to right of γ Ursæ Majoris disappeared near η Ursæ Majoris.
From direction of γ Urse Minoris towards δ Draconis.
From a point a little to left of γ Ursæ Minoris disappeared beyond η Draconis.
From direction of α Persei towards η Persei.
Appeared near Saturn and disappeared near β Canis Minoris.
From near a Ursæ Majoris disappeared beyond δ Ursæ Majoris.
From direction of Polaris passed across and disappeared beyond γ Ursæ Minoris.
Appeared near θ Cassiopeiom and disappeared near κ.Cassiopeix.
From near ζ Ursæ Majoris disappeared a little below η Urse Majoris.
From near ζ Draconis moved perpendicularly downwards.
Shot from a Ursæ Majoris towards κ Draconis.
From direction of Capella towards the Pleiades.
Appeared near ، Geminorum disappeared about 10° below γ Geminorum.
From about midway between α and β Ursæ Majoris across a point 5° above δ Ursæ Majoris.
From direction of Castor across a point 10° below Aldebaran.
From direction of a point 2° above Castor passed a few degrees below Saturn.

[^0]: for the Magnetic Diurnal Inequalities :

[^1]: On November to the cord attaching the pulley of the suspension skein to the small windlass at the back of the brick pier was found broken; and at

[^2]: The needles B_{1} and B_{2} are 9 inches in length; C_{1} and $C_{2}, 6$ inehes; and D_{1} and $D_{2}, 3$ inches.

