RESULTSOF THE
MAGNETICAL AND METEOROLOGICAL OBSERVATIONS
MADE AT
THE ROYAL OBSERVATORY, GREENWICH,
IN THE YEAR
1882 :

UNDER THE DIRECTION OF

W. H. M. CHRISTIE, M.A. F.R.S.
ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY

 IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON:
PRINTEDBYEYREAND SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY.

FOR HER MAJESTY'S STATIONERY 0PFICE.
1884.

1 N D E X.

INTRODUCTION.
page
Personal Establishment and Arrangements iii
General Description of the Buildings and Instruments $i i u$
The Magnetical and Meteorological Observatory iii
Positions of the Instruments iv and v
Subjects of Observation $v i$
Magnetic Instruments.
Upper Declination Magnet $\boldsymbol{v i}$
Its Suspension: Stand: Double Box: Collimator: and Theodolite vi and vii
Its Collimation Error: Torsion Force of its Suspending Skein viiii
Determination of the reading of the Azimuthal Circle of the Theodolite corresponding to the Astronomical Meridian $i x$
Method of Making and Reducing Observations for Magnetic Declination $i x$
Lower Declination Magnet \boldsymbol{x}
General principle of Photographic Registration $x i$
Arrangements for recording the Movements of the Declination Magnet xii
Scale for measurement of Ordinates of the Photographic Curve xiii
Horizontal Force Magnet xiv
Magnet Carrier: Suspension Skein: Suspension Pulleys $x i v$
Plane Mirror, Telescope, and Scale for Eye-observation $x i v$ and $x v$
Adjustment of the Magnet $x v$ and $x v i$
Eye-observations: Photographic Record xvii and xviii
Scale for measurement of Ordinates of the Photographic Curve xviii
Temperature coefficient xviii
Vertical Force Magnet xix
Supporting frame, Carrier, and Knife-edge xix
Plane Mirror, Telescope, and Scale for Eye-observation $x i x$
Time of Vibration in the Vertical and Horizontal Planes $\boldsymbol{x} x$
Determination of the value of the Scale $x x i$
Eye-observations: Photographic Record $x x i$
Scale for measurement of Ordinates of the Photographic Curve xxii
Temperature coefficient xxii
Dip Instrument xxiii
Deflexion Instrument xxiv
RA 5625 . Wt. 21369. $\left[\begin{array}{ll}a & 2\end{array}\right]$

INDEX.
INTRODUCTION-concluded. PAGE
Earth Current Apparatus $\boldsymbol{x x v i}$
Earth Connexions: Wire Circuits xxvi
Arrangements for Photographic Registration xxvii
Magnetic Reductions xxvii
Treatment of the Photographic Curves xxvii and xxviii
Results in terms of Gauss's Absolute Unit xxviii
Magnetic Disturbances and Earth Currents xxixScale Values of the different Magnetic Elements, and Comparative Values for different
Absolute Units $x_{x x}$ and $x x x i$
Notes referring to the Plates xxxizMeteorological Instruments.
Standard Barometer xxxiii
Its Position: Diameter of Tube : Correction for Capillarity xxxiii
Correction for Index Error: Comparison with Kew Standard xxxiui
Photographic Barometer xxxiii
Arrangements for Photographic Registration xicxiiio
Determination of the Scale xxxiv
Dry and Wet Bulb Thermometers xxxiv
Revolving Frame: Standard Thermometer $x x x i v$ and $x x x v$
Corrections for Index Error xxxv
Photographic Dry and Wet Bulb Thermometers $x x x v$
Radiation Thermometers xxxvei
Earth Thermometers xxxxvi
Osler's Anemometer xxxviz
Method of registering the Direction and Pressure of the Wind xxxvvii and xxxviii
Its Rain-gauge xxxviiii
Robinson's Anemometer xxxviii
Rain-Gauges xxxix
Electrometer $x l$
Instrument employed : general description $x l$
Method of collecting the Electricity of the Atmosphere $x l i$
System of Registration $x l i$
Sunshine Instrument $x l i i$
Ozonometer $x l i i$
Meteorological Reddctions xliii
System of Reduction xliii
Deduction of the Temperature of the Dew-Point, and of the degree of Humidity x xiv
Rainfall: Clouds and Weather: Electricity xlv to xlvi
Meteorological Averages $x l v i i$
Observations of Luminous Meteors xlviii

I N DEX.

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:-
Reduction of the Magnetic Observations(iii)
Table 1.-Mean Magnetic Declination West for each Astronomical. Day (iv)
Table II.—Monthly Means of Magnetic Declination West at each Hour of the Day (iv)
Table III.-Mean Magnetic Declination in each Month West; and excess of Magnetic Declination above 17°, expressed as Westerly Force in terms of Gauss's Metrical Unit (v)
Table IV.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Astro- nomical Day (v)
Table V.-Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet, for each Astronomical Day (vi)
Table VI.-Monthly Means of Horizontal Magnetic Force (diminished by a Constant) at each Hour of the Day (vi)
Table VII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet at each of the ordinary Hours of observation .
Table VIII.—Mean Horizontal Magnetic Force in each Month, uncorrected for Temperature, expressed in parts of the whole Horizontal Force (diminished by a Constant), and expressed in terms of Gauss's Metrical Unit (diminished by a Constant); and Mean H.F. Temperature for each Month (vii)
Table IX.-Mean Vertical Magnetic Force (diminished by a Constant) for each Astro- nomical Day (vii)
Table X.-Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnet for each Astronomical Day (viii)
Table XI.-Monthly Means of Vertical Magnetic Force (diminished by a Constant) at each Hour of the Day (ix)
Table XII.-Monthly Means of Readings of the Thermometer placed within the box in- closing the Vertical Force Magnet at each of the ordinary Hours of observation (ix)
Table XIII.-Mean Vertical Magnetic Force in each Month, uncorrected for Temperature, expressed in parts of the whole Vertical Force (diminished by a Constant), and expressed in terms of Gauss's Metrical Unit (diminished by a Constant); and Mean V.F. Temperature for each Month (x)
Table XIV.-Mean Diurnal Inequalities of Declination, Horizontal Force, and Vertical Force for the year (xi)
Table XV.-Diurnal Range of Declination and Horizontal Force as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register on each day (xii)
Table XVI.-Monthly Mean Diurnal Range of Declination and Horizontal Force (xii)
Results of Observations of the Magnetic Dif (xiii)
Dips observed (xiv)
Monthly Means of Magnetic Dips (xvi)
Yearly Means of Magnetic Dips, and General Mean xvii)

INDEX.

results of magnetical and meteorological observations-continued.Observations of Deflexion of a Magnet for Absolute Measure of HorizontalForce(xix)Abstract of the Observations of Deflexion of a Magnet, and of Vibrations of the Deflecting Magnet for Absolute Measure of Horizontal Force ($\mathbf{x x}$)
Computation of the Values of Absolute Measure of Horizontal Force (xxi)
Magnetic Disturbances and Earth Currents (xxiii)
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 5^{\prime} in Declination, 0.0015 in Horizontal Force, or 0.0005 in Vertical Force, taken from the Photographic Register (xxiv)
Explanation of the Plates of Magnetic Disturbances and Earth Currents (xxviii)
Plates I. to XXII, photo-lithographed from tracings of the Photographic Registers of Mag-netic Disturbances and Earth Currents.
Results of Meteorological Observations (xxix)
Daily Results of Meteorological Observations (xXX)
Highest and Lowest Readings of the Barometer (liv)
Absolute Maxima and Minima Readings of the Barometer for each Month (lvi)
Monthly Results of Meteorological Elements (lvii)
Monthly Mean Reading of the Barometer at every Hour of the Day (lviii)
Monthly Mean Temperature of the Air at every Hour of the Day (lviii)
Monthly Mean Temperature of Evaporation at every Hour of the Day (lix)
Monthly Mean Temperature of the Dew-Point at every Hour of the Day (lix)
Monthly Mean Degree of Humidity at every Hour of the Day (lx)
Total Amount of Sunshine registered in each Hour of the Day in each month (lx)
Earth Thermometers :-
(I.) Reading of a Thermometer whose bulb is sunk to the depth of $25 \cdot 6$ feet (24 Frenchfeet) below the surface of the soil, at Noon on every Day(lxi)
(II.) Reading of a Thermometer whose bulb is sunk to the depth of $12 \cdot 8$ feet (12 French feet) below the surface of the soil, at Noon on every Day (lxi)
(III.) Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day (lxii)
(IV.) Reading of a Thermometer whose bulb is sunk to the depth of $3 \cdot 2$ feet (3 French feet) below the surface of the soil, at Noon on every Day (lxiii)
(V.) Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below ae surface of the soil, at Noon on every Day (lxiv)
(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day (lxv)
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer (lxvi)
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer (lxviii)
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day (lxix)

INDEX.

RESUL'TS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS-concluded.Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer,at every Hour of the Day .(lxx)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day. (lxxi)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on
Non-Rainy Days, at every Hour of the Day (lxxii)
Amount of Rain collected in each Month by the different Rain Gauges (lxxiii)
Observations of Aurora Borealis (lxxiv)
Observations of Luminous Meteors (lxxvii)

RESULTS

of

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS.

1882.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1882.

Abstract

Introduction. § 1. Personal Establishment and Arrangements. During the year 1882 the establishment of Assistants in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Ellis, Superintendent, and William Carpenter Nash, Assistant, who had the aid usually of four Computers. The names of the Computers who were employed at different times during the year are, John A. Greengrass, William Hugo, Ernest E. McClellan, William J. Sanders, and Frank Finch.

Mr. Ellis controls and superintends the whole of the work of the Department. Mr. Nash is charged generally with the instrumental adjustments, the determination of the values of instrumental constants, and the more delicate magnetic observations. He also specially superintends the Meteorological Reductions. The routine magnetical and meteorological observations have been in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. On its east stands the New Library (erected at the end of the year 1881), in the construction of which non-magnetic bricks were used, and every care was taken to exclude iron. The Magnetical and Meteorological Observatory is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the directions of the cardinal magnetic points as they were in 1838 . The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room ; the stove which warms this room, and its Hue, are of copper. The remaining portion, consisting of the eastern, southern and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite for determination Ra 5625.
of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of the position of the astronomical meridian. Both the magnet and its theodolite are supported on piers built from the ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern being supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the point of junction of the southern and western arms. The Sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time employed for photographic record of the variations of declination, as well as for absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were subject in the upper room to too great variations of temperature, a room known as the Magnet Basement was in the year 1864 excavated below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new declination magnet for photographic record of declination, were mounted therein, in order that they might be less exposed to changes of temperature. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, in order that the position of the latter should not be affected thereby; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. The mean-time clock is attached to the western wall of the southern arm. On the northern wall, near the photographic barometer, is fixed the Sidereal standard clock of the Astronomical Observatory, Dent 1906, communicating with the chronograph and with clocks of the Astronomical Department by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated
by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped.

A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this platform.

An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zinc-built room adjacent to the computing room on its western side.

To the south of the Magnet House, in what is known as the Magnet Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its northwestern corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden hut. About 25 feet to the west of the photographic thermometers is situated the thermometer stand carrying the thermometers used for eye observations, and adjacent thereto on the north side are several rain gauges.

The Magnet Ground is bounded on its south side by a range of seven rooms, known as the Magnet Offices. No. 1 is used as a general store room, and in it is placed the Watchman's Clock ; Nos. 2, 3, and 4 are used for photographic purposes in connexion with the Photoheliograph, placed in a dome adjoining No. 3, on its south side; Nos. 5 and 6 are store rooms. In No. 7 are placed the Dip Instrument and Deflexion apparatus.

To the south of the Magnet Offices, in what is known as the South Ground, are placed the thermometers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to the sky. On 1882 March 4 these thermometers were removed to the position in the Magnet Ground which they had occupied up to 1880 January 31.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind and amount of rain, and Robinson's, giving continuous record of velocity, are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning

$v i$ Introduchion to Greenwich Magnetical Observations, 1882.

of the year 1848 these were superseded by the introduction of the method of photographic registration, by which means a continuous record of the various elements is obtained.
For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which from time to time have been made, the reader is referred to the Introduction to the Magnetical and Meteorological Observations for the year 1880 and previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 3. Subjects of Observation in the year 1882.

These comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire; eye observation of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observation of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud; and other occasional phenomena.

§ 4. Magnetic Instruments.

Upper Declination Magnet and its Theodolite.-The upper declination magnet is by Meyerstein of Göttingen; it is a bar of hard steel, 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick, and is employed solely for the determination of absolute declination. The magnet carrier was also made by Meyerstein, since however altered by Troughton and Simms; the magnet is fixed therein by two pinching screws. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently on the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalik of the magnet carrier; to the upper portion carrying the vernier is attached, by a hook, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, \&c., is carried by a braced wooden tripod stand, whose feet rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to the roof. The upper end of the suspension skein is attached to a short square wooden rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upper end of the rod is fixed a leather strap, which, passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangular wooden box (one box within another), both boxes being covered with gilt paper on their exterior and interior sides, and having holes at their south and north ends, for illumination of the magnet-collimator and for viewing the collimator by the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried respectively by two sliding frames fixed by pinching screws to the south and north arms of the magnet. The cobweb cross is in the principal focus of the lens, and its image in the theodolite telescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.

On September 10 the suspension skein gave way. A new skein was attached on September 11, and on September 12 observations were recommenced.

The theodolite, by which the position of the upper declination magnet is observed, is by Troughton and Simms. It is planted about 7 feet north of the magnet. The radius of its horizontal circle is 8.3 inches, and the circle is divided to 5^{\prime}, and read, by three verniers, to $5^{\prime \prime}$. The theodolite has three foot-screws, which rest in brass channels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches : it is carried by a horizontal transit axis $10 \frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eye-piece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carries the micrometer-head. The value of one division of the striding level is considered to be equal to $1^{\prime \prime} \cdot 05$. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as δ Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance
of about 270 feet from the theodolite, is, in addition, provided by which to check the continued steadiness of the theodolite.

The inequality of the pivots of the axis of the theodolite telescope was found from several independent determinations made at different times to be very small. It appears that when the level indicates the axis to be horizontal the pivot at the illuminated end of the axis is really too low by $1^{\text {div }} \cdot 3$, equivalent to $1^{\prime \prime} \cdot 4$.

The value in arc of one revolution of the telescope-micrometer is $1^{\prime} .34^{\prime \prime} \cdot 2$.
The reading for the line of collimation of the theodolite telescope was found, by ten double observations, 1882 January 31 , to be $100^{r} \cdot 221$, and by ten double observations, 1882 September 14, 100r.297. The value used throughout the year 1882 was $100^{\text {r. }} 250$.

The effect of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by ten double observations made on 1881 September 8, which showed that in the ordinary position of the glass the theodolite readings were diminished by $18^{\prime \prime} \cdot 6$. Another set of observations, made on 1882 September 14, gave $20^{\prime \prime} \cdot 1$. The mean of these, $19^{\prime \prime} \cdot 4$, has been added to all readings throughout the year 1882 .

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collimator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1882 was $26^{\prime} .9^{\prime \prime} \cdot 3$, being the mean of determinations made on 1878 December 10, 1879 December 9, 1880 October 26, 1881 September 8, and 1882 September 12 , giving respectively $26^{\prime} .13^{\prime \prime} \cdot 6,26^{\prime} .2^{\prime \prime} \cdot 2,25^{\prime} .56^{\prime \prime} \cdot 6,26^{\prime} .18^{\prime \prime} \cdot 9$, and $26^{\prime} .15^{\prime \prime} \cdot 0$. With the collimator in its usual position, above the magnet, the amount has to be subtracted from all readings.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until a brass bar (of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The brass bar is thus inserted usually about once a month, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for the amount by which the magnet is deflected from the meridian by the torsion force of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion circle by a definite amount, usually 90°, thus giving the skein the same amount of azimuthal twist, and observing, by the theodolite, the displacement in the position of the magnet thereby produced, from which is derived the ratio of the torsion force of the skein to the earth's magnetic force. In this way the torsion force of the skein was, on 1879 December 9 , found to be $\frac{1}{17}$ th part of the earth's magnetic force: on 1881 September 8, it was found
to be $\frac{1}{174}$ th part, and on 1882 September 13 (after renewal of the suspension skein, see page vii), $\frac{1}{126}$ th part. In general during the year 1882 the plane in which the suspeusion skein was free from torsion so nearly coincided with the magnetic meridian that corrections for the effect of torsion were required only during portions of the six months from May to October. On collecting the results, however, it appeared that there was a break of continuity between the values of absolute declination given with the old skein, in use up to September 10, and those found from the new skein mounted on September 11, the mean values given with the new suspension being about 3^{\prime} less than the values deduced with the old suspension. In regard to this it is to be remarked that the photographic trace of the lower declination magnet conclusively shows that no such change occurred at this time. There seems thus to be no doubt that the later values obtained with the old suspension of the upper magnet were in some manner influenced by the failing thread, indeed this had been suspected before the suspension gave way, from the character of the resulting mean declination curve, which indicates that this influence became sensible from about the month of June. Corrections proportional to the time have therefore been applied to the old suspension results as follows, in June $-0^{\prime} \cdot 7$, July $-l^{\prime} \cdot 5$, August $-2^{\prime} \cdot 2$, and from September 1 to $10-3^{\prime} \cdot 0$. Though a little uncertainty may thus attach to the absolute declination values intermediate between June and September, the diurnal variations and the changes from day to day would not be affected.

The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1880 December 29 to be $30^{8.78, ~ o n ~} 1881$ September 9, $31^{\circledR} 30$, and on 1882 September 14, $31^{\circledR} 20$.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined about once in each month by observation of the stars Polaris and δ Ursæ Minoris. The fixed mark is usually observed weekly. The concluded mean reading of the circle for the south astronomical meridian (deduced entirely from the observations of the polar stars), used during the year 1882 for reduction of the observations of the declination magnet, was $27^{\circ} .3^{\prime} .16^{\prime \prime} .8$.

In regard to the manner of making and reducing observations made with the upper declination magnet, the observer on looking into the theodolite telescope sees the image of the diagonally placed cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds, the observer first applies his eye to the telescope about one minute, or two vibrations, before the pre-arranged time of observation, and, with the vertical wire carried by the telescope-micrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and so on, taking in all four readings. The
mean of each pair of adjacent readings of the micrometer is taken, giving three means, and the mean of these three is taken as the adopted reading. In practice this is done by adding the first and fourth readings to twice the second and third, and dividing the sum by 6 . Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the prearranged time, the other at the vibration following. The verniers of the theodolitecircle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circle-reading corresponding to the position of the magnet is found. The difference between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register of the lower declination magnet. The times of observation of the upper declination magnet are usually $1^{\mathrm{h}} .5^{\mathrm{m}}, 3^{\mathrm{h}} .5^{\mathrm{m}}, 9^{\mathrm{h}} .5^{\mathrm{m}}$, and $21^{\mathrm{h}} .5^{\mathrm{m}}$ of Greenwich mean time.

Lower Declination Magnet.-The lower declination magnet is used simply for the purpose of obtaining photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long, $1 \frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one of the crossed slates resting on the brick piers rising up from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the brass bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet not being necessary in this case.

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce
the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of $5: 2$ nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication an accurately turned cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indications whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal : so also can two different galvanic earth currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similarly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement is horizontal, for which a horizontal cylinder is provided, no other register being made on this cylinder.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and a cylindrical glass cover, open at one end, slipped over it, the cylinder so prepared is placed in position, and connected with the clock-movement: it is then ready to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, where necessary, a reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray exterior light from reaching the photographic paper.

In June 1882 the photographic process for so many years employed, as described in the concluding section of the Introduction to previous volumes, was discarded, and a dry paper process introduced, the argentic-gelatino-bromide-paper, as prepared by Messrs. Morgan and Kidd of Richmond (Surrey) being used with ferrous oxalate development. The greater sensitiveness of this paper permits diminution of the

xii Introduction to Greenwich Magnetical Observations, 1882.

effective surface of the magnet mirrors, and allows also the use of smaller gas flames. In the case of the vertical force magnet the old and comparatively heavy mirror has been replaced by a small and light mirror with manifest advantage, as will be seen in the description of the vertical force magnet. The new paper works equally well at all seasons of the year, and any loss of register on account of photographic failure is now extremely rare.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter, (reduced by a stop, on the introduction of the new photographic paper, to an effective diameter of about 1 inch), which thus receives all the angular movements of the magnet. The revolving ebonite cylinder is $11 \frac{1}{2}$ inches long and $14 \frac{1}{4}$ inches in circumference : it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force emay both be registered on the same cylinder, which makes one complete revolution in 26 hours.

The light used for obtaining the photographic record is that given by a flame of coal gas, charged with the vapour of coal naphtha. A vertical slit about $0^{\text {in }} 3$ long and $0^{\text {in }} \cdot 01$ wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror and the registering cylinder, and its distance from the concave mirror of the magnet is about 25 inches. The distance of the axis of the registering cylinder from the concave mirror is $134 \cdot 4$ inches. Immediately above the cylinder, and parallel to its axis, are placed two long reflecting prisms (each 11 inches in length) facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, falls on the concave mirror, and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism, by the action of which it is reflected downwards to the paper on the cylinder as a small spot of light. A small azimuthal adjustment of the concave mirror allows the position of the spot to be so adjusted that it shall fall not at the centre of the cylinder but rather towards its western side, in order that the declination trace shall not become mixed with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described
is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.

By means of a small prism, fixed near to the registering cylinder, the light from another lamp is made to form a spot of light in a fixed position on the cylinder, so that, as the cylinder revolves, a reference or base line is traced out on the paper, from which, in the interpretation of the records, the curve ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and lets it in again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and at which it was again let in. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour of changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is in some measure departed from. To obviate any uncertainty that might on such occasions arise from the mixing on the paper of the two ends of a trace slightly longer than 24 hours, it was, as has been mentioned, arranged that one revolution of the cylinder should be made in 26 hours. The actual length of 24 hours on the sheet is about $13 \cdot 3$ inches.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, $134 \cdot 4$ inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4.691 inches on the photographic paper. A small scale of pasteboard is therefore prepared, graduated on this unit to degrees and minutes. The ordinates of the curve as referred to the base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times daily, the apparent value of the base line, as inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly, a mean base line value is adopted for use through each group. This adopted base line value is written upon
every sheet. Then, by the same pasteboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure.

Horizontal Force Magnet.-The horizontal force magnet, for measure of the variations of horizontal magnetic force, was furnished by Meyerstein of Göttingen, and like the two declination magnets, is 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For support of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnet Basement to the Upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line; and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line: these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about $7^{\mathrm{ft}} 6^{\mathrm{in}}$. The distance between the branches of the skein, where they pass over the upper pulleys, is ${ }^{\text {in. }} 14$: at the lower pulleys the distance between the branches is $0^{\text {in. }} 80$. The two branches are not intended to hang in one plane, but are to be so twisted that their torsion force will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the torsion force to draw the marked end towards the south. An oval copper bar, exactly similar to that used with the lower declination magnet, is applied also to the horizontal force .magnet, for the purpose of diminishing the small accidental vibrations.

Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations
of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90.84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror is therefore inclined to the axis of the magnet by about 19°.

To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion circle, and thereby changing the amount and direction of the torsion force produced by the oblique tension of the two branches of the suspending skein, the magnet may be made to take the same position as before, but with reversed direction of poles, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. The reading of the torsion circle will now be different, the effect of the operation being to give the difference of torsion circle reading for the same position of the magnet axis, but with the marked end opposite ways, without however affording any information as to whether the magnet axis is accurately transverse to the magnetic meridian, inasmuch as the same operation can be performed whether the magnet axis be transverse or not.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let the time of vibration be, in addition, taken in each position of the magnet. Resolve the terrestrial magnetic force acting on the poles of the magnet into two parts, one transverse to the magnet, the other longitudinal.

In the two positions of the magnet, marked end westerly and marked end easterly, the maguitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this produces force, in one case increasing that due to the torsion, and in the other case diminishing it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes.

The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore douide of the angle due to the torsion force of the suspending lines when they, in either position, neutralize the force of terrestrial magnetism.

The present suspension skein was mounted on 1880 December 30 , and on December 31 the following observations were made:-

1880, Day.	The Marked End of the Magnet.							
	West.				East.			
	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of TorsionCircle Reading.	Mean of the Times of Vibration.	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of TorsionCircle Reading.	Mean of the Times of Vibration.
Dec. 3r	-	div.	div:	s	-	div.	div.	s
	144	36.80	$8 \cdot 46$	21.30	227	$32 \cdot 52$	7.55	$20 \cdot 50$
	145	$45 \cdot 26$	7.89	21.12	228	$40 \cdot 07$	7.28	$20 \cdot 62$
	146	53.15	7.89 8.94	20.94	229	$47 \cdot 35$	7.28	$20 \cdot 76$
	147	$62 \cdot 09$	8.94 8.06	20.74	230	$55 \cdot 32$	7.97 7.94	20.90
	148	70'15	$8 \cdot 06$	$20 \cdot 54$	231	$63 \cdot 26$	7.94 8.67	21.00
					232	71.93		21.12

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read $146^{\circ} .15^{\prime}$, marked end west, and
$230^{\circ} .0^{\prime}$, marked end east, the difference being $83^{\circ} .45^{\prime}$. Half this difference, or $41^{\circ} .52^{\prime} \cdot 5$, is therefore the angle of torsion when the magnet is transverse to the meridian. The values similarly found from other sets of observations made on 1882 January 3, 1883 February 16, and 1883 December 31 were respectively $42^{\circ} .9^{\prime}$, 41°. 56^{\prime}, and $42^{\circ} .1^{\prime} \cdot 5$. The value adopted in the reduction of the observations during the year 1882 was $42^{\circ} .0^{\prime}$.

The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 146° throughout the year.

The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.

The length of $30^{\text {div. }} 85$ of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90.84 inches; consequently the angle at the mirror subtended by one division of the scale is $14^{\prime} .43^{\prime \prime} \cdot 2$, or for change of one division of scale-reading the magnet is turned through an angle of $7^{\prime} .21^{\prime \prime} 6$.

The variation' of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ cotan. angle of torsion \times value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to change of one division of scale-reading was found to be 0.002378 , which value has been used throughout the year 1882 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. -A fine vertical wire is fixed in the field of view of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually $1^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$, and 21^{h} of Greenwich mean time. Remarking that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the pre-arranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. Its index error is insignificant.

Greenwici Magnetical and Meteorological Observations, 1882.

xyiii Introduction to Greenwich Magnetical Observations, 1882.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record of the motions of the lower declination magnet. And as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter, reduced by a stop (on the introduction of the new photographic paper) to an effective diameter of about 1 inch. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages xii and $x i i i$), in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 136.8 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.

The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or 136.8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273.6 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole horizontal force will therefore be $273.6 \times$ tan. angle of torsion $\times 0.01$. Taking for angle of torsion $42^{\circ} .0^{\prime}$ the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2.464 inches, and with this unit the pasteboard scale for measure of the curve ordinates for the year 1882 was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, exactly in the same way as described for declination.

The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnetic Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnetic Basement to different temperatures, and observing the change of position of the magnet thereby produced. This process seems preferable to others in which was observed
the effect which the magnet, when inclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself. Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made in the early part of the year 1868 on the principle mentioned, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced a change of 000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east indicating that a change of 1° of temperature produced a change of 000187 of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force. It is concluded that an increase of 1° of temperature 'produces a decrease of - 00018 of horizontal force.

On March 7 the cord attaching the single pulley to the small windlass broke; this was repaired on March 8, but further adjustment having become necessary on March 10, the results for March 8 and 9 have not been employed.

Vertical Force Magnet.-The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is lozenge shaped, being broad at the centre and pointed at the ends, and is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the easterm arm. The supporting frame consists of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the axis of the magnet an angle of $52 \frac{33^{\circ}}{}{ }^{\circ}$ nearly. A telescope fixed to the west side of the brick pier supporting the theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical opal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two screw stalks, carrying adjustible screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change.in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

On 1882 August 16 the vertical force magnet was dismounted, in order that Messrs. Troughton and Simms might substitute for the mirror of 4 inches diameter a much lighter mirror of 1 inch diameter, and might lower the position of the knife-edge bar with respect to the magnet so as to permit of a diminution of the adjustible counterpoise weights which as well as the mirror appear to largely affect the temperature correction of this balance-magnet. The use of a smailer and much lighter mirror was rendered possible by the much greater sensitiveness of the new photographic paper introduced in 1882 June. The magnet was out of use until 1882 October 3, when it was remounted.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week, or more often should it appear to be desirable. From observations made on 30 days between January 4 and June 20 the time of vibration was found to be $15^{s} \cdot 223$; from observations made on 14 days between June 21 and August 15, $18^{\mathrm{s} .647}$; and from observations made on 16 days between October 3 and December 31, $13^{s} \cdot 884$. The increased value during the second period was in all probability due to the weight on the vertical stalk having been accidentally very slightly shifted in an examination of the magnet made on June 21. On remounting the instrument on October 3 the time of vibration was diminished.

The time of vibration of the magnet in the horizontal plane is determined by suspending the magnet with all its attached parts from a tripod stand, its broad side being in a plane parallel to the horizon, so that its moment of inertia is the same as when in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers is placed on the floor, at right angles to the long axis of the magnet, which scale, by reflexion, can be seen in the fixed telescope. The magnet is observed only when swinging through a small arc. Observations made in the way described on 1879 December 31 gave for the time of vibration of the magnet in the horizontal plane $=17^{\mathrm{s}} \cdot 255$:
other observations, made on 1883 April 4, after alteration of the magnet by Messrs. Troughton and Simms in the manner above described, gave $17^{\mathrm{s}} 171$.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and $30^{\text {div. }} 85$ of the scale correspond to 12 inches. Consequently the angle which one division of the scale subtends, as seen from the mirror, is $7^{\prime} \cdot 11^{\prime \prime} \cdot 2$, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is $3^{\prime} .35^{\prime \prime} .6$.

But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet, but is less in the proportion of unity to the cosine of the angle which the normal to the mirror makes with the magnet, or in the proportion of unity to the sine of the angle which the plane of the mirror makes with the magnet. This angle, as already stated, is $52 \frac{3}{4}^{\circ}$, therefore dividing the result just obtained, $3^{\prime} .35^{\prime \prime} \cdot 6$, by $\operatorname{Sin} .52 \frac{3}{4}^{\circ}$, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be $4^{\prime} .30^{\prime \prime} \cdot 9$.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ cotan. $\operatorname{dip} \times\left(\frac{T^{\prime}}{T}\right)^{2} \times$ value of one division in terms of radius, in which T^{\prime} is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. From January 4 to June 20, assuming $T^{\prime \prime}=17^{s} \cdot 255, T=15^{\varsigma} \cdot 223$, and dip $=67^{\circ} .34 \frac{1^{\prime}}{4}$, the change of vertical force corresponding to change of one division of scale reading was found to be 0.000696 ; from June 21 to August 15, with the same value for $T^{\prime \prime}$, and assuming $T=18^{s .647}$, and $\operatorname{dip}=67^{\circ} .33 \frac{1}{2}^{\prime}$, it was found to be 0.000464 ; from October 3 to December 31 with $T^{\prime}=17^{8} 171, T=$ $13^{s} 884$, and $\operatorname{dip}=67^{\circ} .34 \frac{3}{4}^{\prime}$, it was found to be 0.000829 . These values have been severally used during the periods mentioned for conversion of the observed scale readings into parts of the whole vertical force.

The method of observing with the vertical force magnet is precisely similar to that described for the horizontal force magnet, remarking the time of vertical vibration (see page $x x$), and the hours of observation are the same. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.

In the same way as described for the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. Its index error is insignificant.

The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and opportunity is taken to register on the same cylinder the varia-

xxii Introduction to Greenwich Magnetical Observations, 1882.

tions of the barometer. The slit is horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 4 inches in diameter (1 inch from October 3), and the slit is distant from it about 22 inches, being' placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical arrangements. Instead of a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall also on the lower part of the sheet. A base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of time scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.

The scale for measure of ordinates of the photographic curve is determined as follows:-The distance from the concave mirror to the surface of the registering cylinder is $100 \cdot 2$ inches. But the double of this measure, or $200 \cdot 4$ inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole vertical force, will therefore be $=200.4 \times$ tan. dip $\times\left(\frac{\mathrm{T}}{\overline{\mathrm{T}}^{\prime}}\right)^{2} \times 0.01$. Using the values of $\mathrm{T}, \mathrm{T}^{\prime}$, and of dip, before given (page axi), the movement of the spot of light on the cylinder for a change of 0.01 of vertical force is thus found to be, for the period January 4 to June 20, $3 \cdot 779$ inches, for the period June 21 to August 15, $5 \cdot 666$ inches, and from October 3 to December 31, $3 \cdot 175$ inches, and with these units the scales for measure of the curve ordinates were constructed. Base line values are then determined, and written on the sheets, exactly in the same way as was described for horizontal force.

In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made at the same time as, and in a similar manner to those for the horizontal force magnet (page reviii), it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 000880 of the whole vertical force. This is an amount of change not only much larger than has ever before been found, but it is also one which does not follow the usual law of increase of temperature producing loss of magnetic power. Yet since the effect produced is that due to the action of temperature on the various parts of the mounting of the magnet as well as on the magnet itself, the result should be superior to those found by action on the magnet alone, as in all former experiments. There would appear, therefore, to be no doubt of its accuracy in the actual case.

After the substitution of a small mirror for the large photographic mirror hitherto used (see page $x x$) other observations made 1882 October.for determination of the temperature correction in the new condition of the magnet gave for an increase of 1° of temperature an apparent increase 0.00020 of vertical force. The value of the coefficient is thus greatly reduced, although still not following the ordinary law of increase of temperature producing loss of magnetic power. In practice a nearly uniform temperature is as far as possible maintained.

Dip Instrument.-The instrument with which the observations of magnetic dip have been made during the year 1882 is that which is known as Airy's instrument. It is mounted on a stout block of wood in the Magnet Office No. 7. The plan of the instrument was arranged by Sir G. B. Airy so that the points of the needles should be viewed by microscopes, and if necessary observed whilst the needles were in a state of vibration, that there should be power of employing needles of different lengths, and that the field of view of each microscope should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the observation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, are attached to a horizontal axis which allows them to be turned round in the vertical plane so as to follow the points of the needles in the different positions which in observation they take up. The object glasses and field glasses of the microscopes are within the front glass plate, their eye glasses being outside, and turning with them on the same axis. Upon the plane side of each field glass (the side next the object glass and on which the image of the needle point is formed) a scale is etched. And on the inner side of the front glass plate is etched the graduated circle, divided to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$. The verniers (thin plates of metal, with notches instead of lines, being thus adapted to transmitted light) are carried by the horizontal axis, inside of the front glass plate, their reading lenses, attached to the same axis, being outside. Proper clamp with slow motion is provided. The microscopes and verniers are illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms are carried behind the back glass plate on a circular frame in such way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again opposite to its proper microscope or vernier.

The whole of the apparatus is planted upon a circular horizontal plate, admitting

xxio Introduction to Greenwich Magnetical Observations, 1882.

of rotation in azimuth : a graduated circle near the circumference of the plate is read by two fixed verniers.

A brass zenith point needle, having points corresponding in position to the three differen't lengths of dip needles, is used to determine the zenith point for each particular İength of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is from time to time adjusted in level. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level : the correction seldom exceeds a very few seconds.

The needles in regular use are of the ordinary construction, they are two 9 -inch needles, B_{1} and B_{2}, two 6 -inch needles, C_{1} and C_{2}, and two 3 -inch needles, D_{1} and D_{2}.

Until 1882 March 29 the Naylor equatoreal occupied the same position in the South Ground as since 1879 October. Its proximity to the Dip and Deflexion instruments has, however, been found (see Introduction, 1879, p. vi.) to exercise no appreciable influence on the indications of these instruments. On 1882 March 29 it was moved away a considerable distance, quite out of range of any sensible disturbing action.

Deflexion Instrument.-The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute intensity of magnetism, are made with a unifilar instrument, which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. It is mounted on a block of wood in the Magnet Office No. 7, on the south side of the Dip instrument.

The deflected magnet, whose use is merely to ascertain the proportion which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter : it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by Professor Balfour Stewart, and have been since used in the reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :-
The increase in the magnetic moment of the deflecting magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement $=\mu=0.00015587$.
The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=q=0.00013126$ $(t-35)+0.000000259(t-35)^{2}: t$ representing the temperature at which the observation is made.
Moment of inertia of the deflecting magnet $=K$. At temperature 30°, $\log . K=0 \cdot 66643$: at temperature $90^{\circ}=0 \cdot 66679$.
The distance on the deflection rod from $1^{\text {tt }} 0$ east to $1^{\text {tt. }} 0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $\mathrm{I}^{\text {tt. }} 3$ east to $\mathrm{l}^{\text {it. }} 3$ west is too long by 0.0053 inch.
The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0 \cdot 66727$.

If, in the deflection observation, $r=$ apparent distance of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (taking expansion of scale for $1^{\circ}=00001$), and $u=$ observed angle of deflexion, then putting $\mathrm{A}_{1}=\frac{1}{2} r^{3}$ sin. $u\left\{1+\frac{2 \mu}{r^{3}}+q\right\}$, in which $r=1.0$ foot; and $\mathrm{A}_{2}=$ corresponding expression for $r=1.3$ foot; $P=\frac{A_{1}-A_{2}}{A_{1}-\frac{A_{2}}{(1.3)^{2}}}$; but this is not convenient for logarithmic computation, especially as the logarithms of A_{1} and A_{2} are, in the calculation, first obtained. The difference between A_{1} and A_{2} being small, P may be taken equal to $\left(\log . A_{1}-\log . A_{2}\right) \frac{1.69}{(1.69-1) \text { modulus }}=\left(\log . A_{1}-\log . A_{2}\right) \times 5.64 . \quad A$ mean value of P is adopted from various observations; then m being the magnetic moment of the deflecting magnet, and X the Horizontal component of the Earth's magnetic force, $\frac{m}{\bar{X}}=A_{1} \times\left(1-\frac{P}{1}\right)$ from observation at distance 1.0 foot, or $=A_{2} \times\left(1-\frac{P}{1.69}\right)$ from that at distance 1.3 foot. The mean of these is adopted for the true value of $\frac{m}{\boldsymbol{X}}$.

Greqnwich Magnetical and Meteorological Observations, 1882.
xxvi Introduction to Greenwich Magnetical Observations, 1882.
For determination, from the observed vibrations, of the value of $m X$, let $T_{1}=$ time of vibration of the deflecting magnet corrected for rate and arc of vibration, then $T^{2}=T_{1}^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-q\right\}$, in which $\frac{H}{F}$ is the ratio of the torsion force of the suspension thread of the deflecting magnet to the earth's directive force. And $m X=\frac{\pi^{2} K}{T^{2}}$. The adopted time of vibration is the mean of 100 vibrations observed immediately before, and 100 observed immediately after the observations of deflexion.

From the combination of the values of $\frac{m}{\bar{X}}$ and $m X, m$ and X are immediately found. The computation is made with reference to English measure, taking as units of length and weight the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimetre and the grain equal to β times the milligramme, then for reduction to metric measure $\overline{\bar{X}}^{m}$ and $m X$ must be multiplied by α^{3} and $\alpha^{2} \beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{\alpha}}$. Taking the metre as equal to $39 \cdot 37079$ inches, and the gramme as equal to $15 \cdot 43249$ grains, the factor by which X is to be multiplied in order to obtain X in metric measure is $0 \cdot 46108=\frac{1}{2 \cdot 1689}$. The values of X in metric measure thus derived from those in English measure are given in the proper table. Values of X in terms of the centimètre and gramme, known as the C.G.S. unit (centimetre-gramme-second unit), are readily obtained by dividing those referred to the millimetre and milligramme by 10 .

Earth Current Apparatus.-For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires pass from the Royal Observatory to the Greenwich Railway Station and thence, by kind permission of the Directors of the South-Eastern Railway Company, along the lines of the South-Eastern Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf-Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 50°; in the Blackheath-North Kent East circuit the direct distance is $2 \frac{1}{2}$ miles, and the azimuth, from magnetic north towards west, 46°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7 \frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary.

In each crrcuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coil contains 150 turns of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire. They are placed on opposite sides of the registering cylinder, which is of course horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, on a light stalk extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surface facing opposite ways, each one towards the mirror of its respective galvanometer. In each case the light of a gas lamp, passing through a vertical slit and a vertical cylindrical lens, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming a base line are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the astronomical day.
Before proceeding to discuss the photographic records of magnetic declination, horizontal force, and vertical force, they were divided into two groups, one including all days on which the traces showed no particular disturbance, and which therefore were suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces were so irregular that it appeared impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are 15 days in the year 1882 which have been classed as days of great disturbance. These are April 16, 17, 19, 20, June 24, August 4, October 2, 5,

xxviii Introduction to Greenwich Magnetical Observations, 1882.

November 12, 13, 17, 18, 19, 20, and 21. There was lesser disturbance on 13 days, viz.: January 19, February 1, 20, June 14, July 16, 30, 31, September 11, November 11, 14, 25, December 20 and 21.

Separating the days of great disturbance, to be treated of hereafter, the photographic sheets for the remaining quiet days, including those of lesser disturbance, were thus treated. Through each photographic trace a pencil line was drawn representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day. Tables I. to III. contain the results for declination, Tables IV. to VIII. those for horizontal force, with corresponding tables of temperature, and Tables IX. to XIII. those for vertical force, with corresponding tables of temperature. Table XIV. gives the mean diurnal inequalities for declination, horizontal force, and vertical force for the year.

The temperature of the horizontal and vertical force magnets was maintained so nearly uniform through each day that the determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude, although in regard to vertical force the magnitude of the temperature co-efficient, during the early portion of the year, introduces an element of some uncertainty. It was not possible under the circumstances to maintain similar uniformity of temperature through the seasons, a point however of less importance. Following the principle adopted for many years, the results are given uncorrected for temperature, but accompanied by corresponding tables of temperature. It is deemed best that in the yearly volumes the results should be thus exhibited, as more easily admitting of independent examination. When, as is done from time to time, the results for series of years are collected for general discussion, the temperature corrections are duly taken into account.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in parts of the whole horizontal and vertical forces respectively. The results contained in Tables III., VIII., XIII., and XIV. have been also expressed in terms of Gauss's absolute unit, as referred to the metrical system of the millimètre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows:-

For variation of declination, expressed in minutes, the factor is

$$
\text { H.F. metrioal } \times \sin 1^{\prime}=1.804 \times \sin 1^{\prime}=0.0005248
$$

For horizontal force
Variation of H.F. metrical $=\frac{\text { H.F. metrical }}{\text { Former H.F. }} \times$ former variation $=1.804 \times$ former variation, the former H. F. being $=1$.

For vertical force

$$
\text { Variation of V.F. metrical }=\frac{\text { V.F. metrical }}{\text { Former V.F. }} \times \text { former variation. }
$$

The former V. F. $=1$, but the V. F. metrical $=$ H. F. metrical $\times \tan$ dip, hence taking dip $=67^{\circ} .34^{\prime}$,

Variation of V.F. metrical $=1.804 \times \tan 67^{\circ} .34^{\prime} \times$ former variation
$=4 \cdot 3696 \times$ former variation.
The measures as referred to the millimètre-milligramme-second are convertible into measures on the centimètre-gramme-second (C. G. S.) system by dividing by 10.

Tables XV. and XVI., now given for the first time, exhibit respectively the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page xaviii), and the monthly means of these numbers: In these tables the results for horizontal force are corrected for temperature. The monthly means for declination are such as, in previous volumes, have been given in the final column of Table III.; the daily values have not before been given.

In the Tables of magnetic dip, the result of each separate observation of dip with each of the six needles in ordinary use is given, and also the concluded monthly and yearly values for each needle.

The results of the observations for absolute measure of horizontal force require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument.

No numerical discussion of earth current records is contained in the present volume.

In the treatment of disturbed days it has been the custom in previous years to measure out for each element all salient points of the curves and to print the numerical values. But in the present volume it has been considered preferable to give instead reduced copies of the actual photographic curves (reproduced by photo-lithography from full-sized tracings of the original photographs), adding thereto copies of the corresponding earth current curves. The registers thus exhibited are those for the days of great and of lesser disturbance mentioned on pages xxvii and xxviii. A few other days in November have been added in order to complete the series
for the period of visibility of the great November sunspot, which appeared on the eastern limb of the Sun on November 11, and disappeared at the western limb on November 25.

The plates are preceded by a brief description of all significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1882, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

Referring now again to the plates, it may be remarked that on each day, with few exceptions, five distinct registers are given, viz. : declination, horizontal force, vertical force, and the two earth currents, all necessary information for proper understanding of the plates being given in the notes on page (xxviii). No attempt has been made to determine earth current scales in terms of any electrical unit, but it may be stated that the instrumental conditions are similar for the two circuits, excepting that the communicating wire of the E_{1} circuit is longer than that of the E_{2} circuit in the proportion of 3 to 2 , and that the distances between the earth plates of the former and of the latter are in the proportion of 6 to 5 .

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The observed temperatures being inserted on the plates, reference to the temperature coefficients of the magnets, given at page xix for horizontal force, and pages $x x i i$ and wxiii for vertical force, will show the effect produced. Briefly, an increase of nearly 6° of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of about 1° of temperature, Plates I. to VII., and an increase of 5° of temperature, Plates IX. to XXII., throws the vertical force curve downward by 0.001 of the whole vertical force.

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :-

	Length in Inches				
	Of $\mathbf{1}^{\circ}$ of Declination throughout the Year.	Of 0.01 of Horizontal Force throughout the Year.	Of 0.01 of Vertical Force.		
			$\begin{gathered} \text { January } 4 \\ \text { to } \\ \text { June } 20 . \end{gathered}$	$\begin{gathered} \text { June } 21 \\ \text { to } \\ \text { August } \mathrm{I} 5 . \end{gathered}$	$\begin{gathered} \text { October }{ }^{\text {to }} \\ \text { December 31. } \end{gathered}$
On the Photographs - On the Plates	in. $4 \cdot 691$	in. $2 \cdot 464$	in. $3 \cdot 779$	in. $5 \cdot 666$	$\begin{aligned} & \text { in. } \\ & 3 \cdot 175 \end{aligned}$
	$2 \cdot 580$	1 $\cdot 355$	$2 \cdot 078$	$3 \cdot 116$	$1 \cdot 746$

But these scale values are not immediately comparable for the different elements, and it will therefore be desirable to refer them all to the same unit, say 0.01 of the horizontal force.

Taking 1° of Declination $={ }^{\circ} 0175$ of Horizontal Force
and Vertical Force $=$ Horizontal Force $\times \tan . \operatorname{dip}\left[\operatorname{dip}=67^{\circ} .34^{\prime}\right]$
we have the following equivalent scale values for the different elements, as applying to the plates:-

Length of Unit, equivalent to ooo of Horizontal Forde.				
			ertical Force	rve.
throughou the Year.		$\underset{\text { to }}{\text { January }} 4$ June 20.	June 21 to August 15.	October 3 to December 31.
in. $1 \cdot 47$	in. $1 \cdot 36$	$\begin{aligned} & \text { in. } \\ & 0.86 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 1 \cdot 29 \end{aligned}$	in. 0.72

It may be convenient to give also comparative scale values for the different systems of absolute measurement, viz.:-

| Foot-grain-second, or | British unit, in terms of which Mean H. F. for | | | | 1882 |
| :--- | :--- | :--- | :--- | :--- | :--- |$=3.913$

Dividing therefore the scale values last given by $3.913,1.804$, and 0.1804 respectively, the following comparative scale values for each of the elements on the plates as referred to 0.01 of these units respectively are found :-

xxxii Introduction to Greenwich Magnetical Observations, 1882.

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight however that, in the copies, the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done, as at 12^{h} on April 16, for declination. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near $2^{\mathrm{h}} .30^{\mathrm{m}}, 8^{\mathrm{h}} .30^{\mathrm{m}}$, and $21^{\mathrm{h}} .30^{\mathrm{m}}$, and at somewhat different times on Sundays. A weekly clearing of the gas pipes also causes a somewhat longer interruption, usually at about 22^{h}, as on August $4^{\text {d }} .22^{\text {h }}$.

As regards longer interruptions, the register of declination was lost on account of defective photography from April $16^{\mathrm{d}} .23 \frac{1 \mathrm{I}^{\mathrm{h}}}{}$ to $17^{\mathrm{d}} .4^{\mathrm{h}}$, and that of horizontal force from April 20^{d}. 0^{h} to 1^{h}, from April 21^{d}. 0^{h} to 3^{h}, and from November $16^{\mathrm{d}} .22 \frac{12^{\mathrm{h}}}{}$ to $23 \frac{11}{2}$: two small portions of vertical force register were similarly lost between November $17^{\text {d }} .3 \frac{1}{2}^{\text {h }}$ and $7^{\text {h }}$. The vertical force register is also wanting from October $5^{\text {d }} .22 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $6^{\mathrm{d}} .5^{\mathrm{h}}$ on account of accidental interruption of the registration.

As respects earth currents, from July $31^{\mathrm{d}} .21^{\mathrm{h}}$ to August 1^{d}. 0^{h} the E_{1} circuit was interrupted, and from September $11^{\mathrm{d}} .15^{\mathrm{h}}$ to 17^{h} the E_{2} register was imperfect, owing to defect of instrumental adjustment.

From November $16^{\text {d }} .22^{\text {h }}+$ to $17^{\text {d }} .1^{\text {h }}$ nearly, and from November $17^{\text {d }} .3 \frac{12^{\mathrm{h}}}{}$ to 6^{h} during great magnetic disturbance, the earth current motions were so violent that the records could not be traced. In regard to other earth current omissions in November, it is to be remarked that the telegraphic lines were injured in the previous great gale of October 24, and were more or less defective during November. The registers were thus frequently vitiated on account of the defective insulation. Omissions from this cause occur on some part of every day from November 11 to 23.

On November 18, 19, and 21 portions of the \mathbf{E}_{1} trace are from some unknown cause temporarily displaced with reference to the instrumental zero.

It will be seen that when disturbance commences the first motion is frequently abrupt, and simultaneous for all elements. Instances of this occur at the following times:-April $16^{\mathrm{d}} .11^{\mathrm{h}} .30^{\mathrm{m}}$, April $19^{\mathrm{d}} .15^{\mathrm{h}} .35^{\mathrm{m}}$, June $14^{\mathrm{d}} .15^{\mathrm{h}} .5^{\mathrm{m}}$, August $4^{\mathrm{d}} .3^{\mathrm{h}} .50^{\mathrm{m}}$, September $11^{\mathrm{d}} .14^{\mathrm{h}} .50^{\mathrm{m}}$, October $1^{\mathrm{d}} .21^{\mathrm{h}} .40^{\mathrm{m}}$, November $16^{\mathrm{d}} .22^{\mathrm{h}} .15^{\mathrm{m}}$, and November $25^{\mathrm{d}} .4^{\mathrm{b}} .30^{\mathrm{m}}$. Simultaneous motions also occur on November $14^{\mathrm{d}} .20^{\mathrm{h}} .15^{\mathrm{m}}$ and November $15^{\mathrm{d}} .20^{\mathrm{h}} .20^{\mathrm{m}}$.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11 , to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in. }} 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\mathrm{in}} 05$, subdivided by vernier to $0^{\text {in. }} 002$.
The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod comparison was again made with the same three barometers with the result that (all three auxiliary barometers giving accordant results) the readings of the standard, in its new state, required a correction of $-0^{\text {in }} 006$, which correction has been applied to every observation, commencing on 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made, under the direction of the Kew Committee, by Mr. Whipple, Superintendent of the Kew Observatory, in the spring of the year 1877, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{\text {in. }} 006$) did not exceed $0^{\text {in }} 001$. (Proceedings of the Royal Society, vol. 27, page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {ft }} 2^{\text {in }}$ above Mr. Lloyd's reference mark in the then transit room, now the Astronomer Royal's official room (Philosophical Transactions, 1831).
The barometer is usually read at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$ (astronomical). Each reading is corrected by application of the index correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upper half of the cylinder, on its eastern side. A syphon barometer fixed to the Greenwich Magnetical and Meteorological Observations, 1882.

xxxiv Introduction to Greenwich Meteorological Observations, 1882.

northern wall of the Magnetic Basement is employed, the bore of the upper and lower extremities of the tube being about $1 \cdot 1$ inch. A metallic float is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same. Registration was interrupted from August 18 to 30, the time-piece which drives the registering cylinder having been removed by Messrs. E. Dent and Co. for cleaning and repair.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\mathrm{in} .} 39$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, as for the magnetic registers.

As regards the effect of temperature, it will be understood from the construction of the apparatus that the photographic record is influenced only by the expansion of the column of mercury (about 4 inches in length) in the lower tube of the barometer, and from this circumstance, in combination with the near uniformity of temperature in the basement, no appreciable differential effect is produced on the photographic register.

Dry and Wet Bulb Thermometers.- The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 35 feet south of the south-west angle of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet
bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wer bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth as necessary to keep the inclined side always towards the sun.

The corrections to be applied to the thermometers in ordinary use (except the earth thermometers) are determined usually once each year for the whole extent of scale actually employed, by comparison with the standard thermometer, No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry and wet bulb thermometers are Negretti and Zambra, Nos. 45354 and 45355 respectively. Until January 14 no correction was applied. From January 15 a correction of $-0^{\circ} \cdot 1$ was applied to the readings of both thermometers.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. To the readings of No. 8527. for maximum temperature of the air has been applied a correction of $-0^{\circ} .9$; to those of No. 4386, for minimum temperature of the air, until January 14 no correction was applied : from January 15 a correction of $-0^{\circ} .2$ was applied. The readings of No. 44285 for maximum temperature of evaporation required a correction of $-0^{\circ} \cdot 4$, and the readings of No. 3627 for minimum temperature of evaporation a correction of $+1^{\circ} \cdot 2$.

The dry and wet bulb thermometers are usually read at $21^{h}, 0^{h}, 3^{h}, 9^{h}$ (astronomical). Readings of the maximum and minimum thermometers are usually taken at 21^{h} and 9^{h}. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

Photographic Dry and Wet Bulb Thermometers.-About 28 feet south-south-east of the south-east angle of the Magnetic Observatory, and about 25 feet east-northeast of the stand carrying the thermometers for eye-observation already described, is an open shed, 10 ft .6 in . square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry-bulb towards the east and the wet-bulb towards the west. Their bulbs are 8 inches in length and 0.4 inch internal bore, and their centres are about 4 feet above the ground. A registering cylinder of ebonite, 10 inches long and 19 inches in circumference, is placed with its axis vertical between the stems of the two thermometers. The registers are

xrxvi Introduction to Greenwich Meteorological Observations, 1882.

made simultaneously on opposite sides of the cylinder, and to avoid any accidental overlapping of the two registers the cylinder is made to revolve once in about 52 hours. The thermometer frames are covered by metal plates having longitudinal slits, so that light can pass through the slit only above the surface of the mercury. At each degree a fine cross wire is placed, thicker at the decades of degrees, and also at $32^{\circ}, 52^{\circ}$, and 72°. A gas lamp is placed about 9 inches from each thermometer (east of the dry-bulb and west of the wet-bulb), and in each case the light, condensed by a cylindrical lens with axis vertical, shines through the tube above the mercury, and forms a well-defined line of light upon the paper. As the cylinder revolves horizontally under the light passing through the thermometer tube, the paper thus receives a broad sheet of photographic trace, whose breadth, in the direction of the axis of the cylinder, varies with the varying height of the mercury in the thermometer tube. When the sheet is developed the whole of that part of the paper which in each case passed the slit above the mercury will show photographic trace, with thin white lines corresponding to the degrees, the lower part of the paper remaining white; thus the boundary of the photographic trace indicates the varying temperature. The time scale is determined by interruption of the traces made by the observer at registered times, usually three times a day. The length of 24 hours on each of the thermometer traces is about 9 inches. Registration was interrupted from May 4 to 10, the timepiece which drives the registering cylinder having been removed by Messrs. E. Dent and Co. for repair.

Radiation Thermometers.-From 1880 January 31 to 1882 March 4 the radiation thermometers were exposed on the grass south of the magnetic offices, in what is known as the South Ground. On March 4 they were removed to the Magnet Ground, to the position (a little south of the Magnet House) which they had occupied before removal to the South Ground. The thermometer for solar radiation is a self-registering mercurial maximum thermometer by Negretti and Zambra, No. 38592 ; its bulb is blackened, and the thermometer is enclosed in a glass sphere from which the air has been exhausted. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass; they require no correction for index error.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the northwest corner of the photographic thermometer shed.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches,
each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet (25.6 English feet) below the surface, then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, $8 \cdot 5,10 \cdot 0,11 \cdot 0$, and $14 \cdot 5$ inches respectively are in each case tube with narrow bore. The length of 1° on the scales is $1 \cdot 9 \mathrm{inch}, 1 \cdot 1$ inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} \cdot 0$ to $55^{\circ} \cdot 5$; No. $2,43^{\circ} .0$ to $58^{\circ} 0$; No. $3,44^{\circ} .0$ to $62^{\circ} .0$; and for No. $4,37^{\circ} .0$ to $68^{\circ} .0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger ; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

In consequence of the ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, proper corresponding alteration being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers, one, No. 5, with bulb one inch in the ground, another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by $0^{\circ} \cdot 2$, and No. 6 by $0^{c} \cdot 4$.

Osler's Anemometer. - This self-registering anemometer, devised by A. Follett Osler, is fixed above the north-western turret of the ancient part of the Observatory. For direction of the wind a large vane, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers, running in a cup of oil, rendering the vane very

xxxviii Introduction to Greenwich Meteorological Observations, 1882.

sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vane is 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

For the pressure of the wind the construction is as follows. At a distance of 2 feet below the vane there is placed a circular pressure plate having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the year 1880, when the present circular plate, having an area of $1 \frac{1}{3}$ square feet, was introduced.] A short flexible chain, fixed to a cross bar in connexion with the pressure plate, passing over a pulley in the upper part of the shaft, is then attached to a copper wire running down the centre of the shaft to the registering table, just before reaching which the wire communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. In 1882 September a flexible brass chain was substituted for the connecting copper wire, an alteration which has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring.

A rain gauge of peculiar construction forms part of the apparatus: this is described under the heading " Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is equal in length to that of the magnetic registers.

Robinson's Anemometer.-This instrument, mounted above the small building on the roof of the Octagon Room, is constructed on the principle described by the late Dr. Robinson in the Transactions of the Royal Irish Academy, Vol. XXII. The
revolving hemispherical cups are 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles.
The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is equal in length to that of Osler's Anemometer and the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer then in use, not the same as that now employed. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880. With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile $1 \cdot 15$ was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0.97 was registered. This was considered to confirm sufficiently the accuracy of the assumption.

Rain Gavges.-During the year 1882 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (lxxiii) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches, equal to 200 square inches. The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected, the water then discharges itself by means of the following modification of the syphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube there is loosely placed, in the receiver, a larger tube, closed at the top. The

$x l$ Introduciion to Greenwich Meteorological Observations, 1882.

accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. The water filling the bore of the pipe creates a partial vacuum in the globe sufficient to cause the longer leg of the syphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively, on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory ; No. 6 is the old daily gauge, No. 7 the old monthly gauge, and No. 8 an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7, the monthly amounts collected by these gauges showing occasionally greater differences than seemed proper. All three gauges have been read daily since the beginning of July 1881.

The gauges are also read at midnight on the last day of each calendar month.

Electrometer.-The electricity of the atmosphere is collected by means of a Thomson self-recording electrometer, constructed by Mr. White of Glasgow.

For a very full description of the principle of the electrometer reference may be made to Sir William Thomson's "Report on Electrometers and Electrostatic Measurements," contained in the British Association Report for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the suspension pulleys of the Horizontal Force Magnet. A thin flat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which
connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar, this charge is easily maintained at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or decreased at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.
The electricity of the atmosphere is collected by means of Sir William Thomson's water-dropping apparatus. For this purpose a rectangular cistern of copper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern rests on four pillars of glass, each one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle from which the water flows being about ten feet above the ground; the water passing out through a very small hole, and breaking almost immediately into drops, the cistern is brought to the same electrical potential as that point of the atmosphere, which potential is, by means of a connecting wire, communicated to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative as respects that of the earth.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp, falling through a slit upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder of ebonite, nearly 7 inches long and 16 inches in circumference, which is turned by clock-work. A second fixed mirror, by means of the same gas-lamp, causes a reference line to be traced round the cylinder. The actual zero is found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

The scale of time is equal in length to that of the magnetic registers.

Inconvenience is sometimes caused by cobwebs making connexion between the cistern or its pipe and the walls of the building, and in winter, interruptions occasionally occur owing to the freezing of the water in the exit pipe.

Sunshine Instrument.-This instrument, contrived by Mr. J. F. Campbell, and kindly given by him to the Royal Observatory, consists of a very accurately formed sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formed when the sun shines, falls always on the concave surface of the bowl. A strip of blackened millboard being fixed in the bowl, the sun, when shining, burns away the surface at the points at which the image successively falls, by which means the record of periods of sunshine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums during each hour (reckoning from apparent noon) through the month are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, neither is any register usually obtained when the sun's altitude is less than 5°. The instrument is placed on a table upon the platform above the Magnetic Observatory.

Ozonometer.-This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at $21^{\text {b }}, 3^{\text {h }}$, and 9^{h} are collected respectively at $3^{\mathrm{h}}, 9^{\mathrm{h}}$, and 21^{h}, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10 . The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at 21^{h}, the values registered at 3^{h} and 9^{h}, and one-fourth of that registered at the following 21^{h}, are added together, the resulting sum (which appears in the tables of "Daily Results of the Meteorological Observations") being taken as the value referring to the civil day.

Sunshine Instrument; Ozonometer; Meteorological Reductions. xliii

The means of the $21^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} values, as observed, are also given for each month in the foot notes.

§ 7. Meteorological Reductions.

The results given in the Meteorological section refer in general to the civil day.
All results in regard to atmospheric pressure, temperature of air and of evaporation and deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers at 9^{h} and 21^{h}, referring, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve in the way described for the magnetic registers (page axviii), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. The ordinates of the pencil curve, drawn as described, were measured by a scale of inches, calling the zero 10.00 to avoid negative values: the scale is thus arbitrary. Numbers greater than 10.00 indicate positive potential. Then, for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value.

To correct the photographic values of barometer and dry and wet bulb thermometer for small instrumental error, the means of the photographic readings at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand.

sliv Introduction to Greenwich Meteorological Observations, 1882.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and evaporation by use of Glaisher's Hygrometrical Tables. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Table of Factors by which the Difference between the Readings of the Dry-Bule and WetBuli Thermometers is to be Multiplied in order to produce the Corresponding Difference between the Dry-Bulb Temperature and that of the Dew-Point.

Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.
\bigcirc		$3{ }^{\circ}$	3.01	56°		$7{ }^{\circ}$. 6
10	$8 \cdot 78$	33	3.01	56	1.94	79.	1.69
1 I	8•78	34	$2 \cdot 77$	57	1'92	80	I•68
12	8•78	35	2.60	58	I'90	81	J•68
13	8•77	36	$2 \cdot 50$	59	1.89	82	-67
14	8•76	37	$2 \cdot 42$	60	1.88	83	I * 67
I 5	8-75	38	$2 \cdot 36$	61	$1 \cdot 87$	84	1.66
16	8.70	39	2.32	62	1.86	85	1.65
17	$8 \cdot 62$	40	2. 29	63	I.85	86	$1 \cdot 65$
18	8.50	41	2. 26	64	1.83	87	I $\cdot 64$
19	8-34	42	2.23	65	$1 \cdot 82$	88	1.64
20	8-14	43	2.20	66	1.81	89	1.63
21	7.88	44	2.18	67	$1 \cdot 80$	90	1.63
22	$7 \cdot 60$	45	$2 \cdot 16$	68	1.79	91	1.62
23	$7 \cdot 28$	46	$2 \cdot 14$	69	$1 \cdot 78$	92	1.62
24	$6 \cdot 92$	47	$2 \cdot 12$	70	$1 \cdot 77$	93	1.61
25	$6 \cdot 53$	48	$2 \cdot 10$	71	1 76	94	1.60
26	$6 \cdot 08$	49	2.08	72	$1 \cdot 75$	95	1.60
27	$5 \cdot 61$	50	$2 \cdot 06$	73	$1 \cdot 74$	96	1.59
28	5.12	51	2.04	74	$1 \cdot 73$	97	1.59
29	4.63	52	$2 \cdot 02$	75	$1 \cdot 72$	98	1.58
30	$4 \cdot 15$	53	$2 \cdot 00$	76	$1 \cdot 71$	99	1.58
31	$3 \cdot 70$	54	1.98	77	1.70	100	I 57
32	$3 \cdot 32$	55	1'96	78	1.69		

In the same way the mean hourly values of the dew-point and degree of humidity in each month (pages (lix) and (lx)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (lviii) and (lix)).
The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the numbers given in Table LXXVII. of the "Reduction of Greenwich Meteorological Observations, 1847-1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.

Adopted Values of Mean Temperature of the Air，deduced from Twenty－four Hourly Readings on each Day，for every Day of the Year，as obtained from the Photographic Records for the Pexiod 1849－1868．

Day of the Month．				完	永	品	产	菭		4.0 ¢0， ¢0 0		产
	38°	\bigcirc	\bigcirc	${ }^{\circ} \cdot 3$	$\stackrel{\circ}{ }$	$5{ }^{\circ} \cdot 5$	$6{ }^{\circ}$		0°	$5{ }^{\circ}$	\bigcirc	\bigcirc
1	$38 \cdot 1$	$40 \cdot 5$	$40 \cdot 3$	$45 \cdot 3$	$48 \cdot 7$	$57 \cdot 5$	$61 \cdot 6$	62.6	$60 \cdot 1$	54.7	$47^{\circ} 0$	41.5
2	$37^{\circ} 9$	$40 \cdot 6$	$40 \cdot 4$	$45 \cdot 7$	$48 \cdot 9$	577	$6 \mathrm{I} \cdot 5$	$62 \cdot 7$	60°	54.4	$46 \cdot 7$	$41 \cdot 8$
3	$37 \cdot 8$	$40 \cdot 7$	$40 \cdot 5$	$46 \cdot 1$	$49^{\circ} 1$	$57^{\circ} 9$	61.4	$62 \cdot 7$	$59 \cdot 8$	$54^{\circ} \mathrm{O}$	$46 \cdot 4$	$42 \cdot 1$
4	37.7	$40 \cdot 7$	$40 \cdot 5$	$46 \cdot 4$	$49^{\prime} 4$	$58 \cdot 1$	61.4	$62 \cdot 7$	59.7	$53 \cdot 7$	$46 \cdot 0$	42.4
5	37.6	$40 \cdot 6$	$40 \cdot 5$	$46 \cdot 6$	$49 \cdot 7$	$58 \cdot 2$	$61 \cdot 5$	$62 \cdot 7$	$59 \cdot 5$	53.4	$45 \cdot 6$	$42 \cdot 6$
6	$37 \cdot 6$	40%	$40 \cdot 5$	$46 \cdot 7$	50%	$58 \cdot 3$	61.7	$62 \cdot 7$	$59 \cdot 3$	$53 \cdot 0$	$45 \cdot 2$	$42 \cdot 7$
7	37.6	$40 \cdot 2$	$40 \cdot 6$	$46 \cdot 8$	50．3	58.4	$61 \cdot 9$	$62 \cdot 7$	59°	$52 \cdot 7$	$44^{\circ} 7$	$42 \cdot 8$
8	377	39.9	$40 \cdot 6$	$46 \cdot 8$	$50 \cdot 6$	$58 \cdot 5$	62.2	$62 \cdot 7$	$58 \cdot 8$	$52 \cdot 5$	$44 \cdot 3$	$42 \cdot 8$
9	37.7	39.6	$40 \cdot 7$	$46 \cdot 9$	$50 \cdot 8$	$58 \cdot 5$	62.5	$62 \cdot 7$	58.5	$52 \cdot 3$	$43 \cdot 8$	$42 \cdot 8$
10	$37 \cdot 8$	39.3	$40 \cdot 7$	$46 \cdot 9$	51．1	$58 \cdot 6$	$62 \cdot 7$	$62 \cdot 7$	$58 \cdot 3$	$52 \cdot 1$	43.4	$42 \cdot 7$
11	$37 \cdot 9$	$39^{\prime} 1$	$40 \cdot 8$	$47^{\circ} 0$	51.4	$58 \cdot 7$	$62 \cdot 9$	$62 \cdot 7$	$58 \cdot 1$	$5 \mathrm{I} \cdot 9$	$43 \cdot 0$	$42 \cdot 5$
12	38． 1	$38 \cdot 9$	$40 \cdot 8$	47 ${ }^{1}$	51.8	$58 \cdot 8$	$63 \cdot 1$	62.6	$58 \cdot 0$	$51 \cdot 7$	$42 \cdot 6$	42.2
13	$38 \cdot 2$	$38 \cdot 8$	$40 \cdot 9$	$47^{\circ} 2$	52.1	$58 \cdot 9$	$63 \cdot 3$	62.5	$57 \cdot 8$	$51 \cdot 6$	$42 \cdot 3$	41.8
14	$38 \cdot 3$	$38 \cdot 7$	41°	$47^{\circ} 4$	52.5	59.1	63.4	62.4	$57 \cdot 6$	$51 \cdot 4$	$42 \cdot 0$	41．5
15	$38 \cdot 4$	$38 \cdot 7$	4111	47.5	52.9	59.3	$63 \cdot 4$	$62 \cdot 3$	57.4	$51 \cdot 3$	41.8	4111
16	$38 \cdot 5$	38.8	$41 \cdot 2$	$47^{\circ} 6$	53.3	59.5	$63 \cdot 5$	$62 \cdot 1$	$57 \cdot 3$	$51 \cdot 2$	41.6	$40 \cdot 8$
17	$38 \cdot 6$	$38 \cdot 9$	$41 \cdot 3$	$47^{\circ} 8$	53.7	59.7	$63 \cdot 5$	$61 \cdot 9$	57.1	51.1	41.5	$40 \cdot 5$
18	$38 \cdot 8$	39°	41%	47.9	$54^{*} 1$	59.9	63.4	61.8	56.9	51.0	41.5	$40 \cdot 2$
19	$38 \cdot 9$	$39^{\circ} 2$	414	$48 \cdot 0$	54.4	$60 \cdot 2$	$63 \cdot 3$	$61 \cdot 6$	$56 \cdot 8$	$50 \cdot 8$	$41 \cdot 4$	$40 \cdot 0$
20	$39^{\prime \prime}$	$39 \cdot 3$	41.5	$48 \cdot 1$	54.7	$60 \cdot 5$	$63 \cdot 2$	61.4	$56 \cdot 6$	$50 \cdot 6$	$41 \cdot 3$	39.8
21	$39^{\circ} 3$	$39 \cdot 5$	$41 \cdot 6$	$48 \cdot 2$	55＊	$60 \cdot 8$	$63 \cdot 0$	$61 \cdot 3$	56.4	$50 \cdot 4$	41.2	39.6
22	39.5	$39^{\circ} 6$	41．7	$48 \cdot 2$	$55 \cdot 3$ $55 \cdot 5$	$6 \mathrm{I} \cdot 1$	62.9	$6 \mathrm{n} \cdot 3$	$56 \cdot 2$	$50 \cdot 1$	4111	39.4
23	39.6	39.7	41．8	$48 \cdot 3$	55．5	61.4	$62 \cdot 8$	$61 \cdot 2$	$56 \cdot 1$	$49^{\circ} 7$	41.0	$39 \cdot 3$
24	39.7	39.8	$42 \cdot 0$	$48 \cdot 3$	55．7	$61 \cdot 7$	$62 \cdot 7$	61.1	$55 \cdot 9$ 55.9	$49^{*} 4$	$41^{\circ} \mathrm{O}$	$39 \cdot 3$
25	$39 \cdot 8$	39.9	$42 \cdot 3$	48.4	$55 \cdot 9$	$61 \cdot 9$	$62 \cdot 7$	61．0	$55 \cdot 8$	$49^{\circ} 1$	$40 \cdot 9$	$39^{\cdot 2}$
26	39.9	$40 \cdot 0$	$42 \cdot 6$	48.4	$56 \cdot 1$	62.0	$62 \cdot 7$	$60 \cdot 9$	$55 \cdot 7$	$48 \cdot 8$	$40 \cdot 8$	39^{-1}
27	$40^{\circ} 0$	$40 \cdot 1$	$43 \cdot 0$	$48 \cdot 4$	$56 \cdot 3$	62.0	62.6	$60 \cdot 8$	$55 \cdot 5$	$48 \cdot 5$	$40 \cdot 8$	$39 \cdot 0$
28	$40 \cdot 1$	$40 \cdot 2$	43.4	$48 \cdot 5$	$56 \cdot 5$	$61 \cdot 9$	62.6	$60 \cdot 7$	55.4	$48 \cdot 2$	$40 \cdot 9$	$38 \cdot 8$
	$40 \cdot 2$		$43 \cdot 8$	$48 \cdot 5$	$56 \cdot 8$	$61 \cdot 8$	62.6	$60 \cdot 6$	55.2	47.9	41.0	$38 \cdot 7$
$\begin{aligned} & 30 \\ & 3 \mathrm{I} \end{aligned}$	$40 \cdot 3$ $40 \cdot 4$		$44 \cdot 3$ $44 \cdot 8$	$48 \cdot 6$	57.0 57.3	617	62.6 62.6	$60 \cdot 4$ $60 \cdot 3$	54.9	$47 \cdot 6$ $47 \cdot 3$	41.2	$38 \cdot 5$ $38 \cdot 3$
Means	$38 \cdot 7$	39%	41.5	$47 \cdot 5$	$53 \cdot 1$	59.8	62.6	$61 \cdot 9$	$57 \cdot 5$	$51 \cdot 0$	$42^{\prime 7}$	$40 \cdot 8$
The mean of the twelve monthly values is $49^{\circ} 7$ ．												

The daily register of rain contained in column 18 is that recorded by the gauge No．6，whose receiving surface is 5 inches above the ground．This gauge is usually read at 21^{h} and 9^{h} ．The continuous record of Osler＇s self－registering gauge shows whether the amounts measured at $21^{\text {h }}$ are to be placed to the same，or to the preceding civil day ；and in cases in which rain fell both before and after midnight， also gives the means of ascertaining the proper proportion of the 21^{h} amount which should be placed to each civil day．The number of days of rain given in the foot notes，and in the abstract tables，pages（lvii）and（lxxiii），is formed from the records of this gauge．In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in }} 005$ ．

xlvi Introduction to Greenwich Meteorological Observations, 1882.

The indications of electricity are derived from Thomson's Electrometer. On some days, not necessary to be specified, during interruption or failure of photographic registration, the results depend on eye observations.
No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.
The mean amount of cloud given in a foot note on the right-hand page, and in the abstract table, page (lvii), is the mean found from observations made usually at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h}, of each day.
For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary :-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6. A.m., and those following it to the interval from 6 a.m. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).
The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

Meteorological Results.

m-r	denotes	misty rain	sc	denotes scud	
fq-m-r	\ldots	frequent misty rain	li-sc	\ldots	light soud
oc-m-r	\ldots	occasional misty rain	sl	\ldots	sleet
oc-r	\ldots	occasional rain	sn	\ldots	snow
sh-r	\ldots	shower of rain	oc-sn	\ldots	occasional snow
shs-r	\ldots	showers of rain	slt-sn	\ldots	slight snow
slt-r	\ldots	slight rain	so-ha	\ldots	solar halo
oc-slt-r	\ldots	occasional slight rain	sq	\ldots	squall
th-r	\ldots	thin rain	sqs	\ldots	squalls
fq-th-r	\ldots	frequent thin rain	fq-sqs	\ldots	frequent squalls
oc-th-r	\ldots	occasional thin rain	hy-sqs	\ldots	heavy squalls
hy-sh	\ldots	heavy shower	fq-hy-sqs	\ldots	frequent heavy squalls
slt-sh	\ldots	slight shower	oc-sqs	\ldots	occasional squalls
fq-shs	\ldots	frequent showers	t	\ldots	thunder
hy-shs	\ldots	heavy showers	t-sm	\ldots	thunder storm
fq-hy-shs	\ldots	frequent heavy showers	th-cl	\ldots	thin clouds
oc-hy-shs	\ldots	occasional heavy showers	v	\ldots	variable
li-shs	\ldots	light showers	vv	\ldots	very variable
oc-shs	\ldots	occasional showers	w	\ldots	wind
s	\ldots	stratus	st-w	\ldots	strong wind

The following is the notation employed for Electricity :-

N denotes negative	w denotes weak
P ... positive	strong
m ... moderate	riable

The duplication of the letter denotes intensity of the modification described, thus, s s , is very strong; v v , very variable. 0 indicates no electricity, and a dash "-" accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in $\S 6$.

In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854-1873, and the photographic thermometric results and deductions therefrom with the corresponding thermometric results, 1849-1868 (see "Reduction of Greenwich Meteorological Observations 1847-1873"). Other deductions, from eye observations, are compared with averages for the period 1841-1881.
xlviii Introduction to Greenwich Meteorological Observations, 1882.
The tables of Meteorological Abstracts following the tables of "Daily Results" require no special explanation:

It may be pointed out that the monthly means for barometer and temperature of air and evaporation contained in the tables referring to diurnal inequality, pages (lviii) and (lix), do not in some cases agree with the true monthly means given in the daily results, pages (xxx) to (lii), and in the table on page (lvii), in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the foot notes, but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases however the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.
In preparing the table of "Abstract of the Changes of the Direction of the Wind" it was formerly the practice to consider all turnings of the vane, but in the formation of the table contained in the present volume, page (lxvi), those turnings which are evidently of an accidental nature, though still included in the body of the table, have been placed in brackets and omitted in the formation of the resulting value for the whole year.
In regard to electricity, in addition to giving the hourly values in each month, including all available days, the days in each month have been in this year further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 18 of the "Daily Results" being adopted in selecting the days. These additional tables are given on pages (lxxi) and (lxxii) respectively.

In regard to the observations of Luminous Meteors it is simply necessary to say that in general only special meteor showers are watched for, such as those of August and November. The observers of meteors in the year 1882 were Mr. Ellis, Mr. Nash, Mr. Greengrass, Mr. Hugo, Mr. McClellan, and Mr. Finch; their observations are distinguished by the initials E, N, G, H, M, and F respectively.

Royal Observatory, Greenwich, W. H. M. CHRISTIE. 1884 April 17.

ROYAL OBSERVATORY, GREENWICH.

R E S U L T S

or

MAGNETICAL OBSERVATIONS.

1882.

REDUCTION

OF THE

MAGNETIC OBSERVATIONS

(EXCLUDING THE DAYS OF GREAT MAGNETIC DISTURBANCE; .
1882.

Table I.-Mean Magnetic Declination West for each Astronomical Day. (Each result is the mean of 24 hourly ordinates from the photographic register.)													
1882.													
Days of the Month	January.	February.	March. ${ }^{-}$	April.	May.	June.	July.	August.	September.	October.	November.	December.	
	18°	18°	$18{ }^{\circ}$	18°									
d	${ }^{1}$	6.1	${ }^{1} 5$	$2 \cdot 11$	22.4	$22 \cdot 5$	$21 \cdot 2$	${ }^{\prime}$.1	${ }_{21}^{1 \cdot 2}$	$21 \cdot 1$	$20 \cdot 7$	18.9	
1	$25 \cdot 4$	26.1	$25 \cdot 2$	24^{11}	22.4	22.5	21.2	22.1	21.2	$21 \cdot 1$	207	18.9	
2	$24^{\circ} 7$	$25 \cdot 1$	24.9	$24^{1} 1$	22.8	22.9	22.1	$21 \cdot 9$	20.4		19.8	$19^{\circ} 4$	
3	$25 \cdot 7$	$25 \cdot 6$	24.6	24.2	23.9	22.2	21.7	22.4	20.3	21.5	20.2	18.9	
4	24.5	$25 \cdot 8$	25.5	24.0	$23^{\circ} \mathrm{I}$	22.6	$22^{\circ} \mathrm{O}$..	21.0	19.6	20.6	$18 \cdot 6$	
5	24.5	$25 \cdot 8$	24.5	23.7	23.0	22.6	$22 \cdot 3$	21.4	21.0	\cdots	$19^{\circ} \mathrm{O}$	19.4	
6	24^{2}	$23 \cdot 7$	24.4	$23 \cdot 7$	23.0	22.6	22.2	20.7	20.8	21.2	$20 \cdot 1$	$19^{*} 6$	
7	$25 \cdot 5$	$25 \cdot 3$	24°	23.6	$22 \cdot 1$	22.9	22.7	22.0	21.7	20.5	21.1	19.7	
8	$23 \cdot 8$	24.8	$24^{1} 1$	$24^{\circ} \mathrm{O}$	22.9	22.9	23.2	21.3	21.0	20°	$19^{\circ} 6$	19.5	
9	$25 \cdot 1$	26.0	24.3	23.9	23.4	22.4	21.9	21.6	20.2	$20 \cdot 3$	$20^{\circ} 4$	20.5	
10	24.8	24.8	23.5	24.1	$24 \cdot 3$	22.2	22.0	21.2	21.4	20.4	$20^{\circ} 4$	20.8	
11	24.3	$25 \cdot 0$	$23 \cdot 3$	23.2	24.9	22.9	22.0	20.7	18.8	$20 \cdot 5$	21.1	21.0	
12	$24^{\circ} 3$	24.4	24*	$23 \cdot 7$	$25 \cdot 8$	$23 \cdot 4$	21.8	22.9	20.9	$20 \cdot 3$. .	$19^{\circ} 9$	
13	$25 \cdot 2$	$24^{\circ} 9$	$24^{1 / 1}$	$23 \cdot 7$	23.6	21.4	21.6	$20^{\circ} \mathrm{O}$	20.4	$20 \cdot 1$	$22 \cdot 3$	$19^{\circ} 1$	
14	23.7	$25 \cdot 3$	$24 \cdot 3$	$24 \% 7$	23.7	$23 \cdot 3$	21.1	21.1*	$20 \cdot 5$	19.9	$22 \cdot 3$	19.0	
15	$25 \cdot 0$	$25 \cdot 4$	23.9	24.4	$23 \cdot 7$	23.4	21.1	2 I 3	20.5	21.5	$20 \cdot 8$	18.5	
16	24.9	$25 \cdot 2$	$24 \cdot 3$,	22.9	$22 \cdot 1$	22.0	21.6	$20 \cdot 1$	$21^{\circ} \mathrm{O}$	20.4	19.3	
17	$25 \cdot 0$	$24^{\circ} 7$	24.2		23.4	22.0	22.5	21.5	19%	21.8	..	19.1	
18	$25 \cdot 3$	$25 \cdot 6$	24.5	23.6	23.5	21.7	217	20.9	20.1	21.2	\cdots	19°	
19	$22 \cdot 8$	$26 \cdot 7$	25.7	..	23.0	21.9	22.1	$21^{\circ} 6$	19.4	21.0	\cdots	19.7	
20	24.3	$24^{\circ} 3$	$24^{\circ} 9$	\cdots	24.5	21.7	22.7	$22 \cdot 2$	1909	20.8		18.9	
21	$25 \cdot 0$	$25 \cdot 2$	$25 \cdot 1$	23.3	$21 \cdot 8$	22.6	21.9	20.9	200	21.2	\cdots	20.1	
22	$24^{\circ} 2$	$25 \cdot 1$	24.6	22.2	$24^{.2}$	22.2	21.5	$22 \cdot 1$	19.8	$21 \cdot 2$	19.6	19.5	
23	24.6	25.3	$24^{\prime 2}$	23.2	$24^{1} 1$	22.4	22.6	21.9	$20 \cdot 3$	22.0	$19^{\circ} 2$	19.6	
24	24.9	25.4	$24^{1} \mathrm{I}$	$22 \cdot 3$	$23 \cdot 8$	\cdots	$22 \cdot 1$	21.8	$20 \cdot 8$	$24^{\circ} 0$	19.2	19.7	
25	$24^{\cdot 8}$	$25 \cdot 1$	23.9	22.2	22.4	21.7	22.1	20.4	$19^{\circ} 9$	$21 \cdot 1$	18.6	19°	
26	$25 \cdot 1$	$25 \cdot 1$	22.9	- 23.0	24^{11}	$22 \cdot 3$	22.0	22.1	19.7	21.5	$19^{\circ} 9$	17.9	
27	$24^{\circ} 4$	$25 \cdot 5$	$23 \cdot 5$	25.4	$23 \cdot 2$	22.9	21.7	21.5	19.3	20.9	20.1	$18 \cdot$	
28	24.7	$25 \cdot 3$	$24^{\circ} \mathrm{O}$	21.4	24.1	21.2	21.7	21.5	19.8	$20 \cdot 8$	$19^{\circ} 8$	17.9	
29	24.2		24.2	21.6	23.6				$19^{\circ} 9$	21.3	$20 \cdot 1$	18.3	
30	$25 \cdot 2$		$24 \cdot 3$	22.5	23.2	$22 \cdot 5$	$23 \cdot 6$	22.7	20.0	$20 \cdot 5$	$19^{\circ} 8$	18.6	
31	24.6		23.9		23.4		21.9	22.4		$20 \cdot 7$		18.3	
Table II.-Monthly Means of Magetic Declination West at each Hour of the Day.													
1882.													
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
	18°												
b 0 1 2 3 4 5 6 7	$27^{1} 2$	28.8	28.6	$29^{\prime} 2$	$29^{\circ} 5$	$26^{1} \cdot 6$	26.4	26.7	$25^{\prime} \cdot 6$	26.0	$2{ }^{1} \cdot 3$	21.6	
	28.0	29.7	$30 \cdot 6$$30 \cdot 7$	$30 \cdot 8$	$30 \cdot 8$	$27 \cdot 8$	27.9	$\begin{aligned} & 28 \cdot 2 \\ & 28 \cdot 1 \end{aligned}$	$26 \cdot 8$	$26 \cdot 7$	$23 \cdot 8$ 23.5	22.1	
	27.5			$30 \cdot 7$	$30 \cdot 7$	28.0	27.7 26.8			$25 \cdot 8$	$23 \cdot 5$	21.8	
	$26 \cdot 6$	29.7 28.4	2929	$28 \cdot 7$$26 \cdot 8$	$29^{\circ} 7$	$\begin{aligned} & 27 \cdot 3 \\ & 26 \cdot 0 \end{aligned}$	26.8	$26 \cdot 7$	$\begin{aligned} & 24 \cdot 8 \\ & 22 \cdot 8 \end{aligned}$	24.5	22.2	21.1204	
	26°	26.8			28.0		$25 \cdot 3$	$\begin{aligned} & 24 \circ^{\prime} 7 \\ & 23 \cdot 0 \end{aligned}$		22.5	21.4		
	$25 \cdot 4$	$25 \cdot 7$	$25 \cdot 2$	25.2	$26 \cdot 2$	24.7	$23 \cdot 8$		$\begin{aligned} & 22 \cdot 8 \\ & 21 \cdot 3 \end{aligned}$	21.4	$20^{\circ} 9$	$\begin{aligned} & 20^{\circ} 4 \\ & 20^{\circ} 0 \end{aligned}$	
	$25 \cdot 1$	$25 \cdot 2$	24.4	$23 \cdot 6$	24.5	23.7	22.9	21.7	20.4	$20^{\circ} 7$	$20^{\circ} 2$	$\begin{aligned} & 19.0 \\ & 18.5 \end{aligned}$	
	24.8	24.7	$23 \cdot 6$	22.5	$23 \cdot 3$	22.7	22.2	21.1	19.4	197	19.4		
8	$23 \cdot 8$	$24^{\circ} \mathrm{O}$	23.0	22.1	22.6	22.4	21.8	$20 \cdot 7$20.6	$18.7$$18.8$	$19^{\circ} 0$	18.8	$\begin{aligned} & 1777 \\ & 17 \cdot 1 \end{aligned}$	
9	22.9	23.5	22.6	22.4	22.1	22.1	21.6			18.718.8	17.9		
10	$22 \cdot 3$	$23 \cdot 3$	22.5	22.1	22.0	21.8	2 I 3	20.4	18.6		17.9	$\begin{aligned} & 17.1 \\ & 17.4 \end{aligned}$	
11	22.1	23.5	22.4	21.9	21.8	21.8	21.1	$20^{\circ} 1$	18.5	19°	18.8	$\begin{aligned} & 17.4 \\ & 17.3 \end{aligned}$	
12	22.4	$23 \cdot 6$ 23.8	22.5	21.8	21.5	21.6	20.6	20.0	18.7	19°			
13	22.9 23.6	$23 \cdot 8$	22.7	22.0	21.4	21.3	20.2	$20^{\circ} 1$	$19^{\circ} 1$	19.5	19.2 19.5	$\begin{aligned} & 17.9 \\ & 18.4 \end{aligned}$	
14	$23 \cdot 6$	24.1	22.9 22.9	$21^{\circ} 7$	210 20	$\begin{aligned} & 20 \cdot 8 \\ & 20 \cdot 8 \end{aligned}$	20.2 20.1	$\begin{aligned} & 19.7 \\ & 19^{\circ} 6 \end{aligned}$	$19^{\circ} 2$	19% 20%	19 198		
15	24.1 24.3	24.1	22.9	21.0 21.3	20.7 20.5	20.2	20.1 19	19.6 19.4	$19^{1} 1$	$20^{\circ} 1$	198 19	18.5 18.7	
16	24.3 24.5	$23 \cdot 9$ 24.3	22.9 23	21.3 21.5	20.5 19	$19^{\circ} 3$	1909 19.3	$\begin{aligned} & 19.2 \\ & 18.6 \end{aligned}$	$19^{1} 1$	$20^{\circ} 1$	$19^{\circ} 9$	$\begin{aligned} & 19^{\circ} 0 \\ & 19^{\circ} 2 \end{aligned}$	
18	24.5	24.4	23.0	210	19.3	$\begin{aligned} & 18.4 \\ & 18.1 \end{aligned}$	18.5		18.4	$20^{\circ} 1$	19.5		
19	24.4	24.6	22.1	19.8	$18 \cdot 8$		18.5	$\begin{aligned} & 18 \cdot 6 \\ & 17.7 \end{aligned}$		18.4	$19^{\circ} 6$	$\begin{array}{r} 19.1 \\ 19{ }^{\circ} 4 \end{array}$	
20	$24^{1} 1$	$24^{\circ} \mathrm{O}$	21°	18.7	19.0	18.2	18.7	177	$16 \cdot 3$		190		
21	24.2	$23 \cdot 7$	21.1 22.9	19.8 12.3	$20 \cdot 3$	$\begin{aligned} & 19^{\circ} 0 \\ & 21^{\circ} 0 \end{aligned}$	19.4 20.6	$\begin{array}{r} 18 \cdot 9 \\ 21 \cdot 2 \end{array}$	$\begin{aligned} & 17.2 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 18 \cdot 7 \\ & 21 \cdot 1 \end{aligned}$	18.8	$19^{\circ} 2$	
22	$25 \cdot 1$ $26 \cdot 2$	24.9 27.0	22.9 25.7	$22 \cdot 3$ $26 \cdot 1$	$23 \cdot 0$ 26.5	$23 \cdot 8$	20.6 23.3			$24^{\circ} \mathrm{O}$	19.9 19.7 21.7 20.6		
23	26.2	27°	$25 \cdot 7$	$26 \cdot 1$	$26 \cdot 5$		$23 \cdot 3$	$24^{\circ} \mathrm{O}$	$22 \cdot 8$				

Table V.-Mfans of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnet, for each Astronomical Day.												
1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{1}^{\text {d }}$	-	58.6	$6{ }_{1} \cdot 1$	$62^{\circ} \cdot 6$	$60^{\circ} \cdot 8$	$64^{\circ} 5$	$63 \cdot 3$	6ㅇ․	$65^{\circ} \mathrm{I}$	$64^{\circ} 1$	$59^{\circ} \mathrm{I}$	$59^{\circ} 1$
2		59°	$60 \cdot 3$	63.0	$62 \cdot 9$	64.9	64.2	$66 \cdot 6$	$66 \cdot 1$		$59^{\circ} 4$	59.5
3	$62 \cdot 2$	60°	59.8	$63 \cdot 4$	64.8	64.6	65°	64.8	$65 \cdot 8$	$63^{\circ} 0$	$60 \cdot 0$	$60 \cdot 6$
4	$60 \cdot 3$	58.6	$59^{\circ} 7$	$63 \cdot 5$	64°	$63 \cdot 2$	64.2		65•5	$6 \mathrm{I}^{\prime}$	59.5	$60 \cdot 6$
5	$6 \mathrm{I} \cdot 5$	59°	$60^{\circ} 4$	62.5	64°	$63 \cdot 0$	$63 \cdot 6$	$65 \cdot 1$	$64 \cdot 8$	63:	59.4	59.5
6	$6 \mathrm{I} \cdot 5$	$60^{\circ} 4$	$60 \cdot 8$	$63 \cdot 3$	$63 \cdot 5$	$63 \cdot 2$	$63 \cdot 3$	$65 \cdot 6$	64.3	$63 \cdot 0$	$59 \cdot 8$	58.4
7	59.8	$60 \cdot 7$ 50		$63 \cdot 2$	$63 \cdot 7$	$62 \cdot 3$	$62 \cdot 6$ $62 \cdot 8$	$65 \cdot 8$ $65 \cdot 2$	$63 \cdot 9$ $63 \cdot 9$	$64^{\circ} 6$ 64.4	59.1 57.7	59.6 59.8
8	$60 \cdot 0$	59.8		62.9	$62 \cdot 1$	$61 \cdot 6$	$62 \cdot 8$	$65 \cdot 2$ 64.6	63:9 63	64.4 64.1	577 57	59.8 $58 \cdot 9$
9.	$61 \cdot 3$ $61 \cdot 6$	$58 \cdot 6$		$61 \cdot 7$	$62 \cdot$ 63.5	61.0 60.5	62.9 62.5	64.6 64.6	$63 \cdot 8$ $63 \cdot 7$	64.1 $64^{\circ} 1$	57.6 58.6	$58 \cdot 9$ $57 \cdot 1$
10°	$61 \cdot 6$ $62 \cdot 3$	59% 59	$63 \cdot 8$ 63.5	61.9 62.5	$63 \cdot 5$ 64.5	$60 \cdot 5$ $50 \cdot 6$	$62 \cdot 5$ $62 \cdot 8$	64.6 650	63.7	64.9	$59 \cdot 9$	$57 \cdot 3$
11	$62 \cdot 3$ $62 \cdot 8$	59.8 60.5	$63 \cdot 5$ $62 \cdot 5$	62.5	$64 \cdot 5$ $63 \cdot 8$	59.6 59.3	$62 \cdot 8$ $63 \cdot 3$	$65 \cdot$ 66	$63 \cdot 7$ 62.6	63.9 620	59	58.4
13	$62 \cdot 7$	$61 \cdot 1$	62.4	63.1	62.4	59.4	$63 \cdot 3$	$66 \cdot 9$	61.4	61.5		59.4
14	$61 \cdot 2$	62.5	63.	$63 \cdot 0$	$59 \cdot 8$	60.6	64.6	$67 \cdot 1$	$60 \cdot 3$	$61 \cdot 9$	59.9	$59 \cdot 6$
15	$60 \cdot 1$	61:9	$63 \cdot 3$	62.4	59.9	$60 \cdot 5$	64.7	$66 \cdot 1$	$60 \cdot 5$	$60 \cdot 7$	$59^{\circ} 7$	59.9
16	$60 \cdot 9$	$61 \cdot 3$	$63 \cdot 6$		$60 \cdot 6$	$61 \cdot 3$	$64 \cdot 3$	$64^{\circ} \mathrm{O}$	$6 \mathrm{I} \cdot 8$	$60 \cdot 8$	$58 \cdot 6$	$60^{\circ} 4$
17	$60 \cdot 2$	62.7	$63 \cdot 2$		$61 \cdot 1$	$61 \cdot 4$	$64^{\circ} 2$	64.3	62.2	$6 \mathrm{I} \cdot 3$		$60 \cdot 7$
18	$59 \cdot 3$	$62 \cdot 8$	$62 \cdot 8$	$60 \cdot 9$	62.4	$60 \cdot 8$	64.3	$65 \cdot 1$	$62 \cdot 8$	$63 \cdot 4$		$60 \cdot 6$
19	$60 \cdot 8$	$60 \cdot 8$	$62 \cdot 1$		62.8	$60 \cdot 5$	$64 \cdot 3$	64.9	$64 \cdot 4$	$62 \cdot 8$		$60 \cdot 2$
20	$60 \cdot 8$	61.5	$62 \cdot 2$		$63 \cdot 3$	61.7	$64^{\circ} \mathrm{O}$	$64^{\circ} \mathrm{O}$	64.2 62.6	58.9 62.7		$60^{\circ} 2$ 60%
21	$60^{\circ} \mathrm{O}$	$62 \cdot 3$ $62 \cdot 6$	59.9 59.6	$63 \cdot 5$	$64^{\circ} 4$ 66.6	$62 \cdot 2$ 61.9	64.6 64.9	$63 \cdot 7$	62.2	6i•8	$6: 5$	$59^{\circ} 2$
22	60° 50	62.6 61.2	59.6 60.5	64° 62.8	$66 \cdot 6$	$61 \cdot 9$ $61 \cdot 5$	649 64.0	63.1	62.6	58.0	$60 \cdot 9$	58.6
24	$58 \cdot 7$	$61 \cdot 1$	61.5	$62 \cdot 0$	$64^{\circ} 9$		$63 \cdot 6$	$62 \cdot 8$	62.9	$57 \cdot 8$	$60 \cdot 2$	57.2
25	$58 \cdot 0$	$61 \cdot 9$	$61 \cdot 2$	$60 \cdot 4$	$64 \cdot 3$	62.6	63.4	63.4	$62 \cdot 9$	57.2	$58 \cdot 5$	58.2
26	$58 \cdot 8$	62.3	$60 \cdot 6$	$60 \cdot 6$	65°	$62 \cdot 8$	$63 \cdot 7$	64.2	$63 \cdot 2$	$57 \cdot 3$	$58^{\circ} 7$	59.8
27	$60 \cdot 6$	$62 \cdot 6$	$60 \cdot 8$	$60 \cdot 0$	$65 \cdot 7$	$63 \cdot 2$	$64 \cdot 3$	$63 \cdot 9$	$62 \cdot 3$	$58 \cdot 0$	$60^{\circ} 4$	$60 \cdot 5$
28	$61 \cdot 7$	61.9	61.4	$60 \cdot 2$	$66 \cdot 5$	64.0	64.6	$63 \cdot 9$	$6 \mathrm{~L} \cdot 5$	58.0	$60 \cdot 9$ 60.8	$60 \cdot 7$ $60 \cdot 2$
29	$60 \cdot 6$		$62 \cdot 2$	$59 \cdot 8$	$67 \cdot 6$	64.4	$65 \cdot 1$	$63 \cdot 5$	61.2	57.1	$60 \cdot 8$	$60^{\circ} 2$
30 31	$60 \cdot 7$		$62 \cdot 1$ 62.5	$58 \cdot 7$	$66 \cdot 9$ $65 \cdot 2$	63.4	$65 \cdot 3$ $65 \cdot 2$	$63 \cdot 6$ $63 \cdot 8$	62.0	57.5 58.6	59^{\prime} I	$\begin{aligned} & 60 \cdot 9 \\ & 6 \cdot 0 \end{aligned}$
31												
Table VI.-Monthly Means of Horizontal Magnetic Force (diminished by a Constant) at each Hour of the Day. (The results are expressed in parts of the whole Horizontal Force, and are uncorrected for temperature.)												
1882.												
Hour, Groenwrieh Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
h:	0.13782	$0 \cdot 13711$	0.13519	0.13417	-0.13392	0.13482	0.13540	0.13444	- 113574	0.13372	0.13377	0.13486 .13519
1	$\cdot 13809$	$\cdot 13734$	- 13562	- 13470	-13449	-13508	-13571	-13505	- 13627	-13403	- 13402	-13519
2	-13819	-13755	- 13587	$\cdot 13517$	-13492	-13561	- 13625	- 13554	- 13664	$\cdot 13431$	-13419	-13525
3	-13824	-13775	-13598	-13550	-13523	-13611	- 13676	- 13590	-13687	- 13443	-13435	$\cdot 13543$
	-13830	-13780	-13613	- 13570	-13542	-13654	$\cdot 13700$	-13615	$\cdot 13700$	-13445	-13449	-13549
5	- 13829	-13780	-13622	- 13591	$\cdot 13573$	-13682	$\cdot 13717$	- 13625	-13715	-13464	$\cdot{ }^{-13471}$	-13546
6	-13829	-13790	-13618	- 13620	-13603	-13716	-13730	-13632	-13727	${ }_{-} \cdot 13480$	-13468	-13538
7	-1383I	-13799	$\cdot 13617$	-13618	-13614	-13728	-13728	- 13632	- 13730	-13494	-13473	-13540
8	- 13827	-13802	-13627	-13612	-13609	-13707	-13711	$\begin{array}{r}\cdot 13628 \\ \cdot \\ \cdot \\ \hline\end{array}$	$\cdot 13735$ -13734	$\cdot 13496$ \cdot \cdot -1387	$\cdot 13471$ $\cdot 13465$	$\cdot 13535$ $\cdot 13544$
9	-13823	- 13795	${ }_{-} \cdot 13636$	- 13608	- 33596	$\begin{array}{r}\cdot 13679 \\ \cdot \\ \cdot \\ \hline\end{array}$	-13693	$\cdot 13623$ \cdot \cdot 13618	$\cdot 13734$ $\cdot 13727$ -11722	$\cdot 13487$ \cdot \cdot -13503	$\cdot 13465$ \cdot \cdot -13466	
10	$\begin{array}{r}\cdot 13827 \\ \cdot \\ \cdot \\ \hline 13827\end{array}$	$\begin{array}{r}+13794 \\ \cdot \\ \cdot \\ \hline\end{array}$	${ }_{-} \cdot 13644$	-13613	$\cdot 13571$ $\cdot 13555$	$\cdot 13658$ $\cdot 13643$	- 13674 \cdot -13662	$\cdot 13618$ $\cdot 13618$	$\cdot 13727$ \cdot $\cdot 13722$	$\cdot 13503$ -13494	$\cdot 13466$ \cdot -13470	- $\mathrm{+}$ 13532
11	-13827	-13806 $\cdot 13804$	$\cdot 13641$ \cdot \cdot \cdot 3634	$\begin{array}{r}\cdot 13617 \\ \cdot \\ \cdot \\ \hline\end{array} 3591$	- $\cdot 13555$	\cdot \cdot \cdot \cdot -13632	-13662	-13618	$\cdot 13722$ \cdot \cdot -13721	-13494	-13464	-13531
12	$\cdot 13827$ \cdot $\cdot 13822$	-13804 $\cdot 13799$	$\cdot 13634$ \cdot \cdot	$\begin{array}{r}\cdot 13591 \\ \cdot \\ \cdot \\ \hline\end{array}$	- 13557	- 13632	- 13649 \cdot \cdot -13641	$\cdot 13608$ \cdot -13598	$\cdot 13721$ $\cdot 13716$	-13496	-13452	-13515
13	+13822 \cdot \cdot +13827	+13799 \cdot +13796	-13626 \cdot -13624	-13579 \cdot $\cdot 13571$	- $\mathrm{-}$ - 13554	- 13627 \cdot	-13641	-13587	$\cdot 13714$	-13487	-13446	$\cdot 13516$
14	$\cdot 13827$ \cdot \cdot +13833	-13796 $\cdot 13800$	$\begin{array}{r}\text {-13624 } \\ \cdot \\ \cdot \\ \hline\end{array}$	$\begin{array}{r}\text { - } 13571 \\ \cdot \\ \cdot \\ \hline\end{array}$	- 13554	-13617	- $\cdot 13638$	-13586	-13722	-13482	-13445	-13526
16	-13846	-13808	-13626	-13558	$\cdot 13544$	-13617	${ }^{-13635}$	-13583	-13719	-13492	- 13467	-13545
17	-13863	-13807	-13629	-13560	-13528	-13603	-13618	-13565	-13712	-13497	-13484	$\begin{array}{r}\cdot 13559 \\ \cdot \\ \hline 1356\end{array}$
18	$\cdot 13867$	-13814	-13643	-13547	-13500	- 13564	-13593	$\cdot 13541$	-13688	-13491	- 13479	$\cdot 13568$ \cdot +13566
19	-13858	-13811	-13641	-13524	-13460	-13524	- 13567	-13507	- 13643	$\cdot 13467$ -13422	$\cdot 13467$ \cdot \cdot	$\cdot 13566$ \cdot -13543
20	$\cdot 13856$ -13828	$\cdot 13793$ -13735	$\begin{array}{r}\cdot 13609 \\ \cdot \\ \hline\end{array}$	-13479	$\begin{array}{r}\text { - } 13399 \\ \cdot \\ \cdot \\ \hline 355\end{array}$	-13492	-13542	$\begin{array}{r}\text {-13459 } \\ \cdot \\ \hline\end{array}$	$\begin{array}{r}\cdot \\ \cdot \\ \cdot \\ \cdot \\ \hline\end{array} 353888$	$\cdot 13422$ \cdot \cdot -13375	-13440 - 13401	-13543
21	-13828	-13735	$\cdot 13553$	$\cdot 13419$ -1338	- 13355 -13327	-13457	-13514	$\cdot 13410$ \cdot \cdot 1394	$\cdot 13538$ $\cdot 13505$	-13375	$\cdot 13401$ \cdot \cdot	$\cdot 13512$ $\cdot 13495$
22	-13803	- 13694	$\cdot 13514$	-13385	-13327	$\cdot 13446$ $\cdot 13465$	$\cdot 13496$ \cdot \cdot I 3501	$\begin{array}{r}\cdot 13394 \\ \cdot \\ \cdot \\ \hline\end{array}$	- $\cdot 135505$	$\begin{array}{r}\cdot \\ \cdot \\ \cdot \\ \hline\end{array} 33359$	-13365	-13487
23	-13794	$\cdot 13693$	-13510	-13401	-13350	$\cdot 13465$	- 13501	-13416	-13525	-13359		13487

Table VII.-Montely Means of Readings of the Thmemometer placed within the box inclosing the Horizontal Force Magnet, at each of the ordinary Hours of Observation.

1882.												
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
0	$6{ }^{\circ} \cdot 5$	$6{ }^{\circ} \cdot 7$	$6{ }^{\circ} \cdot 4$	$6{ }^{\circ} \cdot 9$	$63^{\circ} 6$	$6^{\circ} \mathrm{O}$	63.8	$64^{\circ} \cdot 6$	63.0	$6{ }^{\circ}$	$5{ }^{\circ} \cdot 4$	$5{ }^{\circ} \cdot 3$
1	$60 \cdot 6$	$60 \cdot 8$	61.5	$62 \cdot 1$.	64°	$62 \cdot 1$	$63 \cdot 9$	$64 \cdot 8$	63.1	$61 \cdot 1$	$59 \cdot 6$	59.6
2	$60 \cdot 7$	60•9	61.6	$62 \cdot 3$	64.3	$62 \cdot 3$	64.1	64.9	63.3	$61 \cdot 3$	$59 \cdot 8$	59.7
3	$60 \cdot 8$	$61 \cdot 1$	61.9	62.4	64.5	62.4	64.2	65.0	63.4	61.4	$59 \cdot 9$	$59 \cdot 8$
9	61.0	61.4	62.8	63.2	64.4	62.6	$64 \cdot 6$	$65 \cdot 4$	$63 \cdot 7$	61.7	$60 \cdot 0$	59.9
21	$60 \cdot 4$	$60 \cdot 7$	61.5	$61 \cdot 7$	$62 \cdot 7$	$61 \cdot 7$	63.7	64.4	62.9	$60 \cdot 6$	$59^{\prime 2}$	$59^{\circ} 4$
22	$60 \cdot 4$	$60 \cdot 7$	61.4	61.6	63.0	617	$63 \cdot 7$	64.4	62.9	$60 \cdot 6$	59.2	59.4
23	$60 \cdot 3$	$60 \cdot 7$	$61 \cdot 3$	61.6	$63 \cdot 2$	61.8	63.8	64.4	62.9	$60 \cdot 6$	$59 \cdot 2$	59.4

Table VIII.

1882.			
Month.	Mean Horizontal Magnetic Force in each Month, uncorrected for Temperature.		Mean Temperature.
	Expressed in parts of the whole Horizontal Force (diminished by a Constant).	Expressed in terms of Gauss's Metrical Unit (diminished by a Constant).	
January	0.13828	0.24946	$60^{\circ} \cdot 6$
February.	-13778	$\cdot 24856$	60.9
March $\{1$ to 6.	- 13772	$\cdot 24845$	$60 \cdot 3$
March $\{10$ to 3ı.	-13559	-24460	62.0
April . . .	-13541	- 24428	$62 \cdot 1$
May... .	-13509	-24370	$63 \cdot 7$
June	-13595	-24525	62.1
July....	-13628	-24585	64°
August . .	-13556	-24455	$64 \cdot 7$
September	-13672	-24664	63.1
October . .	-13455	$\cdot 24273$	61.0
November	-13443	-24251	$59 \cdot 5$
December	-13532	-24412	$59 \cdot 6$

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. 'The value of the whole Horizontal Force in terms of this unit is $1 \cdot 80$ nearly. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.
On March η the cord which sustains the suspension skein gave way, thus breaking the continuity of the observations.

Table IX.-Mean Vertical Magnetic Force (diminished by a Constant) for each Astronomical Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in parts of the whole Vertical Force, and is uncorrected for temperature.)

1882.												
Days of the Month	January.	Febraary.	March.	ApriL.	May.	June.	July.	August.	September.	October,	November.	December.
${ }_{\text {d }}$	\cdots	0.03168	$0 \cdot 03402$	$0 \cdot 03673$	$0 \cdot 03356$	0.03270	0.01943	0.02216			0.05250	$0 \cdot 05233$
2		-03201	-03311,	-03675	-03561	-03305	. 02016	\bigcirc	\ldots		$\cdot 05250$	$\cdot 05227$
3		-03279	-03297 ${ }^{\prime}$	-03753	-03820	-03321	-02100	-01997	.	$\bigcirc \cdot 05288$	-05272	-05257
	0.03341	-03120	-03259	-03796	-03771	-03166	-01990			-05285	-05260	-0527 1
5	$\cdot 03445$	-03145	-03309	-03694	-03784	-03127	-01915	-02034			-05257	-05238
6	-03432	-03313	-03379	-03770	-03695	-03108	-01841	-02054		-05390	-05264	- 05210
7	-03253	-03361	-03483	-03769	-03718	-03034	-01827	-02080		-05370	$\bigcirc 05263$	-05213
8	-03252	-03274	-03605	-03738	-03523	-02938	-01823	-01993		- 05352	-05222	-05208
9	-03388	${ }^{-03145}$	-03652	-03557	-03555	$\cdot{ }^{-2854}$	-01833	-01927		-05333	- 05220	-05241
10	-03412	-03198	-03692	$\cdot \mathrm{O} 3524$	$\cdot 03629$	-02724	-01815	-01921	.	-05332	$\cdot 05212$	-05183

Table IX.-Mean Vertical Magnetic Force (diminished by a Constant) for each Astronomicai Day-concluded.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
II	0.03527	0.033 I 3	0.03714	0×03601	0.03757	0002648	0.01835	0×1927	.	0.05347	0.05223	0.05172
12	-03611	-03396	.03580	-03635	$\cdot .03745$	$\cdot \cdot 02573$.01894	. 02143	.	.05314		-05206
13	-03541	-03432	-03561	-03615	-03554	- 02603	-01877	-02158	.	-05298		-05228
14	-03385	-03573	-03653	-03661	-03360	$\cdot 02717$	-01999	.02183		-05304	. 05268	$\cdot 05238$
15	-03262	-03485	$\cdot 0,3666$	-03575	-03379	$\cdot 02725$	-02013	.02046	.	-05287	-05244	-05244
16	-03377	-03440	-03755	. .	-03363	-02821	-01938	.	.	-05260	-05210	-05267
17	-03299	-03593	-03643		-03437	$\cdot .02804$	-01964	.		-05270	.	$\bullet 05265$
18	-03173	-03576	-03552	-03528	-03512	:02733	- 01981	.		-0532 1		-05259
19	-03407	-03372	-03475		-03535	-02771	-01950	.		-05307		-05270
20	-03433	-03420	-03575	.	-03605	$\cdot 02877$	-01929			-05228		-05252
21	-03363	-03553	-03347	-03737	.03718	-01842	-01984	.	.	-05315	-058	$\cdot 05281$
22	-03342	. 03609	-03233	-03783	-03966	-01796	-02009	.	.	-05295	-05318	$\cdot 05258$
23	-03255	-03445	-03296	-03607	-03887	-01730	-01896	-••	.	-05203	-05328	$\circ 05235$
24	-03195	-03415	-03419	-03579	-03837		-01885	.		-05198	-05313	$\begin{aligned} & \circ \\ & \cdot \\ & \cdot 05186 \\ & \hline 05203 \end{aligned}$
25	-03083	-03490	-03440	-03429	-03727	-0r891	.01867 .01872			-05202	-05290	-.05223
26	-03158	-03473	-03300	-03374	-03805	-01868	.01872 .01960			.05189	${ }^{-} \cdot 052588$	$\begin{array}{r} \cdot 05247 \\ \cdot 05269 \end{array}$
27	-03366	-03549	-03378	-03256	-03866	- 01922	- 01960		.	.05186	-05273	$\cdot{ }^{\circ} \circ 026269$
28	-03487	-03495	$\begin{array}{r}.03428 \\ .03504 \\ \hline 0354\end{array}$	-03284	.03932	.02011	-01963			$\bigcirc \cdot .05216$	-05273	\bigcirc
29 30	\cdot \cdot \cdot .033789		$\begin{array}{r}.03504 \\ .03514 \\ \hline\end{array}$	-03203	$\begin{array}{r}.04107 \\ .04009 \\ \hline\end{array}$	-1933	-02060	.	.	-05211	$\cdot .05237$	-053ı3
31	-03281						-02069			$\cdot 05237$		-5320

Table X.-Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnet, for each Astronomical Day.

Table XI.-Monthly Means of Vertical Magnetic Force (diminished by a Constant) at each Hour of the Day. (The results are expressed in parts of the whole Vertical Force, and are uncorrected for temperature.)
1882.

	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\stackrel{0}{0}$	0.03330	0'03338	$0 \cdot 03388$	$\bigcirc \cdot 03503$	0.03611	0.02541	0.01854	0.02001	.	0.05259	$0 \cdot 05250$	$\bigcirc \cdot 05233$
1	-03348	-03360	-03415	-03538	-03665	$\cdot 02566$	-01885	-02032	.	-05275	-05261	-05244
2	-03369	-03387	-03446	-03573	-03712	$\cdot{ }^{-2590}$	-01915	-02070		-05291	-05275	-05255
3	-03378	-03414	-03476	-03604	-03743	${ }^{-2609}$	-01939	-02101		-05303	-05287	-05262
4	-03386	-03438	-03516	-0363ı	-03776	-02633	-01966	-02124	.	-053ı0	-05288	-05262
5	-03392	-03447	-03546	-03656	-03801	-02648	-01986	-02141		-05305	-05283	$\cdot 05259$
6	-03400	-03454	-03563	-03673	-03815	-02656	-01999	$\cdot 02146$		-05300	-05285	-05261
7	-03400	-03455	-03570	-03678	-03811	-02664	-02006	-02140	.	-05299	-05286	-05260
8	-03395	-03449	-03568	-03677	-03795	-02661	. 02008	$\cdot 02134$.	-05293	-05280	-05258
9	-03384	-03429	-03555	-03669	-03769	-02652	-02002	-02129		-05289	-05273	-05256
10	$\cdot \cdot 3375$	-03415	-03540	-03649	-03750	. 02641	-01995	-02118	\cdots	-05286	-05265	-05251
11	-03369	-03411	-03536	-03633	-03728	-02631	-01988	. 02111	..	-05278	-05259	-05244
12	-03366	-03407	-03529	-03618	-03705	-02619	:01977	-02096		-05275	-05250	$\cdot 05239$
13	-03354	-03390	-03504	-03596	-03672	-02604	-01965	- 02078	.	-05272	-05243	-05237
14	$\bigcirc{ }^{\circ} \mathrm{O} 345$	-03374	-03484	-03569	-03643	$\cdot 02593$	-01952	. 02060	..	$\cdot 05268$	-05244	-05238
15	-03334	-03364	-03468	-03552	-03624	-02581	-01940	$\cdot{ }^{-2051}$.	${ }^{\circ} \mathrm{O} 2629$	-05249	-05239
16	$\bullet \cdot 3325$	- 03353	-03458	-03534	-03607	$\cdot 02575$	-01934	-02041	.	$\cdot 05268$	-05247	-05237
17	-03318	-03345	-03442	-03520	-03595	-02565	-01926	-02031	.	${ }^{\circ} \mathrm{O} 265$	-05245	-05234
18	${ }^{\circ} \mathrm{O} 3313$	-03339	-03433	-03514	-03588	-02554	-01913	-02021	.	${ }^{\circ} \mathrm{O5} 261$	-05245	-05233
19	${ }^{-} 03314$	-03346	-0344 ${ }^{\text {I }}$	-03513	-03589	-02544	-01897	-02007	.	-05265	-05243	-05233
20	${ }^{-} 03314$	-03348	${ }^{\circ} 034{ }^{4} 4$	-03503	-03596	-02535	-01885	-1996	.	${ }^{\circ} \mathrm{O} 266$	-05246	-05233
21	-03308	-03347	${ }^{\circ} 03423$	$\cdot 03487$	-03600	-02520	-01873	-01981	.	${ }^{\circ} \mathrm{O} 257$	-05243	-05231
22	${ }^{\circ} \mathrm{0} 3309$	-03340	-03408	-03476	-03604	-02508	-01863	-01971		${ }^{\circ} \mathrm{O} 247$	-05236	-05231
23	$\cdot 03307$	-03335	-0339r	$\cdot{ }^{\circ} 3_{465}$	-03606	$\cdot 02501$	-01856	$\cdot{ }^{\circ} 1969$		$\cdot 05243$	-05236	. 05233

Table XII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnet, at each of the ordinary Hours of Observation.

1882.												
	January.	Februars.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
b	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	-	\bigcirc	-
o	59.4	$60 \cdot 3$	61.4	619	63.4	61.5	63.2	64.9	.	611	$59 \cdot 8$	$59 \cdot 4$
1	59.6	$60 \cdot 5$	$61 \cdot 6$	$62 \cdot 2$	$63 \cdot 8$	61.7	63.4	$65 \cdot 2$.	61.4	$60 \cdot 1$	$59 \cdot 6$
2	$59 \cdot 7$	$60 \cdot 6$	$61 \cdot 7$	62.2	$63 \cdot 9$	61.8	$63 \cdot 5$	$65 \cdot 2$.	61.5	$60 \cdot 1$	59.7
3	59.7	$60 \cdot 8$	62.0	$62 \cdot 3$	64°	-619	$63 \cdot 6$	$65 \cdot 2$.	61.6	$60 \cdot 2$	59.7
9	59.7	$60 \cdot 8$	$62 \cdot 5$	62.8	63.9	$62 \cdot 0$	63.9	$65 \cdot 5$.	$61 \cdot 7$	$60 \cdot 1$	$59 \cdot 8$
21	59.2	$60 \cdot 2$	$61 \cdot 4$	61.4	62.7	$61 \cdot 2$	62.9	$64 \cdot 3$.	$60 \cdot 5$	$59 \cdot 4$	59.3
22	59.2	$60 \cdot 2$	$61 \cdot 3$	$61 \cdot 3$	629	$61 \cdot 2$	$62 \cdot 9$	64.4	.	$60 \cdot 6$	59.3	$59 \cdot 3$
23	59.2	$60 \cdot 2$	$61 \cdot 3$	61.4	$63 \cdot 1$	61/2	63*	$64 \cdot 5$	\cdots	$60 \cdot 6$	59.4	$59 \cdot 3$

Greenwich Magnetical and Meteorological Observations, 1882.

Table XIII.

1882.

Month.	Mean Vertical Magnetic Force in each Month, uncorrected for Temperature.		Mean Temperature.
	Expressed in parts of the whole Vertical Force (diminished by a Constant).	Expressed in terms of Gatess's Metrical Unit (diminished by a Constant).	
			-
January.	$0 \cdot 03351$	0.14643	$59 \cdot 5$
February....	-03387	$\cdots 14800$	$60 \cdot 4$
March	-03481	-15211	6177
April .	-03576	$\cdot 15626$	$61 \cdot 9$
May .	.03684	$\cdot 16098$	63.4
une $\{1$ to 20	-02906	- 12698	$61 \cdot 2$
洊 21 to 30	-01892	$\cdot 08267$	$62 \cdot 3$
July. .	-01938	-08468	63.3
August	-02065	. 09023	64.9
September.	-	\cdots	-
October .	-05277	-23058	$61^{1} 1$
November	-05259	-22980	5908
December	-05244	-22914	59.5

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. The value of the whole Vertical Force in terms of this unit is 4.37 nearly. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.
On March 31, May 31, and June 21 changes were made in the adjustment of the magnet, by which the continuity of the observations became in each case broken. On August 16 the magnet was removed for attachment of a new and much smaller mirror ; it was restored to its position on October 3.

Table XIV.-Mean Diurnal Inequalities of Declination, Horizontal Force, and Vertical Force, for the Year 1882.
(Each result is the mean of the twelve monthly mean values: those for Horizontal Force and Vertical Force are not corrected for Temperature.)

Table XV.-Diurnal Range of Declination and Horizontal Force, as deduced from the Twenty-focr Hourly Mpasures of Ordinates of the Photographic Register on each Day.
(The Declination is expressed in minutes of are : for Horizontal Force the unit is $\cdot 0001$ of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)
1882.

Day of Month.	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	Dec.	H.F.																						
d	,		,		,		,		,		,		,		,		,		,		,		,	
1	$4^{\circ} \mathrm{O}$.	$14^{\prime 2}$	23	$7{ }^{\circ}$	17	$16 \cdot 8$	25	17.2	50	14.0	31	11.5	3I	13.8	39	12.2	25	115	20	$7 \cdot 3$	22	$10^{\circ} 0$	16
2	4.7		99	30	8.7	15	12.9	29	$13 \cdot 1$	46	12.0	20	11.2	42	12.4	39	12.8	27		\cdots	$8 \cdot 8$	20	4.2	10
3	$7 \cdot 2$	26	$6 \cdot 3$	12	11.4	17	$15 \cdot 6$	26	$10 \cdot 1$	35	14.3	21	13.7	28	11.5	31	13 "7	26	$8 \cdot 6$	32	$7 \cdot 4$	20	$5 \cdot 8$	12
4	6.9	8	3.9	16	13.3	14	20.2	45	12.7	28	12.6	27	8.8	30			7.4	27	11.0	28	$5 \cdot 1$	21	$7 \cdot 7$	18
5	$5 \cdot 4$	12	11.2	32	$11^{\circ} 2$	28	13.0	33	13.2	34	$13 \cdot 1$	31	$10 \cdot 8$	33	$8 \cdot 8$	40	20.4	31	.	\cdots	$8 \cdot 1$	23	$5 \cdot 3$	12
6	3.7	7	$15 \cdot 9$	27	$8 \cdot 9$	27	12.8	24	13.9	34	$9 \cdot 9$	3I	11.4	28	$9 \cdot 8$	26	$9 \cdot 5$	37	$14^{\circ} 1$	27	$5 \cdot 4$	20	$4 \cdot 8$	10
7	$4 \cdot 8$	11	7.6	19	$9^{\circ} 9$		11.3	36	$16 \cdot 8$	33	10.5	24	12.2	30	$6 \cdot 0$	25	10.3	24	9.9	21	8.0	18	$5 \cdot 3$	16
8	10.2	15	11.9	23	15.5		12.5	27	$13 \cdot 7$	24	$7{ }^{\circ} 0$	27	$7{ }^{\circ}$	39	$7 \cdot 2$	26	12.0	24	101	19	$7{ }^{\circ} 9$	16	$4 \cdot 8$	18
9	$5 \cdot 3$	8	10.8	33	11.8	\cdots	13.2	25	$10 \cdot 3$	26	$8 \cdot 7$	35	12.0	26	$5 \cdot 2$	25	97	23	10.8	32	$10 \cdot 8$	25	$9 \cdot 8$	18
10	$4 \cdot 2$	12	$8 \cdot 8$	21	11.3	16	12.4	19	$14^{\circ} 9$	33	$9{ }^{\circ} 0$	28	8.5	21	16.1	30	$7 \cdot 3$	25	14.8	23	$6 \cdot 1$	16	$3 \cdot 5$	22
11	$7 \cdot 5$	21	7×2	18	$8 \cdot 1$	14	13.7	33	13.9	46	12.4	32	11.8	24	13.5	31	$13 \cdot 5$	61	12.8	23	8.6	38	$9 \cdot 5$	26
12	$7 \cdot 9$	13	11.9	17	$10^{\circ} 0$	12	13.0	24	12.2	31	$8 \cdot 0$	40	10.5	32	18.8	45	10.8	36	11.0	2 I		.	$5 \cdot 9$	15
13	$6 \cdot 5$	19	$8 \cdot 3$	19	$7{ }^{\circ} 4$	13	13.9	62	$13 \cdot 1$	71	12.9	30	12.0	22	12.0	32	14.9	47	10^7	25		3	$4 \cdot 5$	14
14	12.4	18	6.2	21	10.9	15	$16 \cdot 0$	43	18.7	46	$6 \cdot 6$	39	$9{ }^{\circ} 9$	26	16.3	40	13.8	32	$8 \cdot 9$	27	9.4	33	4.5	11
15	10.5	13	$6 \cdot 6$	20	$10 \cdot 1$	24	$14^{\circ} 1$	47	13.2	23	11.2	53	12.6	20	12.1	32	12.5	31	12.8	30	6•0	23	$8 \cdot 3$ $8 \cdot 7$	38
16	$5 \cdot 6$	14	9.5	25	11.5	2 I	1	4	$14^{\circ} 9$	31	12.4	45	15.9	67	14.2	34	10.9	30	10.5	27	$5 \cdot 0$	23	$8 \cdot 7$	3 I
17	$6 \cdot 2$	12	9.9	26	111	21		\cdots	16.3	57	15.0	40	12.1	34	$10 \cdot 1$	33	10.5	26	97	27			$5 \cdot 4$ $6 \cdot 6$	10
18	$3 \cdot 1$	10	$7 \cdot 1$	20	11.5	15	17.6	51	13.6	38	$8 \cdot 8$	35	7.7	36	11.2	32	8.9	17	$7 \cdot 8$	20			$6 \cdot 6$	18
19	19.5	50	8.9	26	11.6	33	. .		13.0	45	13.8	40	8.7	23	12.3	30	10.5	27	10.4	18			4.7 4	16
20	$6 \cdot 5$	20	$14^{\circ} 4$	36	$10^{\circ} 9$	26		.	$16 \cdot 5$	30	17.3	40	$11^{\circ} \mathrm{O}$	29	$9 \cdot 2$	29	$9^{\circ} 8$	27	10.1 8.3	31			23.0	39
21	$7 \cdot 9$	32	7.5	19	$15 \cdot 4$	32	13.4	49	$16 \cdot 9$	43	13.3	49	$11^{\circ} \mathrm{O}$	36	10.9	52	77	22	$8 \cdot 3$	14	$6 \cdot 0$		12.7 8.7	24
22	$8 \cdot 8$	21	10.5	25	10.7	28	10.9	33	$15 \cdot 5$	24	$5 \cdot 1$	41	$9 \cdot 9$	33	9.3	28	9.4	19	15.7	30	$6 \cdot 0$	12	8.7 7.8	19
23	$8 \cdot 7$	14	7.5	24	12.5	30	12.7	26	11.4	33	$10 \cdot 7$	27.	115 8.8	20	$9 \cdot 3$	30	12.4	18	$\begin{array}{r}9.8 \\ \hline 12.1\end{array}$	17	97	28	$7 \cdot 8$ 5.2	16
24	$8 \cdot 8$	15	10.3	21	12.0	33	11.5	37	12.4	33			$8 \cdot 8$	14	110	21	12.1 15.5	50	12.1 11.6	29	$7 \cdot 6$ 13.0	11	$5 \cdot 2$ $5 \cdot 5$	25
25	74	11	8.5	16	9.8	20	11.2	28	$15 \cdot 8$	34	$8 \cdot 5$	26	10.5	26	14.3	40	$15 \cdot 5$ 8.5	28	11.6 6.5	24	13.0	22	$5 \cdot 5$ $6 \cdot 3$	215
26	5\%	13	$5 \cdot 9$	17	$9 \cdot 5$	24	9.7	26	10.5	35	11.8	41	$9 \cdot 3$	16	10.5	40	$8 \cdot 5$	29	$6 \cdot 5$	15	8.0	29	$6 \cdot 3$ $6 \cdot 0$	15
27		14	$6 \cdot 6$	115	$10 \cdot 9$	37	8.5	24	17.5	51	11.6	47	8.2 10.3	16	14.6	43 37	10 114 118	31 32	90 19 19	23	$4 \cdot 8$ 7 1	19	10.0	15
28	$5 \cdot 5$	23	$9 \cdot 9$	15	12.4	39	$17{ }^{1} 1$	36	$14^{\circ} \mathrm{O}$	46	11.6	37	$10 \cdot 3$	18	12.7	37	11.6	32	19 10° 1	28	7.1 3.8	18	$10 \cdot 0$ 8.9	116
29	10.5	16				32	14.8	35	$10 \cdot 7$	49	110	27	13.0		11.6	29	12.7 13.6	29	10.4 6.1	24	12.5	14	$7 \cdot 4$	18
30 31	$6 \cdot 6$	12			13.6	29	17.9	3I	11.3 14.1	$\begin{array}{r} 44 \\ 41 \end{array}$	9.7	31	12.3 24.0	48	10.1 12.5	24	13.6	26	$7{ }^{\circ} \mathrm{O}$	21		4	8.5	14

Table XVI.-Monthly Mean Diurnal Range of Declination and Horizontal Force, as deduced from the numbers contained in Table XV.
(The Declination is expressed in minutes of arc : for Horizontal Force the unit is $\cdot 0001$ of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)

ROYAL OBSERVATORY, GREENWICH.

RESULTS
OF
OBSERVATIONS
OF THE
MAGNETICDIP。

1882.

Results of Observations of Magnetic Dip, on each Day of Observation-concluded.									
Day and Approximate Hour, 1882.	Needle.	Length Needle.	Magnetic Dip.	Observer.	Day and Approximate Hour, 1882.	Needle.	Length of Needle	Magnetic Dip.	Observer.
 October 20. h On 2	$1{ }_{1}$	3 inches	$67.32 .33$	N	$\begin{array}{rrr}\text { d } & \text { h } \\ \text { November 25. }\end{array}$	B 2	9 inches	-' " ${ }^{\circ}$	N
25. 0	B_{1}	9 "	67.35 .56	N	28. 1	B1	9 "	67.35. 1	N
25. 2	B 2		67.35. 41	N	30. 0	C_{1}		67.33 .45	N
25. 3	D_{1}	3%	67.35. 4^{3}	N	30. 2	C_{2}	6 "	67.33. 44	N
25.23	C_{2}	6 "	67.35. 22	N					
- 26. 1	D_{2}	3 "	67.34 .55	N	December 4. 2	D_{2}	3 "	67.35. 18	N
- 30. 23	B_{2}	9 "	67.34. 5	N	13. 1	C_{1}	6 "	67.34 .38	N
$\text { 3I. } 1$	B_{1}	9 "	67.33. 12	N	13. 2	D I	3 "	67.32. 4	N
31. 2	C_{2}	6 "	67.34. 28	\mathbf{N}	16. 1	C_{2}	6 "	67.35 .53	N
November 4					19. 1	BI		$67.34 \cdot 42$	N
November 4. 1	D_{1}	3 "	67.34 .58	N	20. 23	D I	3 "	67.35. 56	\mathbf{N}
10. 2	C I	$6 "$	67.34. 34	N	21. 0	B 2	9 "	67.36. 48	N
11. 1	D_{2}	3 "	67.33. 4	N	28. 0	BI	9 "	$67.34 \cdot 9$	N
22. 1	C_{2}	6 "	67.37. 13	N	29. 0	B 2	9 "	67.34 .1	N
24. 1	B_{1}	9 "	67.34. 6	N	29. 1	D_{2}	3 "	67.34. 21	N
24. 2	D 2	3 "	67.36. 14	N	29. 2	C_{2}		67.35.21	\mathbf{N}

The initial N is that of Mr. Nash.

Yearly Means of Magnetic Dip for each of the Needies, and General Mean for the Year 1882.

Lengths of the several Sets of Needles.	Needles.	Number of Observations with each Needle.	Mean Yearly Dip from Observations with each Needle.	Mean Yearly Dip from each Set of Needles.	Mean Yearly Dip from all the Sets of Needles.
9-inch Needles\{ $\{$	$\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{2} \end{aligned}$	23	$\begin{gathered} \circ, \quad \prime \prime \\ 67.33 .38 \\ 67.33 .27 \end{gathered}$	\circ 67.33 .33	
6-inch Needles	$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{C}_{2} \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 67 \cdot 34 \cdot 28 \\ & 67 \cdot 34 \cdot 4^{2} \end{aligned}$	67.34.34	$\} 67.34 .7$
$3 \text {-inch Needles\{ }\{$	$\begin{aligned} & D_{1} \\ & D_{2} \end{aligned}$	23 23	$\begin{aligned} & 67 \cdot 34 \cdot 13 \\ & 67 \cdot 34 \cdot 16 \end{aligned}$	67.34.14	

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS
 or
 DEFLEXION OFA MAGNET
 FOR

ABSOLUTE MEASURE

or
HORIZONTAL FORCE.
1882.
(xx) Observations of Deflexion of a Magnet and Computations for Absolute Measure of Horizontal Force,

Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force.

The Deflecting Magnet is placed on the East side of the suspended Magnet, with its marked pole alternately E. and W., and on the West side with its marked pole also alternately E. and W. : the deflexion given in the table above is the mean of the four defiexions observed in those positions of the magnets.
The lengths of I foot and $I \cdot 3$ foot correspond to $304 \cdot 8$ and $39^{\prime \cdot} 2$ millimètres respectively.
The initial N is that of Mr. Nash.
In the following calculations every observation is reduced to the temperature 35°.

Computation of the Values of Absolute Measure of Horizontal Force in the Year 1882.

The value of \boldsymbol{X} in colamn 10 is referred to the unit Foot-Grain-Second, and that in column 11 to the unit Millimètre-Milligramme-Second. To obtain X in the Centimètre-Gramme-Second (C.G.S.) unit, the value given in column 11 must be divided by 10 , equivalent to shifting the decimal point one step towards the left.

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES
 AND
 EARTH CURRENTS.

1882.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, and Earth Currents; recorded at the Royal Observatory, Greenwich, in the Year 1882.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 5^{\prime} in Declination, 0.0015 in Horizontal Force, or $0 \cdot 0005$ in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Force respectively. When any one of the three elements is not specificaliy mentioned it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase and - a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

In all cases of magnetic movement for which there are earth-current photographs, the registers show corresponding earth currents, but it has not been thought necessary to refer to these in detail.

Magnetic movements which do not admit of brief description in this way are exhibited with their corresponding earth currents on accompanying plates.

The time is Greenwich Mean Solar Time (Astronomical Reckoning).
1882.

January 4. $10 \frac{1}{2}$ h. to 14^{h}. Wave in Dec. $\left(-7^{\prime}\right)$: fluctuations in H.F. ($\pm{ }^{\circ} 00$).
5. $0 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$. to 4^{h}. Two successive waves in Dec. (each - 5^{\prime}) : in H.F. (- -001 and - -0015).

11. $7^{\text {h. }}$. to $1^{6 \text { h }}$. Long wave in Dec. $\left(-7^{\prime}\right)$: in H.F. $\left(-{ }^{\circ} 002\right)$: with superposed fluctuations, in Dec. $\left(\pm 3^{\prime}\right)$, in H.F. ($\pm \cdot 001$).
12. Waves in Dec. at $5^{\text {h }} .\left(-9^{\prime}\right)$, and at $9^{\text {h }} \cdot\left(-12^{\prime}\right)$. Fluctuations in H.F. $4 \frac{1}{2}^{\text {h }}$. to $11^{\text {h }}$. (-002 to $+\cdot 001$).
13. $2^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm \cdot \circ 01$).
14. $6^{\text {h }}$. to $17^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \cdot 001)$: with wave in Dec. at $7^{\text {h }}$. $\left(-11^{\prime}\right)$, and wave in H.F. at $11^{\text {h }}$. $\left(+{ }^{\cdot 003) \text {. }}\right.$
15. $2^{\text {h }}$. to $14^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 001\right)$.
16. $5^{\text {b }}$. to $12^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: with wave in H.F. at $7^{\text {h }}$. $\left(+{ }^{\bullet} 002\right)$.
19. Disturbed day. See Plate I.
20. $13^{\text {h }}$. Wave in H.F. ($+{ }^{\cdot 0025}$).
21. $9 \frac{1}{2}$. Wave in Dec. $\left(-6^{\prime}\right)$.
22. $5^{\text {h }}$. to $10^{\text {h }}$. Two successive waves in Dec. (each -7^{\prime}): fluctuations in H.F. (- oor to $+\cdot 002$): in V.F. small.
23. $9^{\text {h }}$. to $10^{\text {h. }}$. Double wave in Dec. $\left(-10^{\prime}\right.$ to $+4^{\prime}$) : in H.F. ($-\cdot 001$ to $+\cdot 0005$): in V.F. small.
24. $4 \frac{1}{2}^{\text {h }}$. to $6 \frac{1}{2}$. Wave in Dec. (-11^{\prime}). $1 \frac{1}{2}$ h. to $6^{\text {h }}$. Fluctuations in H.F. ($\pm{ }^{\circ} 01$) : in V.F. small.
25. $8 \frac{1}{2}$. . to $13 \frac{1^{\text {h }}}{}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \circ 01$) : in V.F. small.
27. $7^{\text {h }}$. Wave in Dec. $\left(-5^{\prime}\right)$: in H.F. (-002). $11^{\text {h }}$. to $13 \frac{1}{2}$ h. Flat wave in Dec. $\left(-8^{\prime}\right)$: in H.F. $(+\cdot 001)$.
29. $9^{\text {h. }}$. to $17^{\text {h }}$. Fluctuations in Dec. $\left(\pm 6^{\prime}\right): 8^{\text {h }}$. to $12^{\text {h }}$. in H.F. ($\pm{ }^{\circ} 001$).
31. $12 \frac{1}{2}{ }^{\text {h }}$. to $16^{\text {h }}$. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($-\infty 01$ to $+\circ 015$).

February I. Disturbed day. See Plate I.
2. $7^{\text {h }}$. Wave in Dec. $\left(-15^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 005\right)$: in V.F. small. $13^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm .001$).
5. Waves in Dec., $5 \frac{1}{2}$. . to $7^{\text {h }}$. $\left(-8^{\prime}\right)$, $12^{\text {h }}$. to $13^{\text {h }} \cdot\left(+8^{\prime}\right)$. Two successive waves in H.F. $10^{\text {h }}$. to $13 \frac{1}{2}$ h. $\left(+{ }^{\circ} 004\right.$ and $+{ }^{\circ} 006$) : wave in H.F. 17^{h}. to $18 \frac{1}{2}$ h.$\left(+{ }^{\circ} 004\right)$. Small fluctuations generally from February 5 . 0^{h}. to February 6. $1_{\frac{1}{2}}{ }^{\mathrm{h}}$, in Dec., H.F., and V.F.
6. $5^{\text {h }}$. to $13^{\text {h }}$. Fluctuations in Dec. ($\pm 10^{\prime}$) : in H.F. ($\pm{ }^{\circ} 003$) : in V.F. ($\pm \circ 003$).
8. Fluctuations throughout in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 0015\right)$: in V.F. small.
9. $11 \frac{1}{2}^{\text {b }}$. Sharp double wave in Dec. $\left(+9^{\prime}\right.$ to -4^{\prime}) : in H.F. $\left(+{ }^{\circ} 0035\right.$ to $-\cdot 0015$) : in V.F. small. Small fluctuations generally throughout the day.
17. $12^{\text {h }}$. to $1^{\text {h }}$. Fluctuations in Dec. $\left(\pm 8^{\prime}\right)$: in H.F. $(\pm \cdot 001)$: in V.F. small.
20. Disturbed day. See Plate I.
1882.

 $7^{\text {b }}$. to $17^{\text {h }}$. Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. $(\pm \cdot 001)$.
5. 4^{h}. to 12^{h}. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} \times 1\right)$, terminating with wave, steep at commencement, $\left(+{ }^{\circ} 003\right)$.
8. Fluctuations throughout in Dec. ($\pm 7^{\prime}$) : in H.F. ($\pm \cdot 002$) : in V.F. ($\pm \cdot 0004$).
9. 4^{h}. to 11^{h}. Sharp wave in Dec. 4^{h}. to $5 \frac{1}{h}^{\mathrm{h}}$. $\left(-20^{\prime}\right)$, followed by fluctuations $\left(\pm 6^{\prime}\right)$: fluctuations in H.F. ($\pm{ }^{\circ} 0.25$) : in V.F. small.
15. $8 \frac{t^{\mathrm{h}}}{}$. to $9 \frac{1}{\mathrm{~h}}^{\mathrm{h}}$. Sharp wave in Dec. $\left(-12^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 0035\right)$: in V.F. small.

19. $5^{\text {h }}$. to $7^{\text {h }}$. and from $1^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \times 00$) : in V.F. small.
21. $2^{\text {h. }}$. to $5^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm{ }^{\circ} \mathrm{O}$)) : in V.F. small.
23. $1^{\text {h. }}$. to $13^{\text {h }}$. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. $(\pm \times 015$) : in V.F. small.
26. $7^{\text {h. }}$ to $14^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. $(\pm \times 001)$: in V.F. small.
27. $9^{\text {h }}$. to $10^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: wave in H.F. $\left(+{ }^{-002}\right)$.
28. $3^{\text {h }}$. to 1^{5}. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 001\right)$: in V.F. ($\pm \cdot 0002$).

April 1. $8 \frac{1}{2}$ h. to 1^{3}. Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm{ }^{\circ} \circ 01$).

 Wave in Dec. ($+16^{\prime}$) : in H.F. ($-{ }^{\circ} 003$) : in V.F. (-0003).
5. $7^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \cdot 001$).
6. 4^{h}. to 17^{h}. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. $(\pm .0015)$: in V.F. ($\pm \times 002$).
7. $5^{\text {h }}$. to $12^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$).
8. $5^{\text {h }}$. to $9^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$).
13. 11^{h}. to 19^{h}. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$, with wave at commencement (-10^{\prime}), and wave at 16^{h}. $\left(+10^{\prime}\right)$: in H.F. fluctuations ($\pm \cdot 0015$) : in Y.F. ($\pm{ }^{\circ} 0003$).
14. $0^{\text {h }}$. to $13^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$ with wave at $64^{\text {h. }} \cdot\left(-8^{\prime}\right)$: in H.F. fluctuations $(\pm \cdot 0015)$: in V.F. small.
15. $11^{\text {b }}$. to $16^{\text {h }}$. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm{ }^{\circ} 001$).
16. $1 \frac{1}{2}^{\mathrm{h}}$. to 7^{h}. Fluctuations in H.F. ($\pm \cdot 0015$).
$\left.\begin{array}{l}\text { 16. } \\ \text { 17. }\end{array}\right\}$ Disturbed days. See Plate II.
18. 84. Sharp wave in Dec. $\left(-6^{\prime}\right)$: in H.F. $(+\cdot 0025)$: in V.F. small.
$\left.\begin{array}{l}\text { 19. } \\ \text { 20. }\end{array}\right\}$ Disturbed days. See Plate III.
23. [$0^{\text {h. }}$ to $7 \frac{1}{2}$ h. No register of Dec., H.F., or V.F.] $8 \frac{1_{2}^{h}}{2}$. to $21^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm{ }^{\circ} 01$) : in V.F. ($\pm{ }^{\circ} 0002$).
28. $11^{\text {h }}$. to $20^{\text {h }}$. Fluctuations in Dec. ($\pm 8^{\prime}$) : in H.F. ($\pm \cdot 001$) : in V.F. ($\pm{ }^{\circ} 0002$).
29. $9 \frac{1}{2}$ b. to $11 \frac{1}{2}$ h. Sharp fluctuations in Dec. $\left(-7^{\prime}\right.$ to $+12^{\prime}$) : in H.F. ($\pm \cdot 0015$) : in V.F. ($\pm .0004$).
30. $10 \frac{1}{4}^{\text {h }}$. to $13^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : waves in H.F. at $2 \frac{2_{2}^{h}}{}$. $\left(-\circ 03\right.$) and at $11^{\text {b }}$. $(+\cdots 035)$: in V.F. at $11 \frac{1}{2}$ h . (-0003).
May 1. $6^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in Dec. ($\pm 7^{\prime}$) : in H.F. ($\pm \cdot 0025$) : in V.F. ($\pm \cdot 0002$).
2. $3^{\text {b }}$. to $17^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 0015$) : in V.F. small.
3. $15 \frac{1}{2}$ h. to 18^{h}. Wave in Dec. $\left(+10^{\prime}\right)$.
4. 84 in. Wave in Dec. $(-7)^{\prime}$.
11. 15 $\frac{1}{2}^{\text {h }}$. Wave in Dec. $\left(+6^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 0025\right)$.
13. $4 \frac{1^{\text {h }}}{}$. to $1 \frac{1}{2}_{\frac{1}{b}}$. Fluctuations in Dec. $\left(\pm 7^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} \infty 2\right)$: in V.F. $(\pm \cdot 0002)$.
14. 8^{h}. to 1^{h}. Fluctuations in Dec. $\left(\pm 7^{\prime}\right)$. 8^{h}. to $9 \frac{1}{2}^{\mathrm{h}}$. Wave in H.F. ($+{ }^{\circ} 006$) with superposed fluctuations ($\pm \cdot 0015$), followed by fluctuations ($\pm \cdot 002$), ending with sharp wave ($-\cdot 0045$) at $11 \frac{3 \mathrm{~h}}{4} .11 \frac{3 \mathrm{~h}}{4}$. Wave in V.F. (- ${ }^{0025) .}$
17. $9^{\text {b }}$. to $17^{\text {h }}$. Fluctuations in Dec. ($\pm 4^{\prime}$). $3 \frac{1}{2}^{\text {h }}$. to $14^{\text {h }}$. Fluctuations in H.F. ($\pm \cdot 002$).
1882.
21. $22 \frac{1}{2}$. Wave in H.F. (-.004).
22. $2 \frac{1}{2}$ h. Wave in Dec. $\left(+3^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 003\right)$. Waves in Dec. at $8 \frac{1}{2} \mathrm{~h}$. and 13^{h}. (each $\left.-6^{\prime}\right)$. $6 \frac{1}{2}{ }^{\mathrm{h}}$. to $9 \frac{1}{2} \mathrm{~h}$. Fluctuations in H.F. ($\pm{ }^{\circ} \mathrm{oos}$).
27. 12^{h}, to 16^{h}. Double wave in Dec. $\left(+6^{\prime}\right.$ to $\left.-14^{\prime}\right)$. 6^{h}. to 14^{h}. Fluctuations in H.F. $(\pm \cdot 001)$.
28. $6^{\text {h }}$. to $16^{\text {h }}$. Fluctuations in Dec. ($\pm 7^{\prime}$). $o^{\text {h. }}$ to $18^{\text {h }}$. Fluctuations in H.F. ($\pm \cdot 0015$) : in V.F. ($\pm{ }^{\circ} 0002$).
29. $7 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$. to 10^{h}. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \cdot 0015$).
30. $9 \frac{1}{2}^{\mathrm{h}}$. to $10 \frac{1_{2}}{}{ }^{\mathrm{h}}$. Wave in Dec. $\left(-6^{\prime}\right)$: fluctuations in H.F. ($\pm{ }^{\circ} 001$).
31. 10^{h}. to 17^{h}. Fluctuations in Dec. ($\pm 5^{\prime}$). $\quad 4^{\mathrm{h}}$. to 13^{h}. Fluctuations in H.F. ($\pm \cdot 0015$).

June

1. $4^{\text {h. }}$ to $1^{\text {h }}$. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm \cdot 001$).
2. 5^{h}. to 12^{h}. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$. 3^{h}. to 12^{h}. Fluctuations in H.F. ($\pm \cdot 0015$) : in V.F. small.
3. $4 \frac{1}{2}{ }^{\mathrm{h}}$. to 8^{h}. Fluctuations in H.F. (\pm. 001).
4. $3^{\text {h }}$. to I^{h}. Fluctuations in H.F. ($\pm \cdot 001$).
5. $17^{\text {h }}$. to $19 \frac{1}{2}{ }^{\text {h }}$. Wave in Dec. $\left(+10^{\prime}\right)$: in H.F. ($-{ }^{\circ} 003$).
6. Disturbed day. See Plate IV.
7. $1 \frac{1}{2}$. . to $6^{\text {h }}$. Fluctuations in H.F. ($\pm \cdot 0015$). $1 \frac{1}{2}^{\mathrm{h}}$. to $2 \mathrm{I}^{\mathrm{h}}$. Fluctuations in Dec. $\left(\pm 7^{\prime}\right)$: in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0002$).
8. 7^{h}. to 19^{h}. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$. 2^{h}. to 19^{h}. Fluctuations in H.F. ($\pm \cdot \infty 01$).
9. 101 $\frac{1}{2}^{\mathrm{h}}$. to $11 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$. Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. $(+\cdot 0015)$.
10. $10 \frac{1}{2}$. to $13^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$) : in V.F. small.
11. $4 \frac{1}{2}^{\mathrm{h}}$. to 5^{h}. Decrease of Dec. (8^{\prime}) : wave in H.F. ($-\cdot 003$) : in V.F. ($-\cdot 0002$). 18^{h}. to 21^{h}. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \cdot 001$).
12. $0^{\text {h }}$. to $1^{5} 5^{\text {h }}$. Fluctuations in Dec. ($\pm 4^{\prime}$) : in H.F. ($\pm \cdot 001$) : in V.F. ($\pm \cdot 0003$).

13. $2^{\text {h }}$. to $18^{\text {h }}$. Fluctuations in H.F. ($\pm \cdot \infty \circ \mathrm{I}$).
14. Disturbed day. See Plate IV.
15. $8^{\text {h }}$. to $12^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$. $5^{\text {h. }}$. to $1^{2}{ }^{\text {h }}$. Fluctuations in H.F. ($\pm \cdot 001$).
16. 1^{h}. to 19^{h}. Fluctuations in Dec. ($\pm 3^{\prime}$) : in H.F. ($\pm \cdot 001$): in V.F. ($\pm \cdot 0002$).
17. $6 \frac{3 \mathrm{~h}}{4}$. to $7 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$. Wave in Dec. $\left(-7^{\prime}\right)$. $2 \frac{1}{2}{ }^{\mathrm{h}}$. to $7 \frac{3}{4} \mathrm{~h}$. Fluctuations in H.F. (土 $\cdot 0015$).

July 2. $3^{\text {h }}$. to $8^{\text {h }}$. Fluctuations in H.F. ($\pm{ }^{\circ} 002$).
7. $0 \frac{1}{2} \mathrm{~h}$. to $6 \frac{1}{2}$. Fluctuations in H.F. ($\pm .0015$) : in V.F. small.
12. 7^{h}. to $8 \frac{1}{2} \mathrm{~h}$. Wave in Dec. $\left(-6^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 0015\right)$.
16. Disturbed day. See Plate V.
17. $1^{\text {h. }}$ to $15^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot 0015$) : in V.F. ($\pm \cdot 0002$).
18. 7^{h}. to 12^{h}. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot 0015$) : in V.F. ($\pm \cdot 0002$).
19. $17 \frac{1 \mathrm{~h}}{4}$. to $19 \frac{1}{4}$. Wave in H.F. (- -002) .
20. $16 \frac{1}{4} \mathrm{~h}$. to $18 \frac{3 \mathrm{~h}}{4}$. Wave in Dec. $\left(+6^{\prime}\right)$.

30.
$\left.\begin{array}{r}30 . \\ \text { 3. } \\ 4 .\end{array}\right\}$ Disturbed days. See Plates V., VI., and VII.
5. $3 \frac{1}{2}^{\mathrm{h}}$. to $5 \frac{34^{\mathrm{h}}}{}$. Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm \cdot 001$) : in V.F. ($\pm{ }^{\circ} \times 001$).
9. $15 \frac{1}{4}^{\mathrm{h}}$. to $21 \frac{1}{2}{ }^{\mathrm{h}}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot \infty 01$).
 (--0007). Small fluctuations generally at other times from 3^{h}. to 17^{h}.
11. $12^{\text {h. }}$. to $20^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. (± 001).

13. 4^{h}. to $12 \frac{1^{\mathrm{h}}}{}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot 0015$).
14. $2^{\text {h }}$. to $12^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot \infty 01$).
16. $5^{\text {h }}$. to $20^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 0015$), with wave at $3 \frac{1}{4}$. $\cdot(+\cdot 003)$. [No register of V.F.]
17. $10^{\text {h. }}$. to 16^{h}. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot \circ 01$). [No register of V.F.]
20. $8 \frac{1}{2}$. Wave in H.F. $(+\cdot 0015)$. [No register of V.F.]
21. $6 \frac{3}{4}$. to $19^{\text {h. }}$. Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. ($\pm \cdot 0015$), with wave at $11^{\text {h }} .(+\cdot 003)$. [No register of V.F.]
1882.

August 25. $7^{\text {k }}$. to $1^{\text {3h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm{ }^{\circ} 001$). [No register of V.F.]

September 2. $5^{\text {h }}$. to $15^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \circ 0$). [No register of V.F.]
3. 4^{h}. to $8^{\text {b }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$. $0_{2}^{\text {h }}$. to $8^{\text {h }}$. Fluctuations in H.F. ($\pm \times 01$). [No register of V.F.]

[No register of V.F.]
6. $5^{\text {b }}$. to $10^{\text {h }}$. Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. (± 001). [No register of V.F.]
11. Disturbed day. See Plate VIII.
12. $8^{\text {h. }}$ Wave in Dec. $\left(-6^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 002\right)$: with fluctuations in Dec. $\left(\pm \mathbf{2}^{\prime}\right)$ until $17^{\text {h }}$. [No register of V.F.]

14. 4^{h}. Wave in Dec. (-5^{\prime}) : in H.F. (-0015). $73^{3 \mathrm{~h}}$. to 10^{h}. Two successive waves in Dec. (-10^{\prime} and -4^{\prime}): fluctuations in H.F. ($\pm \cdot 001$). [No register of V.F.]
18. $6 \frac{3}{4}$. . to $8^{\text {h }}$. Sharp wave in Dec. $\left(-8^{\prime}\right)$. $6 \frac{2}{4}$. to $8 \frac{1}{2}$. Fluctuations in H.F. ($\pm \circ 001$). [No register of V.F.]
19. $3^{\frac{3}{4} \mathrm{~h}}$. Sharp wave in Dec. $\left(-3^{\prime}\right)$: in H.F. $(-\cdot 0025)$. $8 \frac{1}{2}$. to 11^{h}. Fluctuations in H.F. $(\pm \cdot 001)$. [No register of V.F.]
20. $9^{\text {h }}$. to $14^{\text {h }}$. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \times 0015$). [No register of V.F.]
23. $10^{\text {h }}$. to $11^{\text {b }}$. Wave in H.F. $\left(+{ }^{\circ} 002\right)$. [No register of V.F.]
24. $1^{\text {h }}$. to $21^{\text {h }}$. Fluctuations in Dec. ($\pm \mathbf{2}^{\prime}$): in H.F. ($\pm \times 01$). [No register of V.F.]
25. $74^{\text {h }}$. to $8 \frac{1}{4}^{\text {h }}$. Sharp wave in Dec. $\left(-10^{\prime}\right)$: in H.F. $\left(-{ }^{-0025)}\right.$). $2^{\text {h }}$. to $10^{\text {h. }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot 0015$). [No register of V.F.]
26. $9^{\text {h }}$. to $20^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$). [No register of V.F.]

October 2. Disturbed day. See Plate IX.
4. 4^{h}. to 11^{h}. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \cdot 001$), with sharp wave at 10^{h}. $(+\cdot 004)$: in V.F. small.
5. Disturbed day. See Plate X.
8. $7 \frac{3^{h}}{}$. to $13^{\text {h }}$. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \times 005$).
9. $7 \frac{1}{2}^{\text {h }}$. to $14^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. (± 0015).
10. $6 \frac{1}{4}^{\mathrm{h}}$. to $8 \frac{1_{2}^{\mathrm{h}}}{}$. Wave in Dec. $\left(-20^{\prime}\right)$. $5^{\text {h }}$. to $8^{\text {h }}$. Fluctuations in H.F. $(\pm \cdot 0015)$: in V.F. small.
 Dec. and H.F.
14. $3^{\text {h }}$. to $20^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. $(\pm \cdot 001)$.
17. $7 \frac{1}{2}$ ". to $1^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. (± 001).
22. $2^{\text {h }}$. to $17^{\text {h }}$. Flactuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \times 001$) : in V.F. small. $7^{\text {h }}$. to $8^{\text {h }}$. Double wave in Dec. (-10^{\prime} to $+10^{\prime}$) : in H.F. ($+{ }^{\circ} 004$ to $-{ }^{-002}$) : in V.F. small.
24. $17^{\text {b }}$. to $20 \frac{1}{2}^{\text {h }}$. Wave in Dec. $\left(+15^{\prime}\right)$. $16 \frac{1}{2}$ h. to $19 \frac{1}{2}^{\mathrm{h}}$. Fluctuations in H.F. (± 002) : in V.F. small.
25. $6 \frac{3 \mathrm{~h}}{} \mathrm{~h}$. Wave in Dec. $\left(-8^{\prime}\right)$: in H.F. (-002). $10^{\text {h }}$. Wave in Dec. $\left(+5^{\prime}\right)$: in H.F. $\left(+{ }^{\circ} 003\right)$. 13 $\frac{1}{2}^{\mathrm{h}}$. to 16 ${ }^{\text {h. }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$.
27. $8 \frac{1}{2}$. . to $18 \frac{1^{\mathrm{h}}}{}$. Fluctuations in Dec. $\left(\pm 7^{\prime}\right)$: in H.F. ($\pm \cdot 0015$) : in V.F. small.
28. $2^{\text {h. }}$. to $17 \frac{2^{\mathrm{h}}}{}$. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \circ 002$) : in V.F. small. Waves in Dec. 4^{h}. to 5^{h}. $\left(-18^{\prime}\right)$, and $7 \frac{1}{2}{ }^{\mathrm{h}}$. to $8 \frac{1}{2}{ }^{\mathrm{h}} .\left(-13^{\prime}\right)$.
29. $4^{\text {h. }}$ to $14^{\text {h }}$. Fluctuations in Dec. ($\pm 5^{\prime}$) : in H.F. ($\pm \times 01$) : in V.F. small.

November 2. $8 \frac{1}{4}$. to 11^{h}. Wave in Dec. $\left(-9^{\prime}\right)$, sharp at commencement. $12 \frac{3 \mathrm{~h}}{} \mathrm{~h}$. Wave, very sharp at commencement, in Dec. $\left(+5^{\prime}\right)$: in H.F. $(+\cdot 0045)$: in V.F. $(+\cdot 0004)$: followed by small fluctuations until $18{ }^{\text {b }}$.
5. $7 \frac{1}{2}^{\mathrm{h}}$. to 16^{h}. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $\left(\pm{ }^{\circ} 0015\right)$: in V.F. small.
6. $5^{\text {h }}$. to $14^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm \cdot 001$).
7. $1^{\text {b }}$. to $13^{\text {b }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$): in V.F. small.
9. $6^{\text {b }}$. to $1^{3}{ }^{\text {b }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 001$).

11 to 26. Disturbed period. See Plates X. to XXI.
30. $9 \frac{14^{\text {b }}}{}$. to $11^{\text {b }}$. Wave in Dec. $\left(-10^{\prime}\right)$: in H.F. ($+\cdot 0025$).

December 1. $10^{\text {b. }}$ to $15^{\text {b }}$. Four successive waves in Dec. $\left(-4^{\prime},-10^{\prime},-2^{\prime}\right.$, and -3^{\prime}) : fluctuations in H.F. ($\pm \cdot 0015$) : in V.F. small.
3. $5^{\text {b }}$. to $9 \frac{1^{\mathrm{h}}}{}{ }^{\text {. }}$ Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \cdot 001)$.
1882.

December
4. $1 \frac{3}{4}$ h. to $12 \frac{1}{2}$ h. Fluctuations in Dec. $\left(\pm 4^{\prime}\right)$: in H.F. $\left(\pm{ }^{-\infty}\right.$) : in V.F. small.
5. $8^{\text {h. }}$. to $10^{\text {h }}$. Fluctuations in Dee. ($\pm 2^{\prime}$) : in H.F. ($\pm{ }^{\circ} 0005$).
6. $8 \frac{1}{4}^{\text {h }}$. Wave in Dec. $\left(-6^{\prime}\right)$.
7. 8^{h}. to $10^{\text {h }}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$. $8 \frac{1_{2}}{}{ }^{\text {h }}$. to $92^{\frac{1}{h}}$. Wave in H.F. $(+\cdot 002)$.
8. 19^{h}. Wave in Dec. $\left(+4^{\prime}\right)$: in H.F. $(+\cdot \infty 15)$.
9. $5^{\text {h }}$. to $1^{5^{h}}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \cdot 0015)$. Wave at $10 \frac{1}{4}^{\text {h. }}$. in Dec. $\left(-7^{\prime}\right)$: in H.F. ($+\cdot 0025$).
11. $5 \frac{1}{4}$ h. Wave in Dec. $\left(-7^{\prime}\right)$: in H.F. ($-\cdot 0015$). $7^{\text {h. }}$ to $1^{\text {h. }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. $(\pm \cdot 001)$.
12. $\mathbf{I}^{\text {h }}$. to $7 \frac{1}{2}$. Fluctuations in Dec. $\left(\pm 2^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 0005$).
15. 814. Change in Dec. $\left(-10^{\prime}\right)$: in H.F. (-0015). $11 \frac{3 \mathrm{~h} \text { h }}{}$. Wave, very sharp at commencement, in Dec. $\left(+6^{\prime}\right)$: in H.F. $(+\cdot 004)$: in V.F. $(+\cdot 0005)$: followed by fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm \cdot 001$) : in V.F. $(\pm \cdot 0002)$ until 20^{h}.
16. $8^{\text {h }}$. to $10^{\text {h. }}$. Wave in Dec. $\left(-25^{\prime}\right)$. $7 \frac{1}{2}^{\text {h. }}$. to $9^{\text {h. }}$. Wave in H.F. ($-\cdot 005$) : in V.F. $\left(+{ }^{\circ} 0003\right)$.
18. $9^{\text {h. }}$. to $19^{\text {h }}$. Fluctuations in Dec. $\left(\pm 3^{\prime}\right)$: in H.F. ($\pm{ }^{\circ} 002$) : in V.F. small.
$\left.\begin{array}{l}\text { 20. } \\ \text { 21. }\end{array}\right\}$ Disturbed days. See Plate XXII.
26. Waves in Dec. at $7 \frac{1}{1}^{\text {h }} \cdot\left(-7^{\prime}\right)$, at $8 \frac{1}{2}^{\mathrm{h}} \cdot\left(-8^{\prime}\right)$, with small fluctuations until $18^{\text {h }}$. Fluctuations in H.F. 7^{h}. to I^{h}. ($\pm{ }^{\circ} \mathrm{OO}$).
27. $8 \frac{1}{2}$. . to 1^{6}. Fluctuations in Dec. $\left(\pm 5^{\prime}\right)$: in H.F. ($\pm \times 015$) : in V.F. small.

30. $5 \frac{1}{2}^{\text {h }} .^{\text {to }} 7 \frac{1}{2}^{\text {h }}$. Wave in Dec. (-13^{\prime}), followed by fluctuations ($\pm 2^{\prime}$) until $12^{\text {h }}$. Fluctuations in H.F. $5 \frac{1}{2}$. to $12^{\text {h. }}$. $(\pm \circ 01)$.
31. 5^{h}. to 17^{h}. Fluctuations in Dec. ($\pm 2^{\prime}$) : in H.F. ($\pm \cdot 001$).

Explanation of the Plates.

The magnetic motions figured on the Plates are-
(1.) Those for days of great disturbance-April 16, 17, 19, 20, June 24, August 4, October 2, 5, November 12, 13, 17, 18, 19, 20, 21 .
(2.) Those for days of lesser disturbance-January 19, February 1, 20, June 14, July 16, 30, 31, September 11, November 11, 14, 25, December 20, 21.
(3.) Those for days required to complete the period of visibility of the great November sun-spot-November 15, $16,22,23,24,26$.
The day is the astronomical day commencing at Greenwich mean noon.
The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively; the declination (west) is expressed in minutes of arc, and the horizontal and vertical forces in parts of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram.

Downward motion indicates increase of declination and of horizontal and vertical force.
The earth current register E_{1} is that of the line Angerstein Wharf-Lady Well, making an angle of 50° with the magnetic meridian, reckoning from north to east. The \mathbf{E}_{2} register is that of the line Blackheath-North Kent East, making an angle of 46° with the magnetic meridian, reckoning from north to west. Zero E_{1} and Zero E_{2} indicate the respective instrumental zeros.

Downward motion of earth current register indicates in the E_{1} circuit the passage of a current, corresponding to that from the copper pole of a battery, in the direction Angerstein Wharf to Lady Well (N.E. to S.W.), and in the E_{2} circuit to the passage of a similar current in the direction Blackheath to North Kent East (S.E. to N.W.)
An arrow (\uparrow) indicates that the register was out of range of registration in the direction of the arrow-head. Other
 to $23 \frac{1 \mathrm{~h}}{}$. the vertical force magnet was in vibration, presumably through rapid magnetic disturbances.

The temperatures given in small figures on the Diagrams represent those of the horizontal and vertical force magnets at the corresponding hours of observation, usually $o^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}, 23^{\mathrm{h}}$.

Until June 14 there were no available earth current registers, and on September 11 and October 2 there were no registers of magnetic vertical force, the magnet being away for alteration.

Magnetic Disturbances and Farth Gurrents recorded at the Royal Observatory (ireenwich, 188".

Magnetic Disturbances and Earth Cirrents recorded at the Roval Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Ohservatory Greenwich, 1882.

Magnetic Disturbances and Earth Cirrents recorded at the Royal Observatory Greenwich, 188\%.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 1882.

Plate 7.

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbanecs and Earth Currents recorded at the Roval Observatory Greenwich, 13s".

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbances and Earth (iurrents recorded at the Royal Observator! Greenwich, 1889.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 1882.

Plate XII.

Magnetic Disturbances and Earth Currents recorded at the Roval Dbservatory (reenwich, $18 S^{\circ}$.

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Grerinuch, 188%.

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Currents recorded at the Royal Dbservatory Greenwich, 188%.

Magnetic Disturbances and Earth Currents recorded at the Roval Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1882.

Magnetic: Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 1882.

Magnetic Disturbances and Earth Gurrents recorded at the Royal Observatory Greenwich, 188 ?

Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greennirh, 1882.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

or

METEOROLOGICAL OBSERVATIONS.

1882.

MONTHandDAY，1882．	Phases of the Moon．	Baro－ METER．	Temperature．							Difference between the Air Temperature and Dew PointTemperature．				Temprrature．						Electricity．	
			Of the Air．					$\left\|\begin{array}{c} \text { Of } \\ \text { Evapo } \\ \text { ration. } \end{array}\right\|$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$												
			$\begin{aligned} & \text { 荡 } \\ & \text { 畐 } \end{aligned}$	$\begin{aligned} & \text { 芯 } \\ & \text { 荡 } \end{aligned}$	Daily Range．	Mean of 24 Hourly Values．	$\begin{gathered} \text { Excess } \\ \text { of Mean } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 20 \text { Years. } \end{gathered}$	Mean of 24 Hourly Values．	De－ duced Mean Daily Value	Mean Daily Value．	Greatest of 24 Hourly Values．	Least of 24 Hourly Values．									
		in．	\bigcirc	－	－	\bigcirc	－	－	。	\bigcirc	\bigcirc	－			\bigcirc	－	hours．	hours．	in．		
Jan． 1		29.663	$48 \cdot 8$	$36 \cdot 8$	12.0	$43 \cdot 6$	$+5 \cdot 5$	42.2	$40 \cdot 5$	3.1	$5 \cdot 9$	$1 \cdot 1$	89	85.0	$30^{\circ} 0$	I． 5	7.9	0.210	4.8	wP：wP，wN	
	${ }_{\text {dectinationt }}^{\text {Grater }} \mathrm{N}$ ．	29.558	$5 \mathrm{I} \circ$	$37 \cdot 6$	13.4	$46 \cdot 3$	＋ $8 \cdot 4$	44.4	$42 \cdot 3$	$4^{\circ} 0$	$5 \cdot 7$	2.5	87	$58 \cdot 3$	$30 \cdot 6$	$0 \cdot 0$	7.9	$0 \cdot 019$	12.0	wP：$\quad \mathbf{p}$	
3		${ }^{29} 9^{167}$	49.9	35＇1	14.8	$45 \cdot 7$	＋ $7 \cdot 9$	$43 \cdot 3$	$40 \cdot 6$	$5^{\circ} \mathrm{i}$	$9 \% 9$	17	83	82.1	27.5	$2 \cdot 3$	$7 \cdot 9$	$0 \cdot 190$	$9^{\circ} \mathrm{O}$	－：sP	
	Full	29.698	41.3	$33 \cdot 6$	$7 \cdot 7$	$36 \cdot 9$	－ 0.8	$35 \cdot 6$	$33 \cdot 8$	$3 \cdot 1$	$5 \cdot 9$	0.8	89	$57^{\circ} 0$	25.9	$0 \cdot 4$	79	$0 \cdot 006$	10.5	P	
5		29.601	$52 \cdot 2$	$40 \cdot 1$	$12 \cdot 1$	$47^{\circ} 2$	＋ 9.6	$45 \cdot 8$	$44 \cdot 3$	$2 \cdot 9$	$5 \cdot 0$	1.5	90	$54 \cdot 3$	$34^{\circ} \mathrm{O}$	$0 \cdot 0$	7.9	$0 \cdot 098$	8.5		
6		29.572	52.9	41.6	11.3	$48 \cdot 0$	＋10．4	$45 \cdot 4$	42.5	$5 \cdot 5$	9.9	$2 \cdot 3$	82	58.3	35.0	$0 \cdot 1$	8．0	0.075	$3 \cdot 0$	$\mathrm{P}: \mathrm{mP}$	
7		29．789	$43 \cdot 6$	$36 \cdot 9$	6.7	41＇1	＋ 3.5	38.1	$34 \cdot 3$	$6 \cdot 8$	1199	$3 \cdot 7$	77	$76 \cdot 7$	$30 \cdot 6$	$5 \cdot 4$	8.0	$0 \cdot 000$	3.5	mP ： sP	
8	Apogee	29.949	$49^{\circ} 4$	37.3	12.1	$44^{\circ} 4$	＋ $6 \cdot 7$	$42 \cdot 2$	$39^{\circ} 6$	$4 \cdot 8$	7－1	2.7	83	$58 \cdot 9$	$31 \cdot 1$	$0 \cdot 0$	8.0	$0 \cdot 040$	10.5	mP ：vP	
9	In Equator	29＊938	$49^{\circ} 9$	$36 \cdot 7$	13.2	43.5	＋ $5 \cdot 8$	$41 \cdot 8$	39.8	3.7	$8 \cdot 8$	1.0	87	$69 \cdot 9$	30°	$1 \cdot 9$	$8 \cdot \mathrm{~F}$	$0 \cdot 535$	3．0	wP，wN ：mP	
10		$30^{\circ} 094$	$46 \cdot 7$	$36 \cdot 0$	$10^{\circ} 7$	$41^{\circ} 7$	$+3.9$	$40 \cdot 2$	$38 \cdot 3$	3.4	$8 \cdot 2$	1.2	89	$53 \cdot 7$	29.2 38.1	0.2	8．1	0.002	00	$\mathrm{mP}: \mathrm{sP}: w \mathrm{w}$	
11		$30^{\circ} 022$	52.9	$44^{\circ} 8$	$8 \cdot 1$	$48 \cdot 6$	＋10．7	$47 \cdot 2$	$45 \cdot 7$	2.9	4.4	$0 \cdot 6$	90	$76 \cdot 1$	$38 \cdot 1$	$0 \cdot 7$	$8 \cdot 1$ $8 \cdot 2$	$0 \cdot 005$	0．0	$\underset{w P}{m P}: \underset{w P}{\mathrm{w}}: \mathrm{mP}$	
12	Last Qr．	30.219	$48 \cdot 6$	$39^{\circ} 9$	$8 \cdot 7$	$45 \cdot 7$	＋ $7 \cdot 6$	$45 \cdot 1$	44.5	1.2	2.7	0.7	96	54.1	29.8	$0 \cdot 0$	$8 \cdot 2$	$0 \cdot 000$	$0 \cdot 0$	wP	
13		30．248	$48 \cdot 4$	40＊0	$8 \cdot 4$	$43 \cdot 8$	＋ $5 \cdot 6$	42.2	$40 \cdot 3$	3.5	6.9	1.5	87	82.8	$36 \cdot 1$	1.2	8.2	$0 \cdot 000$	$3 \cdot 0$	vP ：sP	
14		30．379	42.4	$38 \cdot 0$	$4 \cdot 4$	$40 \cdot 1$	＋ 1.8	38.7	$36 \cdot 9$	$3 \cdot 2$	$4 \cdot 8$	$2 \cdot 1$	89	$48 \cdot 7$	37°	$0 \cdot 0$	$8 \cdot 2$	$0 \cdot 000$	3.0	vP ：mP	
15	．	$30 \cdot 521$	$43 \cdot 2$	$36 \cdot 9$	$6 \cdot 3$	$39 \cdot 8$	＋144	38.8	$37 \cdot 5$	2.3	3.5	0.2	9^{2}	47%	$36 \cdot 1$	$0 \cdot 0$	$8 \cdot 3$	$0 \cdot 003$	00	vP	
16	$\begin{gathered} \text { Greatest } \\ \text { Declination } \mathrm{S} \end{gathered}$	$30 \cdot 669$	$41^{\circ} 2$	$34 \cdot 8$	6.4	$39 \cdot 3$	＋ 0.8	38.8	$38 \cdot 2$	111	$2 \cdot 1$	$0 \cdot 0$	96	$46 \cdot 0$	34.8	$0 \cdot 0$	$8 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	$v \mathrm{P}$ ： ssP	
17		30.741	$3_{4} \cdot 8$	$30 \cdot 5$	$4 \cdot 3$	$33 \cdot 0$	－ $5 \cdot 6$	32.9	$32 \cdot 7$	$0 \cdot 3$	$1 \cdot 9$	$0 \cdot 0$	98	$38 \cdot 3$ $35 \cdot 7$	30.5	$0 \cdot 0$	$8 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	$s P: s P: ~ v P$	
18		30．760	34.2	$30 \cdot 1$	4.1	32.4	－6．4	32.4	$32: 4$	\bigcirc	10	0.0	100	$35 \cdot 7$	$30^{\circ} 1$	$0 \cdot 0$	8.4	$0 \cdot 000$	$0 \cdot 0$	vP，wN	
19	New	30．704	$41 \cdot 9$	$32^{\prime} 1$	$9 \cdot 8$	$36 \cdot 9$	－ 20	$36 \cdot 2$	$35 \cdot 2$	1×7	$4 \cdot 4$	$0 \cdot 0$	94	$50 \cdot 9$	31.0	$0 \cdot 0$	8.4	$0 \cdot 000$	$0 \cdot 0$	\％ P ：${ }^{\text {v }}$ P	
20	Perigee	30．565	$40 \cdot 9$	34.6	$6 \cdot 3$	38.9	－ 0.2	37.7	$36 \cdot 1$	2.8	$5 \cdot 3$	$0 \cdot 7$	91	$45 \cdot 7$	$31 \cdot 0$	$0 \cdot 0$	8.5	$0 \cdot 000$	$0 \cdot 0$	$\mathrm{wP}^{\text {P }}$ ： $\mathrm{vP}^{\text {P }}$ ，wN	
21		30．533	$38 \cdot 6$	29.7	$8 \cdot 9$	$35 \cdot$	－ $4 \cdot 3$	33.8	$3 \mathrm{I} \cdot 9$	$3 \cdot 1$	$4 \cdot 6$	1.4	88	$67 \cdot 2$	22.3	$0 \cdot 8$	$8 \cdot 5$	$0 \cdot 000$	$0 \cdot 5$	mP ： vP, wN	
22	In Equator	30.436	427	28.5	$14^{\circ} 2$	$37 \cdot 5$	－ 2.0	$36 \cdot 6$	$35 \cdot 4$	$2 \cdot 1$	4.6	0.8	92	53.6	22.6	$0 \cdot 0$	$8 \cdot 6$	$0 \cdot 000$	1.5	WP：mP	
23	－	$30 \cdot 391$	$38 \cdot 2$	$25 \cdot 8$	12.4	$33 \cdot 8$	－ $5 \cdot 8$	32.8	$31^{\circ} \mathrm{O}$	$2 \cdot 8$	3.6	$1 \cdot 3$	88	44°	21.8	$0 \cdot 0$	8.6	$0 \cdot 000$	$0 \cdot 0$	vP ：sP	
24		30．524	42.1	28.0	14^{-1}	$35 \cdot 2$	－ 4.5	33.6	31．1	4.1	8．1	$1 \cdot 3$	84	$66 \cdot 9$	20.6	10	8.7	$0 \cdot 000$	$0 \cdot 0$	vP ：ssP	
25		30．531	34.7	25．4	$9 \cdot 3$	$31 \cdot 0$	－ 8.8	$30 \cdot 7$	$29^{\circ} 9$	$1 \cdot 1$	$7{ }^{\circ} 0$	$0 \circ$	94	34.7	18.3	$0 \cdot 0$	8.7	$0 \cdot 000$	$0{ }^{\circ}$		
26	First Qr．	$30 \cdot 380$	$34 \cdot 6$	$29 \cdot 6$	$5 \cdot 0$	$32 \cdot 3$	－7．6	$31 \cdot 7$	$30 \cdot 4$	$1 \cdot 9$	$4^{\circ} \circ$	\bigcirc	92	$3{ }^{3} \cdot 6$	29.5	$0 \cdot 0$	$8 \cdot 8$	$0 \cdot 000$	－0	$w P: m P$	
27	．．	30．216	$47 \cdot 0$	$34 \cdot 1$	12.9	41.4	＋ 1.4	$40 \cdot 8$	$40 \cdot 1$	$1 \cdot 3$	4.4	$\bigcirc \circ$	96	54.7	32.4	$0 \cdot 0$	$8 \cdot 8$	$0 \cdot 000$	$1 \cdot 8$	wP	
28		$30 \cdot 137$	$50 \cdot 5$	$43 \cdot 2$	$7 \cdot 3$	$46 \cdot 9$	$+6.8$	$45 \cdot 2$	$43 \cdot 3$	$3 \cdot 6$	$4 \cdot 8$	2.4	88	$56 \cdot 3$	37.4	$0 \cdot 3$	8.9	$0 \cdot 000$	$5 \cdot 2$	${ }_{\text {wP }}^{\text {w }}$	
29	${ }_{\text {dectination }}^{\text {Gratest }} \mathrm{N}$.	29.985	49^{3}	$40 \cdot 7$	$8 \cdot 6$	$45 \cdot 6$	＋ $5 \cdot 4$	$43 \cdot 7$	41.5	$4 \cdot 1$	7.4	$1 \cdot 9$	86	$55 \cdot 3$	$35 \cdot 5$	$0 \cdot 0$	$8 \cdot 9$	$0 \cdot 169$	$0 \cdot 0$	$w P: w P, m N$	
30		30．129	$43 \cdot 0$	$37 \cdot 9$	$5 \cdot 1$	41.4	＋1•1	$40 \cdot 3$	38.9	$2 \cdot 5$	4.2	$0 \cdot 7$	9^{2}	$49^{\circ} \mathrm{O}$	29^{8}	$0 \cdot 0$	$9 \cdot 0$	$0 \cdot 000$	0.5	wP	
31	．	$30 \cdot 453$	40×8	$38 \cdot 2$	2.6	$39 \cdot 3$	－1．1	37.8	$35 \cdot 9$	3.4	44	2.5	88	47°	37°	$0 \cdot 0$	9°	$0 \cdot 000$	1．5	wP ：mP	
Means	－•	$30^{\prime} 180$	$44^{\circ} 4$	35•3	9＊1	$40 \cdot 5$	＋188	$39^{\circ} 2$	$37 \cdot 6$	$2 \cdot 9$	$5 \cdot 6$	1.2	89.6	56.4	$30 \cdot 5$	0.5	8.4	$\begin{gathered} \text { sum } \\ 1.352 \end{gathered}$	$2 \cdot 6$		
Number of Column for Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868 ．The temperature of the Dew Point（Column 9 ） and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables， The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Leas Differences（Columns in and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．
The values given in Columns $3,4,5,14$ ，and 15 are derived from eye－readings of self－registering thermometers．

Temperature of the Air．
The highest in the month was $52^{\circ} \cdot 9$ on January 6 and 11 ；the lowest in the month was $25^{\circ} .4$ on January 25 ；and the range was $27^{\circ} \cdot 5 \cdot$
The mean of all the highest daily readings in the month was $44^{\circ} \cdot 4$ ，being $1^{\circ} \cdot 4$ higher than the average for the 4^{1} years，1841－1881．
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 3$ ，being $1^{\circ}{ }^{\circ} 9$ higher than the average for the 41 years，1841－1881．
The mean of the daily ranges was $0^{\circ} \cdot 1$ ，being $0^{\circ} .5$ less than the average for the 41 years，1841－1881．
The mean for the month was $40^{\circ} \cdot 5$ ，being $1^{\circ} \cdot 8$ higher than the average for the 20 years，1849－1868．

MONTH and DAY， 1882.	Phases of the Moon．		Temprrature．							Difference between the Air Temperature Temperature．				Tbmprbatubr．					Daily Amount of Ozone．	－Electricitv．	
			Of the Air．					$\begin{gathered} \text { Of } \\ \text { Evapo- } \\ \text { ration. } \end{gathered}$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$					毕宣							
				$\begin{aligned} & \text { 菢 } \\ & \text { Ben } \end{aligned}$	Daily Range	Mean of 24 Hourly Values．	$\begin{gathered} \text { Excess } \\ \text { of Mean } \\ \text { above } \\ \text { Average } \\ \text { of Years. } \end{gathered}$	Mean of 24 Hourly Values．	De－ duced Mean Daily Value．	Mean Daily Value．	Greatest of 24 Hourly Values．	Least of 24 Hourly Values．									
		in．	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc			c	\bigcirc	urs．	hours．	in．		
Feb． 1		30.469	$40^{\circ} 1$	26.8	13.3	$33 \cdot 7$	－6．8	32.4	$30 \cdot 1$	3.6	$10 \cdot 4$	$0 \cdot 0$	86	$95 \cdot 3$	16.4	$5 \cdot 8$	9^{-1}	$0 \cdot 000$	$0 \cdot 0$	sP	
		30.367	$36 \cdot 5$	$24^{\circ} 8$	117	$32 \cdot 3$	－ 8.3	31.8	$30 \cdot 7$	1.6	$5 \cdot 5$	\bigcirc	94	$49 \cdot 7$	$16 \cdot 3$	$0 \cdot 0$	$9 \cdot 2$	$0 \cdot 000$	$0 \cdot 0$	vP	
3	Full	30.407	44.9	28.1	16.8	$35 \cdot 2$	-5.5	$35 \cdot 2$	$35 \cdot 2$	$0 \cdot 0$	$3 \cdot 3$	$\bigcirc \bigcirc$	100	79°	$23 \cdot 1$	$0 \cdot 7$	$9 \cdot 2$	$0 \cdot 006$	$0 \cdot 0$	wP ：vP	
4	Apogee	30.317	$36 \cdot 9$	$25 \cdot 7$	11．2	$30 \cdot 9$	－988	$30 \cdot 9$	$30 \cdot 9$	00°	$2 \cdot 8$	00°	100	$37 \cdot 3$	$21^{\circ} 0$	$0 \cdot 0$	$9 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	vP	
5		30.274	$37 \cdot 8$	$26 \cdot 5$	11．3	33.4	-7.2	32.7	31.4	$2 \cdot 0$	$6 \cdot 2$	$0 \cdot 0$	92	$5 \mathrm{r} \cdot 3$	$21^{\circ} 7$	$0 \cdot 0$	$9 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	wP：vP	
6	In Equator	$30 \cdot 331$	$42 \cdot 3$	$33 \cdot 1$	9.2	$37 \cdot 3$	$-3 \cdot 1$	37.0	$36 \cdot 6$	$0 \cdot 7$	2.6	00°	97	$50 \cdot 1$	29.6	$0 \cdot 0$	$9 \cdot 4$	－＾010＊	$0 \cdot 0$	wP ：vP	
7		30.358	$45 \cdot$	38.4	$6 \cdot 6$	$40 \cdot 4$	＋ 0.2	$40^{\prime \prime}$	$39 \cdot 7$	$0 \cdot 7$	$3 \cdot 1$	$0 \cdot 0$	98	$59 \cdot 3$	$35 \cdot 5$	$0 \cdot 0$	9.4	$0 \cdot 000$	2.0	$w \mathrm{P}: \mathrm{mP}$	
8		$30 \cdot 268$	$41 \cdot 2$	33.0	8.2	$38 \cdot 2$	－ 17	$37 \cdot 2$	$35 \cdot 8$	2.4	$5 \cdot 1$	$0 \cdot 0$	91	$51 \cdot 0$	$30 \cdot 5$	$\bigcirc \circ$	9.5	$0 \cdot 000$	$8 \cdot 7$	wP ：sP	
9		30.233	$36 \cdot 9$	29.8	$7 \cdot 1$	34.9	-47	$33 \cdot 8$	$32 \cdot 1$	$2 \cdot 8$	4.9	$1 \cdot 0$	89	$42 \cdot 8$	28.3	$0 \cdot 0$	9.6	$0 \cdot 000$	67	$w \mathrm{P}$ ：mP	
10		30.052	$46 \cdot 0$	32.5	13.5	37.4	－1．9	$35 \cdot 8$	33.6	$3 \cdot 8$	$9 \% 2$	0.8	87	115%	23°	2.2	9.6	$0 \cdot 000$	1．5	wP ：sP	
11	Last Qr．	29.764	$52 \cdot 8$	34.6	18.2	42.8	＋ 37	$40 \cdot 8$	$38 \cdot 5$	$4 \cdot 3$	$9 \cdot 8$	$1 \cdot 9$	85	117.3	24.5	$2 \cdot 8$	9.7	$0 \cdot 000$	$3 \cdot 5$	wP：mP	
12		29798	$55 \cdot 2$	41.0	14.2	$46 \cdot 6$	＋ 77	$44 \cdot 7$	$42 \cdot 6$	$4^{\circ} 0$	I1．2	$0 \cdot 4$	87	103.8	33.0	3.0	$9 \cdot 8$	$0 \cdot 000$	$3 \cdot 2$	wP ：wP ：vP	
13	$\underset{\text { Decinatestion }}{\text { Greatest }}$	29.880	$5 \mathrm{I} \cdot 9$	40°	119	$47^{\circ} 2$	＋8．4	$45 \cdot 9$	44.5	$2 \cdot 7$	4.4	$0 \cdot 9$	91	56.4	32.4	$\bigcirc \cdot$	9.8	$0 \cdot 003$	$5 \cdot 8$	${ }_{\text {wP }}$	
14		30．006	$55 \cdot 4$	47°	8.4	50.7	＋12．0	47.9	$45 \cdot$	$5 \cdot 7$	$15 \cdot$	0.6	81	$96 \cdot 3$	$40 \cdot 5$	3.9	9.9	－150	$6 \cdot 5$	$\mathbf{w P}: \mathbf{v P}$	
15		29．806	$5 \mathrm{I} \cdot \mathrm{I}$	$35 \cdot 5$	$15 \cdot 6$	43.7	＋ $5 \cdot 0$	$42 \cdot 3$	$40 \cdot 6$	$3 \cdot 1$	$5 \cdot 8$	$0 \cdot 0$	89	72.0	$29^{\circ} \mathrm{O}$	$0 \cdot 1$	$9 \cdot 9$	$0 \cdot 356$	$6 \cdot 0$	$w P: v P, v N: v P$	
16		$30 \cdot 163$	$48 \cdot 8$	32.4	16.4	$41 \cdot 3$	＋ 2.5	$39 \cdot 7$	37.7	$3 \cdot 6$	$5 \cdot 3$	$2 \cdot 6$	88	80.8	27.0	1.4	$10 \cdot 0$	$0 \cdot 005$	$2 \cdot 0$	mP ： $\mathrm{wP}^{\text {P }}$	
17	．	$30 \cdot 087$	$52 \cdot 1$	44.7	$7 \cdot 4$	47.5	＋ $8 \cdot 6$	$44^{\circ} 9$	$42 \cdot 1$	$5 \cdot 4$	$9 \cdot 2$	$2 \cdot 3$	82	$83 \cdot 7$	39.8	$0 \cdot 4$	$10 \cdot 1$	$0 \cdot 000$	$2 \cdot 0$	$w \mathrm{P}: \mathrm{mP}$	
18	Perigee ：New．	30.067	51.4	$40 \cdot 5$	$10 \cdot 9$	$46 \cdot 8$	＋ 7.8	$44 \cdot 3$	41.5	$5 \cdot 3$	$9 \cdot 2$	$1 \cdot 1$	83	87.6	35%	177	10.1	0.013	$0 \cdot 8$	$w \mathrm{P}: \mathrm{vP}, \mathrm{vN}$	
19	In Equator	$30 \cdot 406$	$48 \cdot 6$	35•8	12.8	$42 \cdot 6$	$+3.4$	38.8	34.2	$8 \cdot 4$	14.9	3.2	73	97.8	29\％	$6 \cdot 6$	10.2	$0 \cdot 000$	2.2	mP	
20	，	$30 \cdot 587$	47%	32.4	15.0	40.6	＋ 1.3	$38 \cdot 8$	$36 \cdot 5$	$4 \cdot 1$	$10 \cdot 3$	0.3	86	81.2	$25^{\circ} 9$	$0 \cdot 2$	10.3	－000	$4 \cdot 8$	mP ： vP	
21	．．	30.46 c	51.5	$41 \cdot 8$	97	$47 \cdot 2$	＋ 77	$45 \cdot 4$	43.4	$3 \cdot 8$	$5 \cdot 7$	1.5	88	59°	$35 \cdot 5$	$0 \cdot 0$	$10 \cdot 3$	$0 \cdot 002$	2.2	${ } \mathrm{P}: \mathrm{wP}$ ： mP	
22		30.428	54.9	38.7	16.2	$46 \cdot 5$	＋ 6.9	$44^{\circ} 7$	$42 \cdot 7$	$3 \cdot 8$	$9{ }^{\circ}$	$0 \cdot 0$	87	$85 \cdot 1$	$29^{\circ}{ }^{\circ}$	3.8	$10 \cdot 4$	$0 \cdot 000$	00	wP ：wN，vP	
23		30.221	45.0	$40 \cdot 1$	4.9	$42 \cdot 5$	＋ $2 \cdot 8$	$39^{\prime} 8$	$36 \cdot 5$	$6 \cdot 0$	$7 \cdot 9$	44	80	$46 \cdot 7$	$36 \cdot 3$	$0 \cdot 0$	$10 \cdot 5$	$0 \cdot 000$	$0 \cdot 0$	$\mathrm{mP}: \mathrm{mN}, \mathrm{mP}: \mathrm{mP}$	
24	First Qr．	$30 \cdot 001$	$49^{\circ} 2$	$39 \cdot 8$	$9 \cdot 4$	42.9	＋ 3 I	$40 \cdot 7$	38．1	$4 \cdot 8$	$10 \cdot 1$	$1 \cdot 8$	84	87.0	27.9	2.2	10.5	0.000	$0 \cdot 5$	wP，wN ：vP	
25	Decirinatest N ．	29.615	$54 \cdot 1$	4174	12.7	$49^{\circ} 9$	$+10^{\circ} 0$	47＊9	$45 \cdot 8$	4.1	$6 \cdot 8$	1.4	87	71.2	37.1	$\bigcirc \bigcirc$	10.6	$0 \cdot 050$	$6 \cdot 8$	wP，wN：wP	
26	Deamation	29.023	$55 \cdot 4$	$47 \cdot 5$	7×9	51.2	＋11．2	$49^{\circ} 3$	$47 \cdot 4$	$3 \cdot 8$	$7 \cdot 2$	1.6	87	$86 \cdot 3$	43.5	－＇9	10．7	$\bigcirc \cdot 157$	$15 \cdot 7$	0：wP	
27		29．025	53－1	42．5	10.6	$48 \cdot 0$	＋ 79	$46 \cdot 1$	$44^{\circ} \mathrm{O}$	4%	7.6	1.0	87	$86 \cdot 2$	41.2	$0 \cdot 2$	107	$\bigcirc \cdot 147$	$6 \cdot 0$	wP ：wN，wP	
28	．．	29.262	50．1	$38 \cdot 2$	11.9	$44^{\circ} 2$	$+4^{\circ}$	43.3	$42 \cdot 2$	2＇0	$6 \cdot 9$	$0{ }^{\circ}$	93	$77 \cdot 3$	38.2	0.1	10.8	0.254	$2 \cdot 2$	wP ：wP，wN	
Means	．	30•060	477	$36 \cdot 2$	11．5	42°	T $2 \cdot 3$	40%	$38 \cdot 5$	3.4	$7 \cdot 5$	I＇0	$88 \cdot 3$	$75 \cdot 2$	$30 \cdot 4$	1.3	979	$\begin{gathered} \text { Sum } \\ 1.153 \end{gathered}$	$3 \cdot 2$		
Number of Column for Reference．	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868 ．The temperature of the Dew Point（Column 9 ） and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9，and the Greatest and Least The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and
Differences（Columns II and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and W et－bulb Thermometers．
The values given in Columns $3,4,5,14$ ，and 15 are derived from eye－readings of self－registering thermometers．
＊Rainfall（Column 18）．The amount given for February 6 is derived from dew．
The mean reading of the Barometer for the month was $30^{\text {in }} \cdot 060$ ，being $0^{i n} \cdot 228$ higher than the average for the 20 years，1854－1873．
Temperatore of the Air．
The highest in the month was $55^{\circ} .4$ on Febraary 14 and 26 ；the lowest in the month was $24^{\circ} .8$ on February 2 ；and the range was $30^{\circ} .6$ ．
The mean of all the highest daily readings in the month was $47^{\circ} \cdot 7$ ，being $2^{\circ} \cdot 3$ higher than the average for the 41 years，1841－1881．
The mean of all the lowest daily readings in the month was $36^{\circ} \cdot 2$ ，being $1^{\circ} \cdot 9$ higher than the average for the 41 years，1841－1881．
The mean of the daily ranges was $11^{\circ} .5$ ，being $0^{\circ} .4$ greater than the averaze for the 41 vears， 1841 －1881．
The mean for the month was $42^{\circ} \cdot 0$ ，being $2^{\circ} \cdot 3$ higher than the average for the 20 years，1849－1868．

The mean Tempenature of Evaporation for the month was $40^{\circ} \cdot 4$, being $2^{\circ} \cdot 5$ higher than
The mean Temperature of the Dew Point for the month was $3^{\circ} \cdot 5$, being $3^{\circ} \cdot 1$ higher than
The mean Degree of Humidity for the month was $88 \cdot 3$, being 3.5 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 233$, being oin $\cdot 026$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was ${ }^{2 \mathrm{grs}} \cdot 7$, being $\mathrm{obr}^{\mathrm{r}} 3$ greater than
The mean Weight of a Cubic Foot of Air for the month was 555 grains, being 1 grain greater than .
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $8 \cdot 0$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 13$. The maximum daily amount of Sunshine was $6 \cdot 6$ hours on February 19 .
The highest reading of the Solar Radiation Thermometer was $117^{\circ} \cdot 3$ on February II; and the lowest reading of the Terrestrial Radiation Thernometer was $16^{\circ} \cdot 3$ on February 2.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 1$; for the 6 hours ending 3 p.m., 0.5 ; and for the 6 hours ending 9 p.m., $0 \cdot 6$.
The Proportions of Wind referred to the cardinal points were N. 3, E. 5, S. 9, and W. 7. Four days were calm.
The Greatest Pressure of the Wind in the month was $13^{\text {bss }} \circ \circ$ on the square foot on February 18. The mean daily Horizontal Movement of the Air for the month was 289 miles; the greatest daily value was 659 miles on February 26; and the least daily value 49 miles on February 4.
Rain fell on 9 days in the month, amounting to $\mathrm{I}^{\text {in }} \cdot 153$, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {in }} \cdot 33^{8}$ less than the average fall for the 4I years, 184!-1881.

MONTHandDAY，1882．	Phases of the Moon．		Temperature．							Difference between the Air Temperature Temper Point Temperature．				Temperature．		Daily Duration of Sunshine．			Daily Amount of Ozone.	Electricity．	
			Of the Air．					$\left\|\begin{array}{c}\text { of } \\ \text { Evapo－} \\ \text { ration．}\end{array}\right\|$	Of the Dew Point． De－ duced Mean Daily Value．												
				$\begin{aligned} & \dot{\mathbf{D}} \\ & \text { 巻 } \\ & \dot{H} \end{aligned}$			$\begin{gathered} \text { Excess } \\ \text { of Mean } \\ \text { above } \\ \text { Average } \\ \text { of } \\ \text { of Years. } \end{gathered}$			Mean Daily Value．	Greatest of 24 Hourly Values．	Least of 24 Hourly Values．									
Mar． 1$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{gathered} \ddot{ } \\ \text { Apogee } \end{gathered}$	in．		$\circ 1$		\bigcirc	1－1	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc		${ }^{\circ}$	\bigcirc	hours.$2 \cdot 6$	hours．	in．$0 \cdot 193$	$\begin{array}{\|c\|c\|} 19.7 & w P: v P, \mathrm{vN} \\ 11.2 & \mathrm{mP}: \mathrm{vP}, \mathrm{mN}: \mathrm{mP} \\ 5.8 & \mathrm{wP}: \mathrm{mP} \end{array}$		
		28.833	51．9	$42 \cdot 2$	9.7	$46 \cdot 7$	＋ 6.4	$44 \cdot 3$	41.6	$5 \cdot 1$	13.0	0.2	83	$92 \cdot 3$	38.4						
		$29^{1} 143$	$51 \cdot 7$	$37 \cdot 8$	13．9	$43 \cdot 7$	＋ 3.3	$40 \cdot 5$	$36 \cdot 7$	$7 \cdot 0$	16.0	2.5	76	115.3	$3 \mathrm{I} \cdot 8$	$6 \cdot 5$	10.9	0.041			
		29．264	$48 \cdot 7$	$32 \cdot 7$	16%	39.6	－ 0.9	37.9	$35 \cdot 7$	3.9	$9 \% 1$	0.7	86	119%	$25^{\circ} \mathrm{O}$	6.2	$11^{\circ} \mathrm{O}$	$0 \cdot 000$			
		29.48		29.7	19%	38.5	－ 2.0	37.0	$35 \cdot 0$	$3 \cdot 5$	11．8	$0 \cdot 0$	87	$90^{\circ} 2$	$19^{\circ} \mathrm{O}$	$4 \cdot 1$	11.1	$0 \cdot 000$	$5 \cdot 8$	$\mathrm{mP}: \underset{w P}{\mathrm{w} P}: \mathrm{mP}$	
		29.480 29.546	49 524 5	39.6	12.8	$46 \cdot 4$	＋ $5 \cdot 9$	$44^{\circ} 7$	$42 \cdot 8$	3.6	8.0	$0 \cdot 7$	88	$96 \cdot 9$	$33 \cdot 3$	1．5	119 11.	$0 \cdot 025$	$3 \cdot 0$	$\frac{\mathrm{wP}}{\mathrm{vP}, \mathrm{wN}: ~} \mathrm{vP}$	
	In Equator． \ldots	29.346 29	50．4	35．0	15.4	$46 \cdot 6$	＋6．1	42.7	$38 \cdot 3$	8.3	13．9	$2 \cdot 3$	74	$80 \cdot 6$	27°	$1 \cdot 3$	11.2	$0 \cdot 000$	$2 \cdot 2$	N：vP	
		$30 \cdot 056$	$54^{\circ} \mathrm{O}$	$33 \cdot 4$	20.6		$+5.5$		$43 \cdot 1$	$3 \cdot 0$	77	0.8	90	67.6	$26 \cdot 1$	$0 \cdot 1$	11.2 11.3	$0 \cdot 007$	$7{ }^{\circ} 0$	mP ： $\mathrm{wP}_{\mathrm{w}} \mathrm{P}$ ： wP	
7 8		$30 \cdot 056$ $30 \cdot 087$	54.0 55	$33 \cdot 4$ $46 \cdot 0$	20.6 9.4	$46 \cdot 1$ $50 \cdot 8$	+55 +102	$44^{\circ} 7$	$47^{1} 1$	$3 \cdot 7$	7.4	$1 \cdot 4$	87	69.2	$39^{\circ} 2$	\bigcirc	11.3	$0 \cdot 000$	$0 \cdot 0$	wP	
9		$30 \cdot 163$	$55 \cdot \mathrm{I}$	$47 \cdot 7$	$7 \cdot 4$	$50 \cdot 3$	＋ 96	$48 \cdot 7$	47.0	$3 \cdot 3$	$7 \cdot 2$	0.6	89	89°	$44^{\circ} 2$	1×1	114	$0 \cdot 000$	$4{ }^{\circ}$		
10			55.4	$48 \cdot 8$	$6 \cdot 6$	510	＋10．3	50\％	49°	$2 \cdot 0$	$3 \cdot 8$	$1 \cdot 0$	93	$66 \cdot 0$	$46 \cdot 6$	$0 \cdot 0$	11.4	$0 \cdot 000$	$10^{\circ} 0$	${ }_{w}^{\mathrm{wP}}$	
11		$30 \cdot 129$ 30.25	$5{ }^{5} \cdot 4$	44.4	$10 \cdot 0$	$49^{\circ} 1$	＋ 8	$48 \cdot 4$	47.6	$1 \cdot 5$	4.6	$0{ }^{\circ}$	95	$71 \cdot 3$	44°	$0 \cdot 0$	11.5	$0 \cdot 107$	$0 \cdot 0$	P ，w	
112	GreatestDec．S． Last Quarter．	30．331	$52 \cdot 2$	38.6	13.6	$45 \cdot 8$	＋ $5 \cdot$	44.3	42.6	3.2	9.2	$0 \cdot 0$	89	98.4	30°	1.5	11.6	$0 \cdot 005$	00		
13		$30 \cdot 381$	$55 \cdot 7$	$33 \cdot 8$	2199	$44 \cdot 3$	$+3.4$	41－8	$38 \cdot 9$	$5 \cdot 4$	13.6	0	79	89.4	27.3	$5 \cdot 2$	11.6	$0 \cdot 000$	$0 \cdot 0$	wP：wP，wN： vP ，wN	
14		$30 \cdot 264$	$60 \cdot 2$	33.2	$27^{\circ} \mathrm{O}$	$46 \cdot 6$	＋ $5 \cdot 6$	43.6	$40 \cdot 2$	$6 \cdot 4$	13.7	$0 \cdot 0$	80	108.8	28.0	9.0	11ヶ7	$0 \cdot 000$	$4{ }^{\circ}$		
15		30.347	$59 \cdot 5$	$35 \cdot 6$	23.9	$46 \cdot 8$	＋ 57	$44^{\circ} 2$	41.3	$5 \cdot 5$	14^{11}	$0 \cdot 0$	82	108.0	$27 \cdot 8$	8	11.8		00		
16		$30 \cdot 438$	$63 \cdot 1$	$36 \cdot 4$	$26 \cdot 7$	49.4	$+8.2$	$46 \cdot 1$	$42 \cdot 6$	$6 \cdot 8$	$16 \cdot 2$	$\bigcirc \cdot 5$	77	I 13.9	29.6	$9 \cdot 3$	11.8	$0 \cdot 000$	$0 \cdot 0$	P ： vP, wN	
17		$30 \cdot 359$	63.8	$36 \cdot 9$	26.9	$4{ }^{49} 4$	＋8．1	$46 \cdot 0$	$42 \cdot 4$	$7{ }^{\circ}$	18.15	\bigcirc	77	104°	29.5	7.1	$11^{\circ} 9$	$0 \cdot 000$	0：0	$\underset{\mathrm{mP}}{\mathrm{mP}}, \mathrm{mP}, \mathrm{mN}: \mathrm{sP}$	
18	IIn Perigee：	$30 \cdot 136$	65.0	$3 \mathrm{r} \cdot 4$	$33 \cdot 6$	$48 \cdot 4$	＋ 7.0	$44^{\circ} 9$	41.1	$7 \cdot 3$	18.9	$0 \cdot 0$	76	110.2	25.5	6.8	12.0	$0 \cdot 000$	0.8		
	New	29.880	60°	$37 \cdot 2$	22.8	$47 \cdot 6$	$+6 \cdot 2$	$44^{\circ} 7$	415	$6 \cdot 1$	17×7	$0 \cdot 0$	80	114.2	28.8	$8 \cdot 5$	12.0	$0 \cdot 000$	4.2	mP．vP	
19 20	New	29.642	63.1	$3{ }^{3} \cdot 5$	28.6	$48 \cdot 7$	＋ $7 \cdot 2$	$45 \cdot 1$	41.2	$7 \cdot 5$	$17 \cdot 1$	$0 \cdot 0$	76	116.0	$27^{\circ} \mathrm{I}$	$9 \cdot 3$	12.1	$0 \cdot 000$	7×5 1.5	$\mathrm{mP}: \mathrm{vP}$ vP, wN	
21		29．563	50°	$3{ }^{2}$	16.8	43.0	＋1．4	39.8	$36 \cdot 0$	7.0	14.7	0.3	77	113．1	31.0	6．1	12.2	$0 \cdot 076$	1.5	，w	
22		29	45	$30 \cdot 8$	14.6	$36 \cdot 7$	－ 5 －0	34.5	3I•3	$5 \cdot 4$	$10 \cdot 3$	27	82	$93 \cdot 9$	25.5	$5 \cdot 9$	12.2	0．032	$5 \cdot 0$	$\mathrm{mP}: \mathrm{vP}^{\mathrm{vP}}, \mathrm{wN}: \mathrm{sP}$	
23		$30 \cdot 003$	$50 \cdot 3$	28.8	21.5	$40^{\circ} \mathrm{I}$	－ 17	$37 \cdot 1$	33.2	$6 \cdot 9$	14.1	$2 \cdot 3$	76	118.0 80.1	$21 \cdot 3$ 41.5	1.4	12.3	－0．000	$1 \circ$ $5 \cdot 0$	sP： vP $\mathrm{wP}: \mathrm{vP}$	
24		29.590	$55 \cdot 1$	$43 \cdot 6$	11.5	$49^{\circ} \mathrm{I}$	＋711	$47 \cdot 8$	$46 \cdot 4$	2.7	8.6	$\bigcirc{ }^{\circ} \mathrm{O}$	91	$89^{\prime} 1$	41.5	$0 \cdot 0$	12.4	0.075	$5 \cdot$	wP：VP	
25	Decinatiost ${ }^{\text {Gratest }}$ N．		$56 \cdot 4$	39.5	$16 \cdot 9$	$46 \cdot 6$	$+4 \cdot 3$	$42 \cdot 8$	38.6	$8 \cdot 0$	$16 \cdot 8$	0.7	74	112.2	32.0	$6 \cdot 7$	12.4	－173	7.2	mP：wP，wN： vP ， vN	
26	${ }^{\text {Declination N．}}$ ．	29.287	$49^{\circ} 9$	$33 \cdot 8$	${ }_{1} 6 \cdot 1$	$44 \cdot 7$	$\begin{array}{r} \\ +\quad 21 \\ \hline\end{array}$	42.0	$38 \cdot 8$	$5 \cdot 9$	13.9	$\bigcirc \cdot 0$	80	$98 \cdot 2$	32.2	$6 \cdot 5$	12.5	$0 \cdot 173$	$6 \cdot 7$	$\mathrm{vP}, \mathrm{vN}: \mathrm{mP}$ $\mathrm{mP}: \mathrm{vP}$	
27	－	29.935	53.2	37.0	$16 \cdot 2$	44.5	＋ 1.5	41.5	$38 \cdot 0$	$6 \cdot 5$	$10 \cdot 7$	1．6	78	97＇ 1	${ }^{29} 9^{\circ}$	2.4	12.6	－ 0	$0 \cdot 0$		
28		30．001	54.7	39.2	15.5	$47 \cdot 5$	＋ 4.1	$45 \cdot 3$	42.9	4.6	10.2	$0 \cdot 2$	85	104．1	$34 \cdot 3$	$0 \cdot 4$	12.6	$0 \cdot 000$	$3 \cdot 2$ $5 \cdot 8$		
29		29.786	$57 \cdot 1$	$45 \cdot 9$	11.2	50.6	＋6．8	$48 \cdot 7$	$46 \cdot 7$	3.9 7.6	$8 \cdot 0$ 15.8	$2 \cdot 3$	87	90．1	$41^{1} 0$	$\stackrel{0}{0.1}$	12.7	$0 \cdot 00$	5．8	$\mathrm{mP}: \mathrm{vP}, \mathrm{wN}: ~ \mathrm{P}$	
30	Apogee	29.479	57.6	$40 \cdot 0$	17.6	$47 \cdot 8$	＋ 3.5	$44^{\circ} 2$	$40 \cdot 2$	7.6	$15 \cdot 8$	1．3	76	125＊0	31.5	$7 \cdot 3$	12.8	－00	$0 \cdot 0$		
31		29．412	$57 \cdot 3$	$38 \cdot 3$	$19^{\circ} 0$	$45 \cdot 6$	＋ 0.8	$42 \cdot 5$	$38 \cdot 9$	$6 \cdot 7$	$16 \cdot 0$	$\bigcirc \circ 9$	78	121．6	28.5	$6 \cdot 2$	12．8	0×000	1．5	vP, mN	
Means		29.834	$55 \cdot 1$	$37 \cdot 6$	$17 \cdot 5$	46．2	$+4 \cdot 6$	$43 \cdot 7$	$40^{\circ} 9$	$5 \cdot 3$	123	$0 \cdot 7$	$82 \cdot 2$	99：5	31.5	4^{11}	II•8	$\begin{gathered} \text { sum } \\ 1.144 \end{gathered}$	3.9		
$\begin{aligned} & \text { Number of } \\ & \text { Column for } \\ & \text { Reference. } \end{aligned}$	，	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The （Column 9）信 and the Degree of Humidity（Column 13）are deduced from the corresponing inperaifer betwe the numbers in Columns 6 and 9，and the Greatest and Least The mean difference between the Air and Dew Point Temperatures（Column Io）is the difference between the and W et－bulb Thermometers．

The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 834$ ，being $o^{\text {in }} 1$ II 2 higher than the average for the 20 years，1854－1873．
Temperature of the Air．
The highest in the month was $65^{\circ} \cdot \circ$ on March 18；the lowest in the month was $28^{\circ} \cdot 8$ on March 23；and the range was $36^{\circ} \cdot 2$ ．
The mean of all the highest daily readings in the month was $55^{\circ} \cdot 1$ ，being $5^{\circ} \cdot 2$ higher than the average for the 41 years，1841－1881
The mean of all the lowest daily readings in the month was $37^{\circ} \cdot 6$ ，being $2^{\circ} \cdot 3$ higher than the average for the 41 years，1841－1881．
The mean of the daily ranges was $17^{\circ} \cdot 5$ ，being $2^{\circ} \cdot 9$ greater than the average for the 41 years，1841－1881．
The mean for the month was $46^{\circ} \cdot 2$ ，being $4^{\circ} \cdot 6$ higher than the average for the 20 years，1849－1868．

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The (and the and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaikhers and and and The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference betweln and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 605$, being $o^{\text {in }} \cdot 198$ lower than the average for the 20 years, 1854-1873.
Temprrature of the Air.
The highest in the month was $65^{\circ} \cdot 7$ on April 2I; the lowest in the month was $31^{\circ} \cdot 8$ on April 16 ; and the range was $33^{\circ} .9$.
The mean of all the highest daily readings in the month was $57^{\circ} \cdot 6$, being the same as the average for the 41 years, 1841-188r.
The mean of all the lowest daily readings in the month was $39^{\circ} \cdot 8$, being $0^{\circ} \cdot 6$ higher than the average for the 4I years, 1841-1881.
The mean of the daily ranges was $17^{\circ} \cdot 9$, being $0^{\circ} \cdot 5$ less than the average for the 41 years, $1841-1881$.
The mean for the month was $4^{\circ} \cdot 0$, being $0^{\circ} \cdot 5$ higher than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $45^{\circ} \cdot 3$, being $1^{\circ} .4$ higher than
The mean Temperature of the Dew Point for the month was $42^{\circ} \cdot 4$, being $2^{\circ} \cdot 1$ higher than
The mean Degree of Humidity for the month was $81 \cdot 5$, being 4.6 greater than
The mean Elastic Force of Vapour for the month was $0^{\text {th }} \cdot 271$, being $0^{\text {tn }} \cdot 021$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot \mathbf{1}$, being $\mathrm{ogr}^{\mathrm{gr}} 2$ greater than
The mean Weight of a Cubic Foot of Air for the month was 540 grains, being 4 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.4.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 36$. The maximum daily amount of Sunshine was $11 \cdot 5$ hours on April 30 .
The highest reading of the Solar Radiation Thernometer was $135^{\circ} \cdot 1$ on April 28; and the lowest reading of the Terrestrial Radiation Thermometer was $24^{\circ} \cdot 1$ on April 6 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3.6 ; for the 6 hours ending 3 p.m., $2 \cdot 1$; and for the 6 hours ending 9 p.m., 1.8 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 8, S. 9, and W.8.
The Greatest Pressure of the Wind in the month was $49^{\text {bs. }} .5$ on the square foot on April 29. The mean daily Horizontal Movenent of the Air for the month was 354 miles; the greatest daily value was 748 miles on April 29 ; and the least daily value 135 miles on April 10 .
Rain fell on 13 days in the month, amounting to $2^{\text {tn }} \cdot 403$, as measured by gauge No. 6 partly sunk below the ground ; being oin. 754 greater than the average fall for the 41 years, 184I-188I.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the (reatest and Least Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and wel-bulb Chermometers. for Air aud Evaporation Temperatures are deduced entirely from eye-observal
The values given in Columns $3,4,5,14$, and I_{5} are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was 29.873 , being 0 in $\cdot 096$ higher than the average for the 20 years, $\mathbf{1 8 5 4 - 1 8 7 3 .}$
Temperature of the Air.
The highest in the month was $76^{\circ} \cdot 5$ on May 29 ; the lowest in the month was $34^{\circ} \cdot 5$ on May 17 ; and the range was $42^{\circ} \cdot 0$.
The mean of all the highest daily readings in the month was $66^{\circ} \cdot 2$, being $2^{\circ} \cdot 0$ higher than the average for the 41 years, $1841-1881$.
The mean of all the lowest daily readings in the month was $44^{\circ} \cdot 2$, being $0^{\circ} \cdot 5$ higher than the average for the 41 years, i841-1881.
The mean of the daily ranges was $22^{\circ} \circ$, being $1^{\circ} \cdot 5$ greater than the average for the 41 years, 184×1881.
The mean for the month was $54^{\circ} \cdot 5$, being $1^{\circ} \cdot 4$ higher than the average for the 20 years, 1849-1868.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average tor (and the The mean difference between the Air and Dew Point Temperatures (Column Io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Diffean difference between the Air and ced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {tn }} \cdot 73^{2}$, being $0^{\text {in }} \cdot 096$ lower than the average for the. 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $74^{\circ} \cdot 1$ on June 27 ; the lowest in the month was $40^{\circ} \cdot 9$ on June 16 ; and the range was $33^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $66^{\circ} \cdot 3$, being $4^{\circ} .7$ lower than the average for the 4 I years, 1841-1881.
The mean of all the lowest daily readings in the month was $48^{\circ} \cdot 9$, being $1^{\circ} \circ \circ$ lower than the average for the 41 years, 1841-1881
The mean of the daily ranges was $17^{\circ} 4$, being $3^{\circ} \cdot 7$ less than the average for the 41 years, 1841-1881.
The mean for the month was $56^{\circ}{ }^{\circ}$, being $3^{\circ}{ }^{\circ}$ lower than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $53^{\circ} \cdot 3$, being $1^{\circ} \cdot 9$ lower than
The mean Temperature of the Dew Point for the month was $50^{\circ} \cdot 2$, being $1^{\circ} \cdot 0$ lower than
The mean Degree of Humidity for the month was 79.4, being $6 \cdot 1$ greater than
the average for the 20 years, $1849-1868$.
The mean Elastic Force of Vapour for the month was 0 in $\cdot 364$, being $0^{\text {in }} \cdot 013$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot \mathrm{I}$, being $\mathrm{ofr}^{\mathrm{I}} \mathrm{I}$ less than
The mean Weight of a Cubic Foot of Air for the month was 53^{2} grains, being 1 grain greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $8 \cdot 1$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 24$. The maximum daily amount of Sunshine was $12 \cdot 0$ hours on June 27 . The highest reading of the Solar Radiation Thernometer was $16^{\circ} \cdot 2$ on June 7 ; and the lowest reading of the Terrestrial Radiation Thermometer was $33^{\circ} \cdot \circ$ on June $\mathbf{1} 6$.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $3 \cdot 1$; for the 6 hours ending 3 p.m., ${ }^{\cdot} \cdot 5$; and for the 6 hours ending 9 p.m., i• 9 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 4, S. 10, and W. 12. One day was calm.
The Greatest Pressure of the Wind in the month was $9^{10 n} \cdot \circ$ on the square foot on June 5. The mean daily Horizontal Movement of the Air for the month was 325 milen the greatest daily value was 548 miles on June 5 ; and the least daily value 125 miles on June 29 .
Rain fell on 19 days in the month, amounting to $2^{\text {in }} 356$, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {in }} \cdot 310$ greater than the average fall for the 41 years, 1841-1881.

Greenwich Magnetical and Meteorological Observations, 1882

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The averace temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. and the Degree of Humidey the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 697$, being $0^{\text {in }} \cdot 112$ lower than the average for the 20 years, $\mathbf{1 8 5 4 - 1 8 7 3 .}$
Temperature of the Air.
The highest in the month was $78^{\circ} \cdot 7$ on July 3 ; the lowest in the month was $45^{\circ} \cdot 7$ on July 1 ; and the range was $33^{\circ} \cdot 0$.
The mean of all the highest daily readings in the month was $71^{\circ} \cdot 1$, being $3^{\circ} \cdot 2$ lower than the average for the 41 years, 1841-188 I .
The mean of all the daily ranges was $18^{\circ} .6$, being $2^{\circ} .5^{\circ}$ less than the average for the 41 years, $1841-1881$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) average temperature (Column (
and the Degree of Humidity (Column 13) are deduced from the corresponding temperatares of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and ${ }_{12}$) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures
to 30 for Barometer are deduced entirely from eye-observations, the driving clock of the photographic apparatus being awat tor repair.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 74^{2}$, being $o^{\text {tn }} \cdot 057$ lower than the average for the 20 years, $1854-1873$.
Temperature of the Air.
The highest in the month was $81^{\circ} \cdot 0$ on August 6 ; the lowest in the month was $44^{\circ} \circ$ on August 3^{1}; and the range was $37^{\circ} \cdot 0$.
The mean of all the highest daily readings in the month was $70^{\circ} \cdot 5$, being $2^{\circ} \cdot 4$ lower than the average for the 41 years, 1841-1881.
The mean of all the highestaily reaings in the month was $5^{\circ} \cdot{ }_{7}$, being $1^{\circ} .{ }_{5}$ lower than the average for the 41 years, 1841-1881.
The mean of all the lowest daily reading in the daily ranges was $18^{\circ} \cdot 8$, being $0^{\circ} .9$ less than the average for the 41 years, $1841-1881$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperatare of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 687$, being $0^{\text {in }} \cdot 100$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $71^{\circ} \cdot 1$ on September 3 ; the lowest in the month was $36^{\circ} \cdot 7$ on September 15 ; and the range was $34^{\circ} .4$.
The mean of all the highest daily readings in the month was $64^{\circ} \cdot 0$, being $3^{\circ} \cdot 5$ lower than the average for the 41 years, 1841-1881.
The mean of all the lowest daily readings in the month was $4^{\circ} \cdot 6$, being $2^{\circ} .6$ lower than the average for the 41 years, 1841-1881.
The mean of the daily ranges was $17^{\circ} \cdot 4$, being $0^{\circ} \cdot 9$ less than the average for the 41 years, $1841-188 \mathrm{i}$.
The mean for the month was $54^{\circ} \cdot 6$, being $2^{\circ} \cdot 9$ lower than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $52^{\circ} \cdot 0$, being $2^{\circ} \cdot 3$ lower than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 5$, being $1^{\circ} \cdot 9$ lower than
The mean Degree of Humidity for the month was $83^{\circ} 3$, being $3 \cdot 2$ greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 355$, being $0^{\text {in }} \cdot 024$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 0$, being $0^{\mathrm{gr} \cdot 2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 534 grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.9 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 26$. The maximum daily amount of Sunshine was 9 ' 9 hours on September 8.
The highest reading of the Solar Radiation Thernometer was $140^{\circ} \cdot 2$ on September 3; and the lowest reading of the Terrestrial Radiation Thermometer was $29^{\circ} \cdot 0$ on September 14.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $\mathrm{J} \cdot 4$; for the 6 hours euding 3 p.m., 0.7 ; and for the 6 hours ending 9 p.m., 0.6 .
The Proportions of Wind referred to the cardinal points were N. 9, E. 5, S. 8, and W. 7. One day was calm.
The Greatest Pressure of the Wind in the month was $23^{\text {lbs. }} 5$ on the square foot on September 2. The mean daily Horizontal Movement of the Air for the month was 228 miles ; the greatest daily value was 624 miles on September 2 ; and the least daily value 92 miles on September 10.
Rain fell on 14 days in the month, amounting to $\boldsymbol{i}^{\text {in }} 405$, as measured by gauge No. 6 partly sunk below the ground; being $\boldsymbol{o}^{\text {in }} .113$ greater than the average fall for the 41 years, 1841-1881.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) average temperature (Column 7) is that determined from the reduction of the photographer of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. and the Degree of Humidity (Column 13) are deduced from the corresponding temperaturferen ore between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and 12) are deduced from the 24 houriy photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 660$, being $o^{\text {in }} \cdot 060$ lower than the average for the 20 years, $1854-1873 \cdot$
Temperature of the Air.
The highest in the month was $71^{\circ} \cdot$ y on October 1 ; the lowest in the month was $30^{\circ} \cdot 6$ on October 26 ; and the range was $40^{\circ} \cdot 5$.
The mean of all the highest daily readings in the month was $57^{\circ} \cdot 7$, being $0^{\circ} \cdot 4$ lower than the average for the 41 years, $1841-1881$
The mean of all the lowest daily readings in the month was $44^{\circ} \cdot 7$, being $1^{\circ} \cdot 2_{2}$ higher than the average for the 41 years, $1841-188 \mathrm{r}$.
The mean of the daily ranges was $12^{\circ} \cdot 9$, being $1^{\circ} \cdot 7$ less than the average for the 41 years, 1841-1881.
The mean for the month was $5 \mathrm{I}^{\circ} \cdot \circ$, being the same as the average for the 20 years, 1849-1868.
made at the Royal Observatory, Greenwich, in the Year 1882.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The (

 The mean (fine Differences (Columns if and 12) are deduced from the 24 hourry phogespervations, on account of accidental loss of photographic register.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 521$, being $0^{\text {in }} \cdot \mathbf{2 5 0}$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $60^{\circ} \cdot 1$ on November 5; the lowest in the month was $24^{\circ} .4$ on November 18 ; and the range was $35^{\circ} \cdot 7$.
The mean of all the highest daily readings in the month was $48^{\circ} \cdot 7$, being $0^{\circ} \cdot 1$ lower than the average for the 41 years, $1841-188 \mathrm{r}$.
The mean of all the lowest daily readings in the month was $38^{\circ} \cdot 4$, being $1^{\circ} \cdot 0$ higher than the average for the 4^{1} years, 184r-1881,
The mean of the daily ranges was $10^{\circ} \cdot 3$, being $1^{\circ} \cdot 2$ less than the average for the 41 years, 1841-1881.
The mean fur the month was $43^{\circ} \cdot 8$, being $1^{\circ} \cdot 1$ higher than the average for the 20 years, $1849-1868$.

The mean Temperature of Evaporation for the month was $41^{\circ} \cdot 7$, being $0^{\circ} \cdot 5$ kigher than
The mean Temperature of the Dew Point for the month was $39^{\circ} \cdot 2$, being $0^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was $84^{\circ} \circ$, being $3^{\circ} 3$ less than
The mean Elastic Force of Vapour for the month was ${ }^{\text {in }} \cdot 239$, being $0^{\text {in }} \cdot$ oor less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $\mathbf{2}^{613 \cdot}$ 8, being the same as
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 6 grains less than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 22$. The maximum daily amount of Sunshine was $5: 2$ hours on November 8 and 10.
The highest reading of the Solar Radiation Thernometer was $100^{\circ} .8$ on November 6; and the lowest reading of the Terrestrial Radiation Thermometer was $18^{\circ} \cdot 2$ on November 18.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 1$; for the 6 hours ending 3 p.m., $1 \cdot 0$; and for the 6 hours ending 9 p.m., $0 \cdot 9$.
The Proportions of Wind referred to the cardinal points were N. 5, E. 3, S. 9, and W. 13
The Greatest Pressure of the Wind in the month was 15 畐. 0 on the square foot on November 5. The mean daily Horizontal Movenent of the Air for the month was 449 miles; the greatest daily value was 758 miles on November 4; and the least daily value 131 miles on November 12 .
Rain fell on 19 days in the month, amounting to $2^{\text {in }}$ 199, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {th }}$. 030 less than the average fall for the 41 years, 1841-1881.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher s Hygrometrical Tabes. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns if and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The resur
for Air and Evaporation Temperatures depend partly on values inferred from eye-observations, on accoun
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 18). The amount given for December 14 is derived from dew.

The mean reading of the Barometer for the month was $29^{\text {th }} \cdot 492$, being $0^{\text {in }} \cdot 299$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $56^{\circ} \cdot 9$ on December 27 ; the lowest in the month was $22^{\circ} \cdot 2$ on December II; and the range was $34^{\circ} \% \%$.
The mean of all the highest daily readings in the month was $44^{\circ} \cdot 0$, being $0^{\circ} \cdot 4$ lower than the average for the 41 years, $184^{1}-188 \mathrm{r}$.
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 5$, being $0^{\circ} \cdot 5$ higher than the average for the 41 years, 1841-1881.
The mean of the daily ranges was $8^{\circ} \cdot 4$, being $1^{\circ} \circ \circ$ less than the average for the 41 years, 1841-1881.
The mean for the month was $40^{\circ} \cdot 2$, being $0^{\circ} \cdot 6$ lower than the average for the 20 years, $1849-1868$.

The mean Temperature of Evaporation for the month was $39^{\circ} \cdot 1$, being $0^{\circ} \cdot 2$ lower than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot 7$, being $\circ^{\circ} \cdot 3$ higher than
The mean Degree of Humidity for the month was $91 \cdot 0$, being 3.2 greater than
The mean Elastic Force of Vapour for the month was on $\mathrm{o}^{\mathrm{in}} \cdot 226$, being $\mathrm{o}^{\mathrm{in}} \cdot 002$ greater than.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 6$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 4 grains less than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by io) was 8.2 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was o.08. The maximum daily amount of Sunshine was 3.8 hours on December 4 .
The highest reading of the Solar Radiation Thermometer, was $72^{\circ} \cdot 2$ on December 19; and the lowest reading of the Terrestrial Radiation Thernometer was $20^{\circ} \cdot 3$ on December 10.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., r. 6 ; for the 6 hours ending 3 p.m., 0.2 ; and for the 6 hours ending 9 p.m., 0.3 .
The Proportions of Wind referred to the cardinal points were N. 4, E. 6, S. 9, and W. ıo. Two days were calm.
The Greatest Pressure of the Wind in the month was $9^{\text {1bs. }} 3$ on the square foot on December 28. The mean daily Horizontal Movement of the Air for the month was 288 miles; the greatest daily value was 661 miles on December 28 ; and the least daily value 30 miles on December in.
Rain fell on 17 days in the month, amounting to $1^{\text {in. }} 771$, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {in }} 035$ less than the average fall for the 41 years, 1841-1881.

Absolute Maxima and Minima Readings of the Barometer for each Month in the Year 1882. [Extracted from the preceding Table.]

Monthly Results of Meteorological Elements for the Year 1882.

* The mean daily pressures of the wind for April, July, and August are derived from the results for 25, 26, and 27 days respectively. Greenwich Magnetical and Meteorological Observations, 1882.

Monthly Mean Degree of Humidity（Saturation $=100$ ）at every Hour of the Day，as deduced hy Glatsher＇s Tables from the corresponding Air and Etaporation Temperatures．

	1882.												Yearly Means．
	Janaary．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	92	91	91	89	90	91	91	89	92	93	86	92	91
$\mathrm{I}^{\text {h }}$ ．a．m．	92	92	92	88	92	92	91	91	93	94	87	94.	91
2 ＂	92	91	94	90	94	93	91	92	94	94	87	94	92
3 ＂	93	92	94	89	95	94	93	91	93	94	87	93	92
4 ＂	93	93	94	89	96	94	92	92	94	94	87	92	93
5 ＂	93	92	95	90	96	94	92	90	94	95	88	93	93
6 ＂	92	92	94	90	93	91	89	91	92	95	89	93	92
7 ＂	92	92	94	87	87	87	85	87	90	94	89	93	90
8 ＂	93	92	90	85	78	80	82	82	87	92	88	93	87
9 ＂	91	98	84	79	71	76	75	76	84	90	86	93	83
10 ＂	89	88	80	76	68	72	72	73	79	84	82	93	80
11 ＂	89	84	73	73	63	69	67	70	74	81	79	90	76
Noon	86	81	69	71	59	69	65	68	71	80	78	89	74
$\mathrm{I}^{\text {b }}$ ．p．m．	85	81	68	70	58	68	63	65	69	79	77	87	73
2 ＂	83	80	67	71	58	66	62	66	69	79	77	88	72
3 ＂	83	81	68	71	59	67	62	64	69	79	78	89	72
	86	81	70	74	57	67	63	65	71	81	81	90	
5 ＂	88	83	73	75	60	68	65	68	75	86	83	91	76
6 ＂	89	86	77	79	66	70	69	72	80	87	84	92	79
	90	88	81	82	70	76	73	76	85	90	83	92	82
8 ＂	90	90	85	83	77	81		81	88	92	85	93	85
9 ＂	91	89	88	86	82	84	83	83	89	93	85	92	87
10 ＂	91	91	90	88	85	87	86	86	90	94	86	92	89
11 ＂	91	91	90	89	89	90	88	88	91	92	87	93	90
Means ．．．．	90	88	83	82	77	80	78	79	84	89	84	92	84

Total Amount of Sunshine registered in each Hocr of the Day in each Monte，as derived from the Records of Campbell＇s Self－registering Instrument，for the Year 1882.

	Registered Duration of Sunshine in the Hour ending																	Correspond－ gate Period which the Sun was gboveHorizon．	$\begin{gathered} \text { Mean } \\ \text { Altitude } \\ \text { of the } \\ \text { Sun } \\ \text { at Noon. } \end{gathered}$
Month．	$\begin{gathered} \text { ⿷匚 } \\ \text { ij } \\ \text { in } \end{gathered}$		$\stackrel{\text { gi }}{\stackrel{\text { g}}{~}}$	$\underset{\underset{\infty}{\text { a }}}{\substack{\text { in }}}$	$\begin{gathered} \text { ád } \\ \stackrel{\text { an }}{6} \end{gathered}$	¢	送	完	京	$\begin{aligned} & \text { घ̣ } \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{gathered} \stackrel{1}{4} \\ \underset{\sim}{-1} \end{gathered}$	$\begin{gathered} \text { ị } \\ \text { " } \end{gathered}$	\％	¢					
	h	${ }^{\text {h }}$	${ }^{\text {b }}$	${ }^{\text {b }}$	h	b	${ }^{\text {b }}$	b	b	${ }^{\text {h }}$	h	h	h	b	${ }^{\text {h }}$	h	b	h	－
January ．．			．	．\cdot	0.2	$1 \cdot 7$	1×7	4.5	$3 \cdot 0$	$2 \cdot 9$	1．8		．	．．	－	．	$15 \cdot 8$	259 1	18
February．		．			$2 \cdot 9$	$2 \cdot 7$	$4 \cdot 7$	$6 \cdot 9$	$5 \cdot 3$	6.5	$6 \cdot 1$	$\bigcirc \cdot 9$		\cdots	．	\cdots	$36 \cdot 0$	277＊9	26
March ．．．			$0 \cdot 1$	$5 \cdot 1$	11－5	13.5	15.5	$16 \cdot 7$	15．8	14.6	$14^{\circ} 7$	12.1	$7 \cdot 6$	$0 \cdot 7$		．	127.9	$366 \cdot 9$	37
April		$2 \cdot 3$	g． 5	13.0	12.2	14.8	14.4	$14^{\circ} 2$	$14^{\circ} 1$	$14^{\circ} 2$	12.4	11.6	11.8	$6 \cdot 4$	0.5	．	151.4	$414^{\circ} 9$	48
May．	0.4	$5 \cdot 9$	15.4	16.6	19.0	18.4	$20 \cdot 3$	21－8	21.6	20．0	17.6	18.5	$18 \cdot 5$	$14^{\circ} \mathrm{O}$	9.4	$0 \cdot 4$	$237 \cdot 8$	$482 \cdot 1$	57
June	$0 \cdot 1$	5．1	10.6	$9 \cdot 0$	$9 \cdot 7$	$8 \cdot 6$	9．9	9｀7	9.2	9＇9	9＊7	9．5	$8 \cdot 2$	$8 \cdot 1$	$4^{\circ} \mathrm{O}$	$0 \cdot 1$	121．4	$494 \cdot 5$	62
July．．．．．	$0 \cdot 1$	$6 \cdot 6$	II•O	12.2	14.3	16.0	$17 \cdot 8$	17.5	17.9	$17 \cdot 8$	17.3	16.9	$14^{1.1}$	$11 \cdot 3$	$3 \cdot 8$	$0 \cdot 1$	194.7	$496 \cdot 8$	60
August ．．	．	1．0	$6 \cdot 6$	$7 \cdot 2$	8.4	10.5	$9 \cdot 5$	$10 \cdot 0$	1199	12.4	12.7	$12 \cdot 8$	11＇1	$10 \cdot 3$	1•9	．	$126 \cdot 3$	449.1	52
September	．	．	1.4	$7 \cdot 2$	$9 \cdot 7$	$10 \cdot 9$	10.2	$9 \cdot 2$	$10 \cdot 3$	$11^{\circ} 7$	$8 \cdot 8$	$9 \cdot 4$	$8 \cdot 5$	$2 \cdot 1$	．		$99^{\circ} 4$	$376 \cdot 9$	41
October		\cdots		$\bigcirc \cdot 9$	$2 \cdot 9$	$7 \cdot 8$	$9 \cdot 0$	10＇9	$10 \cdot 1$	8.9	$6 \cdot 0$	$2 \cdot 7$	－ 0	．．			$60 \cdot 1$	$328 \cdot 7$	30
November	．				$1 \cdot 7$	$7 \cdot 7$	12.2	12．9	10.1	$6 \cdot 1$	$4 \cdot 8$	0.6	．		\cdots		$56 \cdot 1$	264.4	20
December						$1 \cdot 9$	$4 \cdot 2$	4.0	$4 \cdot 4$	$2 \cdot 9$	$0 \cdot 7$	．	．	\cdots			18．1	$24^{2} 7$	16
						1			4	2									
The hours are reckoned from apparent noon．																			
The total registered duration of sunshine during the year was $124^{\circ} \circ$ hours；the corresponding aggregate period during which the Sun was above the horizon was $44^{5} 4^{\circ} \circ$ hours；the mean proportion for the year（constant sunshine $=1$ ）was therefore 0.280 ．																			

(I.) -Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noun on every Day of the Year.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
1	51.98	$51 \cdot 34$	$50 \cdot 67$	$49 \cdot 98$	49 57	49.47	$49 \cdot 75$	$50 \cdot 33$	$51 \cdot 14$	51.94	$52 \cdot 45$	$52 \cdot 53$
2	51:98	$51 \cdot 30$	$50 \cdot 65$	$49 \cdot 97$	$49 \cdot 56$	$49 * 47$	$49 \cdot 76$	$50 \cdot 38$	51.17	51.95	$52 \cdot 46$	52.53
3	$51 \cdot 95$	$51 \cdot 30$	$50 \cdot 63$	49.94	$49 \cdot 56^{\circ}$	49.48	49.78	$50 \cdot 38$	51 19	$51 \cdot 97$	52.47	$52 \cdot 55$
4	$51 \cdot 92$	$51 \cdot 25$	$50 \cdot 58$	$49 \cdot 92$	$49 \cdot 54$	$49 * 48$	$49 \cdot 78$	$50 \cdot 41$	51-23	$51 \cdot 99$	52.49	$52 \cdot 55$
5	$51 \cdot 93$	51.24	$50 \cdot 58$	$49^{\circ} 9$	$49 \cdot 55$	$49 * 49$	4980	$50 \cdot 44$	$51 \cdot 26$	$52 \cdot 0$	$52 \cdot 50$	$52 \cdot 52$
6	$51 \cdot 93$	51.21	$50 \cdot 55$	49.90	$49 \cdot 54$	$49 \cdot 48$	49.82	$50 \cdot 45$	51.27	$52 \cdot 03$	$52 \cdot 51$	$52 \cdot 51$
7	$51 \cdot 87$	$51 \cdot 20$	$50 \cdot 54$	$49 \cdot 88$	$49 \cdot 54$	$49 \cdot 50$	$49 \cdot 83$	$50 \cdot 44$	$51 \cdot 31$	$52 \cdot 05$	52.49	52.49
8	$51 \cdot 87$	$51 \cdot 17$	$50 \cdot 53$	$49 \cdot 87$	$49 \cdot 52$	$49 \cdot 50$	$49 \cdot 83$	$50 \cdot 51$	$51 \cdot 28$	$52 \cdot 07$	52.50	52.49
9	$5 \mathrm{~L} \cdot 85$	$51 \cdot 14$	$50 \cdot 50$	49.85	$49 \cdot 52$	49.50	$49 \cdot 86$	$50 \cdot 52$	51.35	$52 \cdot 12$	52.50	52.50
10	5ı 83	$51 \cdot 12$	$50 \cdot 47$	4983	$49 \cdot 51$	$49 \cdot 50$	$49 \cdot 90$	$50 \cdot 55$	$51 \cdot 39$	$52 \cdot 12$	$52 \cdot 52$	$52 \cdot 46$
11	51.83	$51 \cdot 11$	$50 \cdot 44$	$49 \cdot 81$	49 50	$49 \cdot 50$	$49 \cdot 88$	$50 \cdot 57$	51.41	$52 \cdot 13$	$52 \cdot 51$	52.45
12	51 80	$51 \cdot 10$	$50 \cdot 41$	49.80	$49 \cdot 51$	$49 \cdot 50$	$49 \cdot 92$	$50 \cdot 62$	51.43	52.14	52.50	52.45
13	$51 \cdot 77$	51.08	$50 \cdot 38$	49.77	$49 \cdot 50$	$49 \cdot 53$	49.94	50.63	$51 \cdot 45$	$52 \cdot 16$	52.53	52.47
14	$51 \cdot 75$	51.06	$50 \cdot 36$	$49 \cdot 76$	$49 \cdot 50$	$49 \cdot 54$	49.96	$50 \cdot 66$	51.47	$52 \cdot 17$	$52 \cdot 53$	52.44
15	5173	$51 \cdot 0$	$50 \cdot 34$	$49 \cdot 75$	$49{ }^{48}$	$49 \cdot 55$	49×9	$50 \cdot 68$	$51 \cdot 52$	52:19	$52 \cdot 54$	$52 \cdot 42$
16	$51 \cdot 71$	$51 \cdot 0$	$50 \cdot 33$	49×74	$49 \cdot 48$	$49 \cdot 55$	50.01	$50 \cdot 69$	51.55	$52 \cdot 18$	$52 \cdot 52$	$52 \cdot 43$
17	51.67	50.97	$50 \cdot 30$	$49 \cdot 73$	49.48	$49 \cdot 56$	$50 \cdot 03$	$50 \cdot 73$	$51 \cdot 57$	$52 \cdot 22$	$52 \cdot 55$	52.44
18	51.65	$50 \cdot 96$	$50 \cdot 27$	$49 \cdot 70$	49.48	$49 \cdot 56$	50.04	$50 \cdot 75$	51.60	$52 \cdot 24$	52.52	52.42
19	$51 \cdot 64$	$50 \cdot 93$	$50 \cdot 26$	4970	$49 \cdot 48$	$49 \cdot 57$	50.06	$50 \cdot 79$	51.61	$52 \cdot 26$	$52 \cdot 56$	$52 \cdot 41$
20	51.63	$50 \cdot 89$	$50 \cdot 24$	4970	$49^{\circ} 47$	$49 \cdot 60$	$50 \cdot 07$	50.81	$51 \cdot 65$	$52 \cdot 27$	$52 \cdot 56$	$52 \cdot 37$
21	51.58	50.89	$50 \cdot 20$	$49 \cdot 68$	$49 \cdot 47$	49.60	$50 \cdot 10$	$50 \cdot 83$	$51 \cdot 66$	$52 \cdot 29$	$52 \cdot 55$	$52 \cdot 38$
22	51.57	50.85	$50 \cdot 17$	$49 \cdot 66$	$49 \cdot 48$	$49 \cdot 6$	$50 \cdot 11$	$50 \cdot 85$	51.70	$52 \cdot 29$	$52 \cdot 58$	$52 \cdot 35$
23	51.54	$50 \cdot 82$	$50 \cdot 15$	$49 \cdot 66$	$49 \cdot 47$	$49 \cdot 63$	$50 \cdot 13$	50.87	51.71	$52 \cdot 30$	$52 \cdot 60$	$52 \cdot 33$
24	$51 \cdot 52$	50.80	50.14	$49 \cdot 64$	49.47	49.64	$50 \cdot 15$ 50.17	50.91	51.75	$52 \cdot 32$	$52 \cdot 58$	$52 \cdot 30$
25	$51 \cdot 48$	$50 \cdot 77$	$50 \cdot 11$	$49 \cdot 62$	$49^{\circ} 45$	$49 \cdot 66$	$50 \cdot 17$	$50 \cdot 93$	51.77	$52 \cdot 34$	$52 \cdot 58$	$52 \cdot 31$
26	51.46	$50 \cdot 76$	$50 \cdot 08$	$49 \cdot 60$	$49 \cdot 48$	$49 \cdot 66$	$50 \cdot 21$	$50 \cdot 96$	51.81	$52 \cdot 35$	$52 \cdot 57$	$52 \cdot 30$
27	51.46	$50 \cdot 73$	$50 \cdot 07$	$49 \cdot 60$	49.47	$49 \cdot 67$	$50 \cdot 23$	50.98	51.83	$52 \cdot 35$	$52 \cdot 56$	$52 \cdot 31$
28	51.45	$50 \% 70$	$50 \cdot 06$	$49 \cdot 59$	$49 \cdot 47$	49.71	$50 \cdot 25$	51.03	51.84	$52 \cdot 36$	$52 \cdot 56$	$52 \cdot 28$
29	$51 \cdot 43$		$50 \cdot 05$	$49 \cdot 57$	49.48	4972	$50 \cdot 27$	51.04	51.86	$52 \cdot 37$	$52 \cdot 57$	$52 \cdot 26$
30	$51 \cdot 39$		$50 \cdot 02$	$49 \cdot 58$	49.48	4972	$50 \cdot 29$	51.08	$51 \cdot 89$	$52 \cdot 42$	$52 \cdot 56$	$52 \cdot 23$
31	$51 \cdot 36$		$49^{\circ} 99$		$49 * 7$		$50 \cdot 32$	$51 \cdot 12$		$52 \cdot 43$		$52 \cdot 21$
Means.	5ı 69	51.02	$50 \cdot 32$	$49 * 76$. $49 \cdot 50$	$49 \cdot 56$	$50 \cdot 01$	$50 \cdot 71$	$51 \cdot 52$	$52 \cdot 19$	$52 \cdot 53$	$52 \cdot 41$
The mean of the twelve monthly values is $50^{\circ} \cdot 93$.												

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	\bigcirc	-	-	-	-	-	-	-	。	。	-
1	$50 \cdot 40$	$48 \cdot 60$	$47 \cdot 38$	$47 \cdot 59$	$48 \cdot 33$	49×92	$51 \cdot 95$	$54 \cdot 12$	$55 \cdot 74$	$55 \cdot 80$	54.90	52.59
2	$50 \cdot 32$	$48 \cdot 51$	$47 \cdot 37$	$47 \cdot 59$	$48 \cdot 39$	$50 \cdot 0$	$52 \cdot 3$	$54 \cdot 22$	55.81	55.74	$54 \cdot 84$	52.50
3	$50 \cdot 21$	$48 \cdot 49$	$47 \cdot 35$	47.60	48.41	$50 \cdot 10$	$52 \cdot 11$	$54 \cdot 22$	55.80	55.70	54.79	52.46
4	$50 \cdot 10$	48.40	47.30	$47 \cdot 60$	$48 \cdot 41$	$50 \cdot 18$	$52 \cdot 13$	$57 \cdot 31$	55.80	55.65	$5+72$	$52 \cdot 37$
5	$50 \cdot 09$	$48 \cdot 37$	$47 \cdot 32$	$47 \cdot 60$	$48 \cdot 49$	$50 \cdot 26$	$52 \cdot 20$	54.40	$55 \cdot 8 \mathrm{I}$	$55 \cdot 62$	$54 \cdot 67$	$52 \cdot 24$
6	$50 \cdot 00$	$48 \cdot 30$	$47 \cdot 31$	$47 \cdot 65$	$48 \cdot 50$	$50 \cdot 30$	$52 \cdot 24$	54.48	55.8 I	$55 \cdot 60$	54.58	$52 \cdot 16$
7	$49 \cdot 89$	$48 \cdot 28$	$47 \cdot 36$	47.67	48.54	$50 \cdot 41$	52.30	$54 \cdot 53$	55.86	$55 \cdot 59$	54.47	$52 \cdot 03$
8	$49 \cdot 83$	$48 \cdot 2 \mathrm{I}$	$47 \cdot 37$	$47^{\circ} 68$	$48 \cdot 55$	$50 \cdot 48$	$52 \cdot 38$	$54 \cdot 57$	$55 \cdot 88$	$55 \cdot 57$	54.42	5 5 97

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1882.												
Days of the Month	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	${ }^{\circ}$
9	$49 \cdot 73$	$48 \cdot 17$	$47 \cdot 34$	$47 \cdot 69$	$48 \cdot 58$	$50 \cdot 55$	52.47	$54 \cdot 62$	$55 \cdot 87$	$55 \cdot 59$	$54 \cdot 32$	$51 \cdot 90$
10	$49 \cdot 68$	$48 \cdot 11$	$47 \cdot 35$	47.70	$48 \cdot 60$	$50 \cdot 61$	$32 \cdot 55$	$54 \cdot 67$	$55^{\circ} 9$	$55 \cdot 51$	$54 \cdot 28$	$51 \cdot 77$
11	$49 \cdot 61$	48.09	$47 \cdot 32$	4773	$48 \cdot 69$	$50 \cdot 70$	52.60	$54 \cdot 75$	55.88	55.50	54.20	51.68
12	$49 \cdot 53$	$48 \cdot 00$	$47 \cdot 33$	$47 \cdot 76$	$48 \cdot 70$	50.80	52.70	54.88	55.83	$55 \cdot 43$	$54 \cdot 10$	$51 \cdot 61$
13	$49 \cdot 48$	$47 \cdot 96$	$47 \cdot 34$	$47 \cdot 78$	$48 \% 74$	$50 \cdot 88$	$52 \cdot 76$	54.90	$55 \cdot 86$	$55 \cdot 41$	$54 \cdot 11$	$51 \cdot 56$
14	49.40	47.92	$47 \cdot 37$	47.80 47.82	$48 \cdot 78$ 48.82	$50 \cdot 95$ 51	52.88 52.90	54 55 50	$55 \cdot 83$ $55 \cdot 91$	55.40 55.37	54.03 53.98	51.44 51
15	$49 \cdot 36$	$47 \cdot 81$	$47{ }^{\circ}{ }^{4}$	$47 \cdot 82$	$48 \cdot 82$	51.01	52.90	$55 \cdot 00$	$55 \cdot 91$	$55 \cdot 37$	$53 \cdot 98$	
16	$49 \cdot 30$	47×79	$47 \cdot 39$	47.85	$48 \cdot 87$	$51 \cdot 09$	53.00	55.02	$55 \cdot 93$	$55 \cdot 30$	53.90	51.26
17	$49 \cdot 26$	$47 * 7$	$47 \cdot 38$	$47^{\circ} 90$	$48 \cdot 93$	$5 \mathrm{~L} \cdot 10$	53.08	$55 \cdot 9$	$55 \cdot 96$	$55 \cdot 3 \mathrm{I}$	$53 \cdot 84$	$51 \cdot 18$
18	$49 \cdot 20$	$47 \cdot 70$	$47 \%{ }^{\circ}$	$47^{\circ} 90$	48.98	$51 \cdot 21$	$53 \cdot 14$	$55 \cdot 19$	$55 \cdot 94$	$55 \cdot 29$	$53 \cdot 76$	51.08
19	$49 \cdot 18$	$47 \cdot 61$	$47 * 40$	$47 \cdot 95$	$49 \cdot 05$	$5 \mathrm{~L} \cdot 30$	$53 \cdot 22$	55.24	-55.90	$55 \cdot 30$	$53 \cdot 73$	$50 \cdot 95$
20	$49 \cdot 11$	$47 \cdot 59$	$47 * 40$	$48^{\circ} 00$	$49 \cdot 10$	$51 \cdot 40$	$53 \cdot 28$	$55 \cdot 30$	$55 \cdot 93$	$55 \cdot 29$	$53 \cdot 64$	$50 \cdot 82$
21	49 •08	$47 \cdot 58$	$47 * 40$	$48 \cdot 02$	49 18	5 I 41	$53 \cdot 34$	$55 \cdot 31$	$55 \cdot 93$	$55 \cdot 27$	$53 \cdot 53$	$50 \cdot 75$
22	$49 \cdot 05$	$47 \cdot 54$	$47 *{ }^{\circ}$	$48 \cdot 05$	$49 \cdot 23$	$51 \cdot 47$	53.40	$55 \cdot 37$	$55 \cdot 92$	$55 \cdot 20$	$53 \cdot 53$	50.63
23	49 - 1	47.50	$47 \cdot{ }^{2}$	$48^{\circ} 09$	$49 \cdot 30$	$5 \mathrm{5I} \cdot 53$	53.49	$55 * 40$	$55 \cdot 88$	$55 \cdot 20$	53.46	$50 \cdot 52$
24	$48 \cdot 98$	$47 \cdot 48$	$47 \cdot 48$	$48 \cdot 11$	$49 \cdot 37$	$51 \cdot 59$	$53 \cdot 53$	$55 \cdot 46$	55.89 55.88	$55 \cdot 18$ 55	$53 \cdot 33$	$50 \cdot 40$ 50.38
25	$48 \cdot 90$	47×4	$47 * 8$	$48 \cdot \mathrm{~s} 3$	$49 \cdot 38$	$51 \cdot 63$	$53 \cdot 60$	$55 \cdot 48$	$55 \cdot 88$	$55 \cdot 15$	$53 \cdot 24$	$50 \cdot 38$
26	$48 \cdot 88$	$47 \cdot 44$	$47 \cdot 48$	$48 \cdot 15$	$49 * 9$	51.70	53.68	$55 \cdot 53$	55.87	$55 \cdot 11$	$5.3 \cdot 10$	50.29
27	$48 \cdot 87$	$47 \cdot 40$	47.50	$48 \cdot 19$	49.58	51.73	$53 \cdot 72$	$55 \cdot 57$	$55 \cdot 83$	55.08	$52 \cdot 99$	$50 \cdot 23$
28	$48 \cdot 81$	$47 \cdot 39$	$47 \cdot 53$	$48 \cdot 26$	$49 \cdot 64$	$5 \mathrm{5} \cdot 80$	$53 \cdot 82$	$55 \cdot 62$	$55 \cdot 80$	55.03	52.88	$50 \cdot 13$
29	$48 \cdot 78$		$47 \cdot 53$	$48 \cdot 27$	$49 \cdot 72$	$5 \mathrm{~L} \cdot 84$	53.93	$55 \cdot 61$	$555 \cdot 76$	55.00	$52 \cdot 83$	$50 \cdot 08$
30 31	$48 \cdot 70$ $48 \cdot 64$		$47 \cdot 54$ 47 47	$48 \cdot 30$	49.80 49.87	51:89	54.00 54.05	$55 \cdot 70$ 55 7	$55 \cdot 75$	$54 \cdot 98$ 54.94	$52 \cdot 72$	$\begin{aligned} & 49 \cdot 98 \\ & 49 \cdot 89 \end{aligned}$
Means .	$49 * 40$	$47^{\circ} 91$	47×40	$47 \cdot 88$	4897	$50 * 99$	$52 \cdot 98$	$55 \cdot 1$	$55 \cdot 86$	$55 \cdot 36$	$53 \cdot 90$	$51 \cdot 23$
The mean of the twelve monthly values is $51^{\circ} \cdot 4 \mathrm{r}$.												

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	\bigcirc	-	-	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	\bigcirc		${ }^{\circ}$
1	$47 \cdot 32$	$46 \cdot 02$	$46 \cdot 26$	$47 \cdot 69$	$49 \cdot 70$	53.77	$56 \cdot 06$	$58 \cdot 99$	$59 \cdot 36$	$57 \cdot 30$	$54 \cdot 11$	$50 \cdot 12$
2	$47 \cdot 32$	$46^{\circ} \mathrm{o}$	$46 \cdot 35$	$47 \cdot 75$	$49 \cdot 69$	$53 \cdot 92$	$56 \cdot 21$	$59 \cdot 14$	$59 \cdot 31$	$57 \cdot 18$	54.08	49.97
3	$47 \cdot 28$	$46 \cdot 02$	$46 \cdot 44$	47:80	$49 \cdot 70$	$5_{4} \cdot 11$	$56 \cdot 38$	$59 \cdot 11$	$59 \cdot 25$	57.09	$53 \cdot 96$	$49 \cdot 84$
4	$47 \cdot 26$	$45 \cdot 96$	$46 \cdot 51$	47.90	$49 \cdot 69$	$54 \cdot 22$	56.43	59.24	59.20	${ }^{57} \cdot 06$	53.91 53.88	49.68
5	$47 \cdot 29$	$45 \cdot 89$	$46 \cdot 59$	$47 \cdot 98$	$49 \cdot 78$	$54 \cdot 32$	$56 \cdot 60$	$59 \cdot 36$	$59 \cdot 14$	57.03	$53 \cdot 88$	$49 \cdot 48$
6	$47 \cdot 29$	$45 \cdot 78$	$46 \cdot 59$	$48 \cdot 10$	$49^{\circ} 90$	54.40	$56 \cdot 75$	$59 \% 40$	$59 \cdot 19$	57.03	$53 \cdot 83$	$49 \cdot 35$
7	$47 \cdot 27$	$45 \cdot 65$	$46 \cdot 58$	$48 \cdot 19$	50.06	54.56	$56 \cdot 93$	$59 * 8$	$59 \cdot 19$	$57^{\circ} \mathrm{O}$	53.77	$49.2 i$
8	$47 \cdot 27$	$45 \cdot 53$	$46 \cdot 58$	$48 \cdot 29$	$50 \cdot 19$	54.63	57.08	$59 * 46$	59.21	$56 \cdot 96$	53.71	$49 \cdot 10$
9	$47 \cdot 21$	$45 \cdot 43$	$46 \cdot 60$	$48 \cdot 36$	$50 \cdot 32$	54.70	$57 \cdot 19$	$59 \cdot 50$	59.19	$56 \cdot 93$	53.66	$48 \cdot 96$
10	$47 \cdot 20$	$45 \cdot 39$	46•1	$48 \cdot 45$	$50 \cdot 50$	54.80	$57 \cdot 28$	$59 \cdot 53$	59.20	$56 \cdot 85$	$53 \cdot 62$	$48 \cdot 73$
11	47-18	$45 \cdot 34$	$46 \cdot 70$	$48 \cdot 54$	$50 \cdot 70$	54.89	57.29	$59 \cdot 63$	$59 \cdot 11$	56.80	53.50	$48 \cdot 50$
12	$47 \cdot 13$	$45 \cdot 29$	$46 \cdot 80$	$48 \cdot 63$	$50 \cdot 80$	54.91	57.38	$59 \cdot 69$	59.01	$56 \cdot 77$	$53 \cdot 32$	$48 \cdot 35$
13	$47 \cdot 15$	$45 \cdot 27$	$46 \cdot 90$	$48 \cdot 70$	$50 \cdot 90$	54.93	57.39	59.78	59.00	$56 \cdot 77$ $56 \cdot 76$	$53 \cdot 23$	$48 \cdot 17$
14	$47 \cdot 13$	$45 \cdot 28$	$47 \cdot 03$	48.78	51.07	54.94	57.48	59.80	58.90 58.80	$56 \cdot 76$	53.02	47.91
15	$47^{\circ} 20^{\prime}$	$45 \cdot 30$	$47 \cdot 10$	$48 \cdot 82$	$51 \cdot 22$	54.90	57.50	$59 \cdot 80$	58.89	56 '73	52.71	$47 \cdot 70$

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil; at Noon on every Day of the Year-concluded.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
16	$47 \cdot 21$	$45 \cdot 36$	$47^{1} 19$	$48 \cdot 90$	$51 \cdot 40$	$54 * 89$	$57 \cdot 58$	$59 \cdot 82$	$58 \cdot 79$	$56 \cdot 66$	$52 \cdot 56$	$47 \cdot 53$
17	$47 \cdot 23$	$45 \cdot 48$	$47 \cdot 21$	$48 \cdot 98$	51.58	54.90	$57 \cdot 69$	59.90	$58 \cdot 63$	$56 \cdot 62$	$52 \cdot 32$	$47 \cdot 40$
18	$47 \cdot 23$	$45 \cdot 57$	$47 \cdot 28$	$49^{\circ} 0$	$5 \mathrm{I} \cdot 70$	$54 \cdot 80$	57.78	$59 * 99$	$58 \cdot 46$	$56 \cdot 55$	52.04	$47 \cdot 30$
19	$47 \cdot 20$	$45 \cdot 62$	$47 \cdot 33$	$49 \cdot 05$	$5 \mathrm{I} \cdot 80$	$54 \cdot 83$	57.90	$60 \cdot 00$	$58 \cdot 24$	$56 \cdot 45$	51.84	$47 \cdot 26$
20	$47 \cdot 17$	$45 \cdot 70$	$47 \cdot 39$	$49 \cdot 10$	$51 \cdot 90$	$54 \cdot 91$	58 -or	$59 \cdot 98$	$58 \cdot 19$	$56 \cdot 33$	51.57	$47 \cdot 24$
21	$47 \cdot 08$	$45 \cdot 78$	$47^{\circ} 40$	- $49 \cdot 13$	$52 \cdot 03$	54.93	$58 \cdot 12$	59.90	58.08	$56 \cdot 18$	51 29	$47{ }^{\circ} 28$
22	$46 \cdot 99$	$45 \cdot 82$	$47 * 48$	$49 \cdot 19$	$52 \cdot 21$	54.99	$58 \cdot 22$	$59 \cdot 89$	$58 \cdot 00$	$55 \cdot 94$	$51 \cdot 12$	$47 \cdot 27$
23	$46^{\circ 91}$	$45 \cdot 82$	$47 \cdot 55$	$49 \cdot 28$	$52 \cdot 39$	$55 \cdot 10$	$58 \cdot 35$	59 83	$57 \cdot 82$	$55 \cdot 84$	$50 \cdot 92$	$47 \cdot 24$
24	$46 \cdot 82$	$45 \cdot 90$	$47 \cdot 62$	$49 \cdot 38$	$52 \cdot 52$	$55 \cdot 29$	$58 \cdot 43$	$59 \cdot 83$	$57 \cdot 79$	$55 \cdot 75$	$50 \cdot 70$	$47^{\circ} 2$
25	$46 \cdot 70$	$45 \cdot 96$	$47 \cdot 60$	$49 \cdot 50$	$52 \cdot 62$	$55 \cdot 28$	58-53	59.79	$57 \cdot 68$	$55 \cdot 56$	$50 \cdot 57$	$47^{\circ} 20$
26	$46 \cdot 59$	$46 \cdot 00$	$47 \cdot 54$	$49 \cdot 58$	$52 \cdot 90$	$55 \cdot 40$	$58 \cdot 66$	59.74	57.60	$55 \cdot 40$	$50 \cdot 52$	$47^{11} 1$
27	$46 \cdot 48$	$46 \cdot 06$	$47 \cdot 56$	$49 \cdot 67$	53.09	$55 \cdot 50$	$58 \cdot 79$	$59 \cdot 67$	$57 \cdot 50$	$55 \cdot 25$	$50 \cdot 52$	47.06
28	$46 \cdot 30$	$46 \cdot 11$	$47^{\circ} 60$	$49^{\circ} 7^{2}$	$53 \cdot 20$	$55 \cdot 63$	$58 \cdot 79$	$59 \cdot 61$	$57 \cdot 42$	54.87	$50 \cdot 48$	$47^{\circ} 0$
29	$46 \cdot 18$		$47 \cdot 60$	$49^{\circ} 70$	$53 \cdot 33$	$55 \cdot 77$	$58 \cdot 86$	$59 * 49$	$57 \cdot 33$	54.40	$50 \cdot 44$	$47{ }^{\circ} \mathrm{O}$
30	$46 \cdot 06$		$47^{\circ} 60$	$49^{\circ} 70$	$53 \cdot 47$	55:88	$58 \cdot 89$	59.49	$57 \cdot 30$	54.42	50:30	$47 \cdot 16$
31	$46 \cdot 1$		$47^{\circ} 61$		$53 \cdot 60$		$58 \cdot 92$	$59{ }^{42}$		54.21		$47 \cdot 24$
Means.	$4^{6 \cdot 99}$	$45 \cdot 69$	$47{ }^{\circ} 07$	$48 \cdot 80$	$51 \cdot 42$	$54 \cdot 87$	$57 \cdot 66$	$59 \cdot 62$	$58 \cdot 53$	$56 \cdot 28$	$52 \cdot 38$	$48 \cdot 08$
The mean of the twelve monthly values is $52^{\circ} \cdot \mathbf{2 8}$.												

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	-	-	-	\bigcirc	-	-	-	\bigcirc	-	\bigcirc	-
$1 *$	$43 \cdot 42$	$42 \cdot 68$	$45 \cdot 08$	$46 \cdot 83$	$48 \cdot 72$	56.90	59.08	$62 \cdot 10$	59.90	$56 \cdot 18$	$50 \cdot 80$	$45 \cdot 55$
2	$43 \cdot 53$	$42 \cdot 46$	$45 \cdot 20$	$46 \cdot 98$	$48 \cdot 90$	56.90	$59 \cdot 25$	$62 \cdot 49$	59.94	$56 \cdot{ }^{48}$	51 10	$45 \cdot 18$
3	$43 \cdot 70$	$42{ }^{\circ} 0$	$45 \cdot 09$	$47^{\text {'13 }}$	$49 \cdot 23$	57.00	$59 \cdot 60$	$62 \cdot 45$	$60 \cdot 10$	$56 \cdot 74$	$51 \cdot 29$	$44 \cdot 74$
4	44 '02	$41^{\circ} 70^{\circ}$	$44 \cdot 77$	$47 \cdot 46$.	$49 \cdot 71$	57.02	$60 \cdot 03$	$62 \cdot 40$	$60 \cdot 23$	$56 \cdot 77$	$5 \mathrm{I} \cdot 5 \mathrm{I}$	$44 \cdot 64$
5	$43 \cdot 89$	41.40	$44 \cdot 48$	$47^{\circ} 70$	$50 \cdot 37$	$57 \cdot 12$	$60 \cdot 50$	$62 \cdot 28$	$60 \cdot 33$	$56 \cdot 51$	5ı 75	$44 \cdot 87$
6	$43 \cdot 80$	41×5	$44 \cdot 40$	$47 \cdot 85$	50.68	$57 \cdot 11$.	$60 \cdot 52$	$62 \cdot 18$	$60 \cdot 39$	$56 \cdot 22$	51.86	44.77
7	$44^{\circ} \mathrm{O} 9$	$41 \cdot 10$	$44 \cdot 60$	$47 * 95$	$5 \mathrm{I} \cdot 10$	$57 \cdot 20$	$60 \cdot 33$	$62 \cdot 20$	$60 \cdot 32$	$56 \cdot 16$	51.79	$44 \cdot 48$
8	44^{10}	41.11	$44 \cdot 69$	$48 \cdot 11$	$5 \mathrm{I} \cdot 40$	$57 \cdot 21$	$60 \cdot 00$	$62 \cdot 40$	$60 \cdot 25$	$56 \cdot 20$	$5 \mathrm{I} \cdot 63$	$43 \cdot 93$
9	$43 \cdot 80$	$41 \cdot 33$	45.00	$48 \cdot 29$	5ı $5 \cdot 6$	$57^{\circ} 30$	$59 * 90$	$62 \cdot 49$	$60 \cdot 10$	$56 \cdot 34$	$5 \mathrm{I} \cdot 20$	$43 \cdot 52$
10	$44^{\circ} \mathrm{O}$	$41 \cdot 38$	$45 \cdot 38$	$48 \cdot 40$	5ı 68	$57 \cdot 11$	$59 \cdot 8 \mathrm{I}$	$62 \cdot 44$	$60 \cdot 03$	$56 \cdot 40$	50.88	$43 \cdot 13$
11	$43 \cdot 88$	$41 \cdot 40$	$45 \cdot 79$	$48 \cdot 50$	51.90	$56 \cdot 80$	59.71	62.41	59.88	$56 \cdot 49$	$50 \cdot 31$	$4.2 \cdot 70$
12	$44^{1} 10$	$41 \cdot 42$	$46^{\circ} 00$	$48 \cdot 46$	$52 \cdot 21$	$56 \cdot 42$	59.72	$62 \cdot 45$	$59 \cdot 65$	$56 \cdot 54$	49 80	$42 \cdot 30$
13	$44 \cdot 31$	$41 \cdot 89$	$46 \cdot 20$	$48 \cdot 49$	$52 \cdot 75$	$56 \cdot 18$	59.70	$62 \cdot 46$	$59 \cdot 36$	$56 \cdot 50$	$49 \cdot 24$	$41 \cdot 96$
14	$44^{\prime} 4^{8}$	$42 \cdot 29$	$46 \cdot 09$	$48 \cdot 60$	$53 \cdot 11$	$55 \cdot 95$	59.90	$62 \cdot 73$	$58 \cdot 78$	$56 \cdot 23$	$48 \cdot 74$	41.80
15	$44 * 49$	$42 \cdot 78$	$45 \cdot 91$	$48 \cdot 70$	$53 \cdot 28$	$55 \cdot 80$	$60 \cdot 10$	$62 \cdot 74$	$58 \cdot 25$	$56 \cdot 19$	$48 \cdot 37$	41 81
16	$44 \cdot 38$	$43 \cdot 30$	$46 \cdot 00$	$48 \cdot 70$	$53 \cdot 31$	$55 \cdot 79$	$60 \cdot 52$	$62 \cdot 71$	$57 \cdot 67$	$55 \cdot 83$	47.91	$42 \cdot 10$
17	$44 \cdot 30$	$43 \cdot 28$	$46 \cdot 09$	$48 \cdot 55$	$53 \cdot 22$	55.80	$60 \cdot 78$	$62 \cdot 39$	57.50	$55 \cdot 38$	$47 \cdot 39$	$42 \cdot 33$
18	44 -06	$43 \cdot 31$	$46 \cdot 21$	$48 \cdot 53$	$53 \cdot 20$ 53.50	$55 \cdot 98$ 56.28	$61 \cdot 00$	$62 \cdot 12$	$57 \cdot 50$	$55 \cdot 02$	$46 \cdot 98$	$42 \cdot 83$
19	$43 \cdot 68$	$43 \cdot 53$	$46 \cdot 32$	$48 \cdot 60$	$53 \cdot 50$ $53 \cdot 87$	$56 \cdot 28$	61:23	$61 \cdot 91$	57.44	$54 \cdot 63$	$46 \cdot 49$	$43 \cdot 27$
20	$43 \cdot 40$	$43 \cdot 50$	$46 \cdot 50$	$48 \cdot 71$	$53 \cdot 87$	$56 \cdot 42$	$61 \cdot 30$	$61 \cdot 92$	$57 \cdot 30$	$54 \cdot 22$	$46 \cdot 24$	$43 \cdot 37$

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1882.												
Days of the Month.	Jannary.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }^{\text {d }}$	-	-	-	-	-	-	-	-	-	-	-	-
21	$43 \cdot 32$	$43 \cdot 50$	$46 \cdot 60$	49×1	$54 \cdot 25$	$56 \cdot 61$	61.40	61.82	$57 \cdot 20$	$54 \cdot 16$	$46 \cdot 00$	$43 \cdot 26$
22	$43 \cdot 13$	43.58	$46 \cdot 69$	$49 \cdot 32$	$54 \cdot 62$	$56 \cdot 92$	61.56	61.80	57.01	$54 \cdot 02$	$45 \cdot 88$	$43 \cdot 38$
23	$42 \cdot 93$	$43 \cdot 68$	$46 \cdot 32$	$49 \cdot 72$	$55 \cdot 10$	$57 \cdot 20$	$6 \mathrm{~L} \cdot 80$	$61 \cdot 50$	$56 \cdot 82$	53.79	$45 \cdot 97$	$43 \cdot 27$
24	$42 \cdot 63$	$43 \cdot 81$	$45 \cdot 92$	$49 \cdot 83$	$55 \cdot 40$	$57 \cdot 19$	6180	$61 \cdot 32$	56.70	$53 \cdot 49$	$46 \cdot 58$	$43 \cdot 10$
25	$42 \cdot 30$	$43 \cdot 88$	$45 \cdot 95$	$49 \cdot 86$	$55 \cdot 42$	$57 \cdot 39$	$61 \cdot 76$	$60 \cdot 90$	$56 \cdot 59$	$52 \cdot 90$	$47 \cdot 13$	$42 \cdot 78$
26	$41 \cdot 88$	44^{10}	$46 \cdot 09$	49.65	55.49	$57 \cdot 81$	61.63	60.70	$56 \cdot 70$	52.41	$47 \cdot 20$	$42^{\prime} 70$
27	$41 \cdot 52$	$44 \cdot 60$	$46 \cdot 20$	$49 \cdot 33$	55.41	$58 \cdot 20$	${ }^{61} \cdot 59$	$60 \cdot 49$	$56 \cdot 75$	51.90	$46 \cdot 98$	$43 \cdot 37$
28	41:50	$44^{\circ} 90$	46.09	49.08	$55 \cdot 72$	58.47	$61 \cdot 47$	$60 \cdot 43$	$56 \cdot 70$	51.51	$46 \cdot 59$	44^{11}
29	41.90		$46 \cdot 10$	48.90	$56 \cdot 13$	58.80	$61 \cdot 62$	$60 \cdot 21$	$56 \cdot 33$	51.00	$46 \cdot 14$	44.92
30 31	$42 \cdot 31$ $42 \cdot 60$		$46 \cdot 40$ $46 \cdot 62$	$48 \cdot 80$	$\begin{aligned} & 56 \cdot 50 \\ & 56 \cdot 83 \end{aligned}$	59.0	$\begin{aligned} & 61 \cdot 70 \\ & 6191 \end{aligned}$	$60 \cdot 17$ $60 \cdot 06$	56.21	$\begin{aligned} & 50.80 \\ & 50.69 \end{aligned}$	$45 \cdot 75$	$\begin{aligned} & 45 \cdot 47 \\ & 45 \cdot 00 \end{aligned}$
Means.	$43 \cdot 40$	$42 \cdot 68$	45 77	$48 \cdot 53$	53 •05	$57 \cdot 0$	$60 \cdot 68$	61:83	58.40	$54 \cdot 76$	$48 \cdot 65$	$43 \cdot 60$
The mean of the twelve monthly values is $51^{\circ} \cdot 53$.												

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	\bigcirc	-	-	-
1	$44^{\circ} \mathrm{O}$	$37 \cdot 3$	$46 \cdot 0$	48°	$49{ }^{\circ}$	$58 \cdot 3$	-59 7	$65 \cdot 2$	60.4	$58 \cdot 8$	$50 \cdot 6$	38.0
2	$43 \cdot 3$	$35 \cdot$	$44^{\circ} 8$	49°	$50 \cdot 2$	$59: 6$	$62 \cdot 8$	$66^{\circ} 4$	62.0	57.2	$50 \cdot 7$	$36 \cdot 7$
3	$44 \cdot 9$	$38 \cdot 5$	$42 \cdot 3$	$48 \cdot 7$	$52 \cdot 3$	$61 \cdot 2$	$65 \cdot 3$	$62 \cdot 1$	61.0	$55 \cdot 7$	51.0	$40 \cdot 6$
4	$39 \cdot 3$	$35 \cdot 1$	39.4	$48 \cdot 3$	$53 \cdot 1$	$60 \cdot 0$	$64^{\circ} \mathrm{O}$	61.8	$60 \cdot 9$	$54 \cdot 1$	$52 \cdot 1$	43.0
5	$4^{3} 7$	$35 \cdot 2$	$44^{\circ} \mathrm{O}$	$48 \cdot 0$	$53 \cdot 3$	$59 \cdot 5$	$63 \cdot 0$	$63 \cdot 3$	$60 \cdot 3$	$54 \cdot 0$	52.4	$39 \cdot 8$
6	$46 \cdot 1$	$35 \cdot 3$	45 -	$50 \cdot 2$	53.4	$58 \cdot 2$	61.3	$62 \cdot 8$	$59 \cdot 2$	$55 \cdot 4$	$50 \cdot 8$	$39 \cdot 3$
7	$42 \cdot 2$	$39 \cdot 2$	$45 \cdot 3$	$48 \cdot 4$	$55 \cdot 6$	$60 \cdot 0$	$59 \cdot 2$	65.4	58.8	$55 \cdot 4$	49.1	$35 \cdot 2$
8	$42 \cdot 3$	39.4	47.3	$49 \cdot 2$	$52 \cdot 1$	59°	60°	$63 \cdot 3$	$58 \cdot 3$	$\stackrel{55}{ } \cdot 3$	$46 \cdot 7$	$36 \cdot 3$
9	$42 \cdot 9$	38.0	$48 \cdot 3$	49°	51.4	$57 \cdot 3$	$60 \cdot 0$	$62 \cdot 3$	$58 \cdot 6$	$56 \cdot 8$	45%	37.4
10	$40 \cdot 8$	$38 \cdot 3$	$49{ }^{\circ}$	$48 \cdot 7$	$54 \cdot 6$	$55 \cdot 7$	$60 \cdot 3$	62.4	59.0	$56 \cdot$	$45 \cdot 3$	$33 \cdot 9$
11	$45 \cdot 2$	$4.2{ }^{\circ}$	$48 \cdot 8$	47°	$58 \cdot 3$	54.0	59.0	$62 \cdot 9$	58.4	57.3	$44^{\circ} 2$	$33 \cdot 7$
12	$43 \cdot 8$	$43 \cdot 0$	$46 \cdot 5$	$49 \cdot 2$	$56 \cdot 3$	$53 \cdot 5$	60.4	64.4	55°	54.8	40.4	$34 \cdot 3$
13	$44 \cdot 5$	43.4	$44 \cdot 3$	$50 \cdot 2$	$55 \cdot 1$	$53 \cdot 2$	$60 \cdot 5$	$66: 2$	$53 \cdot 2$	$53 \cdot 5$	$43 \cdot 3$	$38 \cdot 3$
14	$42 \cdot 2$	$46 \cdot 3$	$44 \% 2$	$50^{\circ} \mathrm{O}$	$53 \cdot 7$ 53	$55 \cdot 2$ 55.2	$62 \cdot 5$ 63.2	65.9	$52 \cdot 2$ 52.8	$55 \cdot 0$ $53 \cdot 8$	$42 \cdot 3$	$38 \cdot 5$
15	$41 \cdot 3$	$44 \cdot 3$	$46 \cdot 3$	49.4	53:3	$55 \cdot 2$	$63 \cdot 2$	$65 \cdot 1$	$52 \cdot 8$	$53 \cdot 8$	$4^{1} 7$	$39^{\circ} \mathrm{O}$
16	$41 \cdot 6$	$40 \cdot 8$	$46 \cdot 3$	$46 \cdot 0$	$52 \cdot 7$	$55 \cdot 1$	$63 \cdot 1$	$60 \cdot 1$	53.7	51.3	$40 \cdot 2$	$40 \cdot 2$
17	38.9	$44^{1} 1$	$46 \cdot 3$	$49 \cdot 3$	$52 \cdot 7$	$57 \cdot 3$	$64^{\circ} \mathrm{O}$	$60 \cdot 4$	$55 \cdot 3$	51.4	$40 \cdot 7$	$43 \cdot 1$
18	$37 \cdot 9$	$45 \cdot$	45%	48°	54.2	$58 \cdot 3$	$63 \cdot 7$	619	$56 \cdot 0$	$50 \cdot 7$	37.6	$43 \cdot 8$
19	$38 \cdot 3$ $40 \cdot 3$	$42 \cdot 7$	$46 \cdot 3$	$49 \cdot 2$ 51	$56 \cdot 2$ 57.4	57 5 5 ${ }^{\circ} \mathrm{O}$	$63 \cdot 3$ $62 \cdot 3$		$53 \cdot 7$ $56 \cdot 4$	51.3 52.0	$42 \cdot 2$ $40 \cdot 7$	${ }^{42}{ }^{\circ} \mathrm{O}$
20	$40 \cdot 3$	$40 \cdot 3$	$48 \cdot 3$	51.4	$57 \cdot 4$	59 -	$62 \cdot 3$	614	56.4	$52 \cdot$	$40 \cdot 7$	$38^{\circ} 4$
21	$38 \cdot 5$	$44 \cdot 3$	$47 \stackrel{2}{ }$	$52 \cdot$	$58 \cdot 2$	$60 \cdot 0$	$63 \cdot 5$	$6 \mathrm{~F} \cdot 7$	$55 \cdot 3$	$52 \cdot 7$	$39 \cdot 5$	$43 \cdot 2$
22	$39^{\circ} 1$	$44 \cdot 5$	$42 \cdot 3$	$53 \cdot 2$	$60 \cdot 0$	$59 \cdot 8$	$64^{\circ} \mathrm{O}$	$65 \cdot 1$	$55^{\circ} \mathrm{O}$	$53 \cdot 0$	$43 \cdot 7$	$40 \cdot 1$
23	371	$43 \cdot 6$	$40 \cdot 6$	$52 \cdot 3$	61.3	$58 \cdot 3$	$63 \cdot 1$					
24 25	37 $34 *$	$42 \cdot 9$ $46 \cdot 3$	47 46%	$50 \cdot 1$ $49 \cdot 3$	$58 \cdot 7$ $56 \cdot 2$	59% 60%	$63 \cdot 0$ $61 \cdot 2$	$58 \cdot 8$ 59.3	55% 55	$49 \cdot 8$ $47 \cdot 2$	$47 \cdot 8$ $45 \cdot 2$	$36 \cdot 8$ $46 \cdot 2$
25	$34 \cdot 8$	$46 \cdot 3$	467	$49^{\circ} 3$	56		61.2	59	559			

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year-concluded.

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	${ }^{\circ}$	。	-	-	-	-
26	$35{ }^{\circ}$	$48 \cdot 3$	44.8	47.4	$57 \cdot 6$	619	$6 \mathrm{I} \cdot 3$	$59 \cdot 2$	56.8	$45^{\prime 3}$	$44 \cdot 3$	$46 \cdot 0$
27	$38 \cdot 7$	$47^{\circ} \mathrm{I}$	$44 \cdot 8$	$46 \cdot 3$	59.0	61.0	$62 \cdot 6$	59.4	$55 \cdot 5$	47.4	$41 \cdot 4$	$48 \cdot 7$
28	$42 \cdot 1$	$4{ }^{\circ} \mathrm{O}$	$46 \cdot 0$	$48 \cdot 0$	$62 \cdot 6$	$62 \cdot 7$	$63 \cdot 2$	$59 \cdot 1$	$53 \cdot$	48.4	$4{ }^{1} 9$	$49 \cdot 3$
29	43 -		$49^{\circ} \mathrm{I}$	47.6	$59 \cdot 8$	63.5	$63 \cdot 3$	58.0	$54 \cdot 3$	47.5	$41 \cdot 3$	$48 \cdot 8$
30 31	$42 \cdot 1$ $40 \cdot 7$		$47 \cdot 6$ $46 \cdot 3$	$45 \cdot 5$	$61 \cdot 3$ $60 \cdot 2$	$60 \cdot 8$	$\begin{aligned} & 64^{\circ} 0 \end{aligned}$	57.9 58.6	53.4	47.8 53.3	417	$48 \cdot 3$ $48 \cdot 3$
Means.	41.0	$41 \cdot 6$	$45 \cdot 7$	49°	$55 \cdot 8$	$58 \cdot 5$	$62 \cdot 2$	$62 \cdot 1$	56.4	$52 \cdot 6$	$44: 7$	$40 \cdot 9$
The mean of the twelve monthly values is $50^{\circ} \cdot 87$.												

(VI.)-Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year.

						1882.						
Days of the Month.	January.	Febraary.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	-
1	$47 \cdot 8$	$38 \cdot 4$	$48 \cdot 6$	$56 \cdot 7$	$56 \cdot 2$	62.4	$67 \cdot 2$	67.7	$64 \cdot 6$	$67 \cdot 8$	$55 \cdot 5$	$33 \cdot 3$
2	479	$3 \mathrm{I} \cdot 8$	$49 \cdot 2$	$57 \cdot 1$	$57 \cdot 2$	62.4	$70 \cdot 2$	$75 \cdot 7$	$68 \cdot 1$	65.0	$57 \cdot 1$	32.4
3	$45 \cdot 9$	$4 \mathrm{I} \cdot 3$	$46 \cdot 5$	$50 \cdot 3$	$60 \cdot 3$	$69 \cdot 8$	74.2	62.4	$66 \cdot 2$	$58 \cdot 9$	54.8	45 \%
4	37.3	$34 \cdot 2$	$38 \cdot 6$	$53 \cdot 2$	$53 \cdot 8$	$66 \cdot 2$	$65 \cdot 2$	$66 \cdot 2$	$64 \cdot 1$	$56 \cdot 9$	$55 \cdot 6$	$46 \cdot 1$
5	$50 \cdot 2$	$35 \cdot 2$	$49^{\circ} 2$	$49^{\circ} 2$	61•1	$64 \cdot 2$	$66 \cdot 2$	$69 \cdot 8$	$60 \cdot 0$	57°	58.9	$36 \cdot 3$
6	$51 \cdot 9$	$36 \cdot$	477	$59 \cdot 4$	$57 \cdot 5$	59.4	61.8	$69 \cdot 8$	$63 \cdot 4$	$58 \cdot 2$	$54 \cdot 9$	$34 \cdot 5$
7	$43 \cdot 2$	42.4	50.9	$56 \cdot 1$	$63 \cdot 5$	$66 \cdot 2$	62.8	$70 \cdot 7$	64.9	$60 \cdot 1$	$45 \cdot 3$	31.3
8	$45 \cdot 5$	$40 \cdot 2$	52.0	58.6	57.4	$60 \cdot 3$	59.9	$66 \cdot 1$	$65 \cdot 6$	${ }^{61} \cdot 8$	479	$36 \cdot 0$
9	$43 \cdot 3$	$36 \cdot 8$	$53 \cdot 3$	$56 \cdot 5$ 55.6	$52 \cdot 8$	58.4	$63 \cdot 7$ $65 \cdot 3$	$63 \cdot 8$	64.0	66.8	$47 \cdot 4$	$\begin{array}{r}36 \cdot 5 \\ \hline 2.8\end{array}$
10	$42 \cdot 8$	$42 \cdot 1$	519	$55 \cdot 6$	$60 \cdot 2$	$56 \cdot 3$	$65 \cdot 3$	$61 \cdot 2$	66.5	$60 \cdot 8$	$49 \cdot 8$	27.8
11	49.4	$48 \cdot 4$	$50 \cdot 2$	$53 \cdot 3$	69.7	57%	$59 \cdot 8$	65.4	$6 \mathrm{I} \cdot 2$	60.0	$44^{\circ} 9$	28.0
12	$46 \cdot 5$	$49^{\circ} 2$	49.5	$56^{\circ} \mathrm{O}$	$63 \cdot 3$	$53 \cdot 8$ 53	$65 \cdot 9$	74.5	$52 \cdot 2$	53.0	$37 \cdot 3$	$30^{\circ} 8$
13	$47 \cdot 3$	$47 \cdot 4$	48.4	$52 \cdot 7$	$63 \cdot 0$	53.8	61.8	69.4	$53 \cdot 6$	54.8	43.4	$43 \cdot$
14	$4{ }^{41}{ }^{\circ} \mathrm{7}$	52.4 40.9	$54 \cdot 8$ 49	$56 \cdot 1$ 53.6	59.9	$58 \cdot 5$ $56 \cdot 4$	$68 \cdot 9$ 63.4		$50 \cdot 0$ $58 \cdot 1$	$54 \cdot 8$ $55 \cdot 2$	39.6 41.4	$38 \cdot 7$ $39 \cdot 2$
15	$40^{\circ} \mathrm{O}$	$40^{\circ} 9$	49.9	$53 \cdot 6$	$56 \cdot 3$	56.4	63.4	$65 \cdot 9$	$58 \cdot 1$	$55 \cdot 2$	$41 \cdot 4$	$39 \cdot 2$
16	$42 \cdot 3$	$41 \cdot 9$	$58 \cdot 2$	$50 \cdot 7$	58.6	$60 \cdot 7$	$67 \cdot 2$	$60 \cdot 2$	$60 \cdot 0$	$48 \cdot 3$	$38 \cdot 2$	$41 \cdot 3$
17	$33 \cdot 9$	47.8	54.2	$54 \cdot 6$	59 59 62	$65 \cdot 9$	$68 \cdot 2$	$60 \cdot 6$	$62 \cdot 3$	$49 \cdot 5$	$40 \cdot 2$	$48 \cdot 7$
18	$32 \cdot 9$		$53 \cdot 8$		$62 \cdot 3$ $6 \cdot 3$	$59 \cdot 2$	$66 \cdot 8$	67.3	$61 \cdot 5$	49.8	$35 \cdot 3$	
19 20	39.2 40%	45% $40 \cdot 8$	$53 \cdot 3$ $57 \cdot 2$	54.1 59.4	$64 \cdot 3$ $62 \cdot 3$	$61 \cdot 1$ $68 \cdot 2$	$68 \cdot 9$ 679	$68 \cdot 2$ 67.6	$52 \cdot 1$ $58 \cdot 3$	53.4 58.3	$44^{4}{ }^{\circ} 9$	$45 \cdot 8$ $36 \cdot 3$
20	$40 \cdot$	$40 \cdot 8$	$57 \cdot 2$	$59 \cdot 4$	$62 \cdot 3$	$68 \cdot 2$	$67 \cdot 9$	$67 \cdot 6$	$58 \cdot 3$	$58 \cdot 3$	$42 \cdot$	$36 \cdot 3$
21	$37 \cdot 0$	$50 \cdot 2$	497	$6 \mathrm{I} \cdot 1$	$66 \cdot 8$	$63 \cdot 2$	$68 \cdot$	64.4	$59 \cdot 9$	$55 \cdot 2$	$38 \cdot 1$	$46 \cdot 3$
22	39.9	$50 \cdot 3$	$43 \cdot 7$	54.7	69.0	$63 \cdot 2$	$66 \cdot 7$	$63 \cdot 7$	$59 \cdot 2$	$52 \cdot$	$50 \cdot 2$	$42 \cdot 7$
23	$36 \cdot 8$	$43 \cdot 1$	$45 \cdot 3$	$55 \cdot 8$	$70 \cdot 2$	$65 \cdot 3$	67.5	$60 \cdot 2$	54%	53.7	$53 \cdot 6$	$40 \cdot 4$
24	$38 \cdot 3$	$43 \cdot 5$	$52 \cdot 3$	$52 \cdot 3$	61.8	67.4	$65 \cdot 1$	$62 \cdot 3$	$60 \cdot 0$	51.4	$50 \cdot 0$	34.4
25	$30 \cdot 9$	52.4	$49 \cdot 5$	51.7	$55 \cdot 0$	63.0	$63 \cdot 8$	$58 \cdot 6$	$60 \cdot 0$	51.0	47°	$48 \cdot 1$
26	$32 \cdot 0$	$52 \cdot 3$	$45 \cdot 6$	$49 \cdot 3$	$64 \cdot 8$	67.0	669	63 -	61.6	$51 \cdot 3$	$47 \stackrel{4}{4}$	52.8
27	$43 \cdot 7$	$50 \cdot 8$	48.8	$46 \cdot 1$	$66 \cdot 3$	$68 \cdot 7$	73.0	$60 \cdot 8$	58.4	$50 \cdot 0$	41.3	$55 \cdot 2$
28	47.5	$47^{1} 1$	53.1	$53 \cdot 3$	$70^{\circ} 9$	$69 \cdot 3$	$66 \cdot 7$	64.6	$59 \cdot 5$	48.4	41.6	$53 \cdot 3$
29 30	$46 \cdot 4$ 41 4		$55 \cdot 8$ 54.4	$48 \cdot 4$ 54.4	$68 \cdot 5$ $70 \cdot 4$		$71 \cdot 2$ $69 \cdot 2$	57 63 6	$54 \cdot 1$ 55.6	$48 \cdot 8$ 50 8	$43 \cdot 8$ $42 \cdot 2$	52.4 50.9
30 31	418 39		50\% ${ }^{5}$	544	$78 \cdot 4$ 674		69.2 68.8	64.9		$49 \cdot 4$	42	$50 \cdot 7$
Means .	42°	$44 *$	$50 \cdot 5$	54.0	$62 \cdot 3$	$62 \cdot 5$	$66 \cdot 5$	$65 \cdot 4$	60%	$55 \cdot 2$	$46 \cdot 3$	41.4
The mean of the twelve monthly values is $54^{\circ} \cdot 17$.												

Greenwich Magnetical and Meteorological Observations, 1882.

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer.

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., \&c., or in direct motion ; the sign - implies that the change has taken place in the order N., W., S., E., N., \&c., or in retrograde motion.
The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range. Amounts of Motion produced by turnings of the vane which appear to be of an accidental nature, and not due to real changes of direction of the wind, are placed in brackets, and have been omitted in the formation of the "whole excess."

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer-concluded.

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., \&c., or in direct motion ; the sign - implies that the change has taken place in the order N., W., S., E., N., \&c., or in retrograde motion.
The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range. Amounts of Motion produced by turnings of the vane which appear to be of an accidental nature, and not due to real changes of direction of the wind, are placed in brackets, and have been omitted in the formation of the "whole excess."

The whole excess of direct motion for the year was 8300°.

The revolution-counter which is attached to the vertical spindle of the vane, whose readings increase with direct changes, and decrease with retrograde changes, gave the following readings :-

Implying an apparent excess of direct motion, during the year, of $11 \circ 5$ revolutions or 3978°, but eliminating the amounts due to accidental shifts of the vane, as shown in the table above, the true annual excess of direct motion becomes $23^{\circ} \circ 5$ revolutions or 8298°.

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1882.												Mean for the Year.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
b	Miles.												
1 a.m.	$10 \cdot 2$	$10 \% 7$	13.4	129	$8 \cdot 8$	117	10.1	10.6	8.3	9•1	17%	11.5	$11 \cdot 2$
2 a.m.	$10 \cdot 5$	11 1	$12 \cdot 5$	$13 \cdot 2$	8.4	108	97	$10 \cdot 1$	$8 \cdot 0$	$9 \cdot 6$	174	$11 \cdot 1$	11.0
3 a.m.	$10 \cdot 2$	109	$12 \cdot 5$	13.7	$8 \cdot 4$	108	$9 \cdot 6$	$10 \cdot 1$	8.2	$9 \cdot 3$	18.0	12.3	11.2
$4 \mathrm{a} . \mathrm{m}$.	10%	1099	11.8	$12 \cdot 8$	$7 {f54936510-4797-4509-ac91-7e773d48598b} 7$	$9 ` 7$	$7{ }^{\circ} 9$	$8 \cdot 7$	17.0	$12 \cdot 1$	10.8		
6 a.m.	10:3	$10 \cdot 6$	11.8	12.8	$7 \cdot 8$	$12 \cdot 1$	$9 \cdot 5$	10*0	$8 \cdot 2$	$8 \cdot 9$	$16 \cdot 6$	12.0	10.9
7 a.m.	$10 \cdot 8$	11.3	12.8	$12 \cdot 6$	94	$12 \cdot 6$	$10 \cdot 5$	10.5	$8 \cdot 3$	9.6	16.8	$12 \cdot 1$	11.4
8 a.m.	$10 \cdot 6$	11.4	$13 \cdot 5$	$13 \cdot 5$	$10 \cdot 7$	13.4	112	12.8	$8 \cdot 6$	9.9	$17^{\circ} \mathrm{O}$	11.8	$12 \cdot 0$
9 a.m.	$10^{\circ} 9$	$11 \cdot 2$	14.3	14.5	$12 \cdot 2$	14.3	$11 \cdot 6$	13.0	$9 \cdot 5$	$10 \cdot 2$	174	11.1	$12 \cdot 5$
10 a.m.	10%	$11 \cdot 2$	14.8	$14 \cdot 3$	12.0	$13 \cdot 8$	12.2	13.6	$10 \cdot 2$	11.0	17.8	11.5	$12 \cdot 8$
11 a.m.	$10 \cdot 8$	$12 \cdot 5$	$16 \cdot 7$	$15 \cdot 7$	127	$15 \cdot 1$	$13 \cdot 1$	14.4	11.0	12.9	18.9	119	$13 \cdot 8$
Noon.	12%	$13 \cdot 3$	$17 \cdot 5$	17.1	$13 \cdot 5$	$16 \cdot 2$	139	$15 \cdot 2$	1102	$13 \cdot 7$	20.8	12.4	147
$1 \mathrm{p} . \mathrm{m}$.	12.6	$13 \cdot 2$	18.1	$16 \cdot 8$	139	$16 \cdot 5$	147	$15 \cdot 2$	10%	14.3	$20 \cdot 8$	12.7	15 \%
2 p.m.	12.8	$13 \cdot 6$	18.5	$16 \cdot 6$	14.3	$16 \cdot 2$	159	$15 \cdot 3$	119	$15 \cdot 2$	20.6	$13 \cdot 1$	$15 \cdot 3$
3 p.m.	$12 \cdot 2$	$13 \cdot 8$	178	$16 \cdot 7$	14.5	$16 \cdot 2$	$15 \cdot 5$	$15 \cdot 5$	$11 \cdot 2$	14%	$21 \cdot 1$	$12 \cdot 3$	$15 \cdot 1$
4 p.m.	12.1	$13 \cdot 6$	18.0	$17 \cdot 3$	15%	16.4	$15 \cdot 8$	16.3	11.2	$13 \cdot 2$	20.5	11.6	$15 \cdot 1$
5 p.m.	114	$12 \cdot 1$	$16 \cdot 3$	174	14.3	$16 \cdot 3$	15%	$15 \cdot 3$	10.8	$1.2 \cdot 6$	19.7	119	14.4
6 p.m.	11.5	127	$15 \cdot 7$	$16 \cdot 8$	$12 \cdot 9$	$15 \cdot 9$	14.5	14.6	$10 \cdot 2$	$12 \cdot 5$	$19 \cdot 2$	117	14.0
7 p.m.	11.6	$12 \cdot 3$	14.6	$15 \cdot 4$	12.6	14.2	$13 \cdot 1$	13.7	$9 \cdot 2$	11.6	19.4	$12 \cdot 1$	$13 \cdot 3$
8 p.m.	11.5	12.4	13.4	${ }_{15}{ }^{\prime}$ I	11.6	$12 \cdot 7$	11.5	11.6	9°	$11 \cdot 3$	19.6	11.5	12.6
9 p.m.	11 \%	129	13.2	$15 \cdot 1$	$10 \cdot 2$	$12 \cdot 1$	10.7	12.0	$8 \cdot 6$	10.9	19.2	$12 \cdot 1$	$12 \cdot 3$
10 p.m.	$10 \% 7$	$12 \cdot 3$	13.4	$13 \cdot 6$	9 9	$12 \cdot 3$	$10 \cdot 7$	11.3	$9 \cdot 5$	10.8	19.5	12.3	12.2
If p.m.	$10 \cdot 7$	12%	127	14^{17}	$9 \cdot 6$	117	10.5	114	9.6	11%	18.2	12.1	12%
Midnight.	$10^{\circ} 0$	$11 \cdot 3$	13.4	13.4	$9^{1} 1$	1111	$10 \cdot 7$	11.5	9^{17}	10.1	$18{ }^{\circ}$	119	11.6
Means . .	111	12%	14.5	14%	11 I	13.5	12.1	12.6	$9 \cdot 5$	11 2	18.7	12%	12.8
$\left.\begin{array}{c} \text { Greatest Hourly } \\ \text { Measures } \end{array}\right\}$	41	38	40	59	31	33	30	41	32	64	45	34	.
$\left.\begin{array}{c} \text { Least } \\ \text { Measures } \end{array} \text { Hourly }-1\right\}$	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1	\bigcirc	1	-	-	0.	\bigcirc	.

Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day.
(Each result is the Mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary ; the zero reading is $10^{\circ} 000$, and numbers greater than 10.000 indicate positive potential.)

1882.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
1	$10 \cdot 042$	10.621	10'126	10.382	10.140	$10 \cdot 084$	$10 \cdot 226$	10.173	$10 \cdot 027$	10.076	10.112	10.840
2	$10 \cdot 039$	10.508	10.241	10.217	10.186	$10 \cdot 010$	$10 \cdot 166$	10.168	10.160	10.312	10.116	10.537
3		$10 \cdot 360$	10.297	$10 \cdot 240$	10.180	-10 061	$10 \cdot 160$	$10 \cdot 159$	10•193	$10 \cdot 277$	10•197	
4	10.536	$10 \cdot 354$	$10 \cdot 322$	10.307	$10 \cdot 145$	10-123	$10 \cdot 301$	$10 \cdot 101$	10•139	$10 \cdot 263$	$10 \cdot 201$	
5	10•124	10.297	10.177	10.383	$10 \cdot 027$..	$9 \cdot 958$	10.147	10.146	10•194	10.123	$10 \cdot 260$
6	$10 \cdot 174$	10.248	$10 \cdot 256$	$10 \cdot 347$	$10 \cdot 089$		$10 \cdot 201$	$10 \cdot 268$	$10 \cdot 318$	$10 \cdot 095$	$10 \cdot 153$	10.133
7	$10 \cdot 332$	10.215	$10 \cdot 227$	10.345	$10 \cdot 359$	$10 \cdot 148$	$10 \cdot 160$	10•147	$10 \cdot 261$	10.183	10.239	$9 \cdot 954$
8	10.222	$10 \cdot 327$	$10 \cdot 125$	10.446	$10 \cdot 250$	$10 \cdot 095$	$10 \cdot 105$	$10 \cdot 216$	$10 \cdot 240$	10.279	10.410	10.171
9	$10 \cdot 145$	$10 \cdot 261$	10.079	10.448	$10 \cdot 181$	9 722	$10 \cdot 034$	$10 \cdot 372$	10.141	10.371	10.386	10.414
10	$10 \cdot 324$	$10 \cdot 384$	10.064	10.319	10.020	$9 \cdot 960$	$10 \cdot 084$	10.190	10.040	$10 \cdot 163$	10.445	
11	10.268	10.241	10 -030	10.269	$10 \cdot 248$	10.078	$10 \cdot 059$	$10 \cdot 383$	10.045	$10 \cdot 063$	$10 \cdot 332$.
12	$10 \cdot 150$	$10 \cdot 146$	$10 \cdot 095$	$10 \cdot 353$	$10 \cdot 320$	9943	$10 \cdot 048$	$10 \cdot 301$	10.040	10.024	10.472	-
13	$10 \cdot 391$	10×079	$10 \cdot 167$	$10 \cdot 034$	$10 \cdot 283$	9.843	10.218	$10 \cdot 175$	10.005	10.121	10.076	10.486
14	$10 \% 419$	10.200	10.304	$10 \cdot 375$	10.407	$10 \cdot 062$	10.110	10.201	9:897	10.155	$10 \cdot 360$	$10 \cdot 335$
15	10.445	10.130	10.248	$10 \cdot 252$	$10 \cdot 352$	9'900	$10 \cdot 069$	10.240	10.428	$10 \cdot 136$	$10 \cdot 366$	10.268
16	$10 \cdot 557$	$10 \cdot 300$	$10 \cdot 220$	10.423	$10 \cdot 405$	$10 \cdot 000$	$10 \cdot 162$	$9 \cdot 989$	$10 \cdot 263$	$9 \cdot 908$	$9 \cdot 467$	$10 \cdot 130$
17	10.715	10.212	10'205	10\%090	10.598	10'177	10•144	$10 \cdot 095$	10.336	$10 \cdot 085$	10.240	10.050
18	10.300	10.140	10.267	10.190	10.493	9 900	10.121	10.234	10.298	10.219	$10 \cdot 261$	$10 \cdot 160$
19	10.225	10.468	$10 \cdot 505$	10.221	$10 \cdot 282$	9•938	$10 \cdot 168$	$10 \cdot 130$	10.076	$10 \cdot 082$	$10 \cdot 280$	10.323
20	$10 \cdot 162$	10.425	10.458	$10 \cdot 178$	$10 \cdot 078$	10.211	10'193	10.214	10.135	10.305	10.272	$10 \cdot 391$
21	$10 \cdot 264$	10.182	$10 \cdot 153$	10.476	10-393	$10 \cdot 089$	$10 \cdot 302$	9'993	10.301	10'108	$10 \cdot 312$	10.435
22	10.234	$10 \cdot 160$	10.529	$10 \cdot 170$	$10 \cdot 277$	10 \% 30	10.183	$10 \cdot 060$	10.423	$10 \cdot 220$	$9^{\circ} 991$	10.587
23	10.453	10•194	$10 \cdot 564$	9.962	10.138	$10 \cdot 203$	$10 \cdot 272$	$10 \cdot 168$	$10 \cdot 241$	$10 \cdot 364$	10.129	10.278
24	10.713	10.264	$10 \cdot 165$	10*099	10.136	10.133	$10 \cdot 085$	$10 \cdot 051$	10.222		$10 \cdot 178$	10.77!
25	10.484	$10 \cdot 035$	$10 \cdot 200$	9*479	10 138	$10 \cdot 253$	10.093	$10 \cdot 088$	$10 \cdot 237$	10•193	10.383	$10 \cdot 167$
26	$10 \cdot 352$	10.048	10.237	9.820	10'190	10.056	$10 \cdot 187$	$9 \cdot 993$	$10 \cdot 314$	$10 \cdot 270$	10.435	$10 \cdot 115$
27	10.119	9'996	10.462	$10 \cdot 104$	$10 \cdot 205$	10 -090	$10 \cdot 221$	$10 \cdot 223$	10•166	10.024	10.715	$10 \cdot 117$
28	10.071	$10 \cdot 031$	10.350	$10 \cdot 062$	$10 \cdot 261$	10•108	$10 \cdot 260$	$10 \cdot 119$	$10 \cdot 339$	9.828	10.683	10.155
29	$10 \cdot 039$		10.215	10.085	10.118	$10 \cdot 051$	$10 \cdot 242$	$10 \cdot 103$	10.027	10.414	10.222	$10 \cdot 130$
30	$10 \cdot 095$		$10 \cdot 274$	10.348	10'192	$10 \cdot 088$	$10 \cdot 239$	$10 \cdot 318$	$10 \cdot 279$.	10.450	$10 \cdot 109$
31.	10.229		$10 \cdot 260$		10.295		10.085	$10 \cdot 267$				$10 \cdot 082$
Means	$10 \cdot 287$	10.244	$10 \cdot 252$	10.214	$10 \cdot 238$	$10 \cdot 048$	$10 \cdot 157$	10.171	10'191	10'169	$10 \cdot 267$	$10 \cdot 284$
				The me	of the tw	Ive month	values is	210.				

Monthly Mean Electrical Potential of the Atmosphere，from Thomson＇s Electrometer，at every Hour of the Day．
（The results depend on the Photographic Register，using all days of complete record．The scale employed is arbitrary ； the zero reading is $10^{\circ} 000$ ，and numbers greater than $10^{\circ} 000$ indicate positive potential．）

Hour， Greenwich Mean Solar Time（Civil reckoning）．	1882.												Yearly Means．
	Janaary．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	10•288	10－304	10．325	$10 \cdot 257$	$10 \cdot 264$	10＇123	$10 \cdot 260$	$10 \cdot 274$	10．221	10．180	10．181	10.239	$10 \cdot 243$
$\mathbf{1}^{\text {h }}$ ．a．m．	$10 \cdot 252$	$10 \cdot 265$	$10 \cdot 278$	$10 \cdot 253$	$10 \cdot 242$	10.090.	10.228	$10 \cdot 272$	$10 \cdot 171$	$10 \cdot 162$	$10 \cdot 144$	$10 \cdot 278$	10 220
2 ＂	10．255	$10 \cdot 216$	$10 \cdot 254$	$10 \cdot 226$	10.277	$10 \cdot 0.93$	10－177	$10 \cdot 231$	$10 \cdot 161$	10•109	$10 \cdot 182$	$10 \cdot 262$	10＇204
3 ＂	$10 \cdot 245$	10．191	$10 \cdot 251$	10.222	$10 \cdot 258$	$10 \cdot 124$	10．149	10•185	10． 142	10．144	10．168	10.235	10－193
4 ＂	10.227	10＇178	$10^{\prime 2} 21$	$10 \cdot 229$	10.263	10．135	$10 \cdot 143$	$10 \cdot 174$	$10 \cdot 152$	10٪134	$10 \cdot 185$	$10 \cdot 225$	$10 \cdot 189$
5 ＂	$10 \cdot 209$	$10 \cdot 167$	$10 \cdot 225$	$10 \cdot 234$	$10 \cdot 253$	$10 \cdot 150$	$10 \cdot 120$	$10 \cdot 179$	10•144	10＇127	10．129	$10 \cdot 233$	$10 \cdot 181$
6 ＂	10•199	$10 \cdot 157$	$10 \cdot 229$	10•197	$10 \cdot 265$	$10 \cdot 066$	10．126	$10 \cdot 160$	10．119	10．135	$10 \cdot 161$	$10 \cdot 235$	$10 \cdot 171$
7 ＂	10．213	$10 \cdot 170$	$10 \cdot 223$	10．201	10.272	10＇121	$10 \cdot 123$	10＇191	10．120	$10 \cdot 130$	10．205	10．228	10•183
8 ＂	10.222	$10 \cdot 169$	10．186	10．209	$10 \cdot 275$	10•103	10•136	$10 \cdot 203$	$10 \cdot 144$	10＇125	10．225	10．225	10•185
9 ＂	10＇207	10．135	$10 \cdot 187$	10＇199	$10 \cdot 245$	$10 \cdot 047$	$10 \cdot 128$	10．188	10－172	10•127	$10 \cdot 237$	$10 \cdot 276$	10 179
10 ＂	$10 \cdot 206$	10－136	10．190	$10 \cdot 067$	10．163	$9{ }^{\circ} 976$	10 －094	$10 \cdot 081$	$10 \cdot 113$	10．121	10．294	$10 \cdot 289$	10． 144
11 ＂	10．253	10．139	10．168	10＇144	－10＇120	$10 \cdot 037$	$10 \cdot 086$	10．062	10•136	10＇101	10－316	$10 \cdot 307$	10•156
Noon	$10 \cdot 301$	$10 \cdot 172$	10．214	10＇108	10 －089	9881	10.046	$10 \cdot 055$	$10 \cdot 173$	10＇126	10．312	10 280	$10 \cdot 147$
$\mathbf{1}^{\text {h }}$ ．p．m．	10－329	10．221	10．230	$10 \cdot 132$	10．120	9.863	10．018	10．044	$10 \cdot 160$	10•193	$10 \cdot 348$	$10 \cdot 314$	$10 \cdot 164$
＂	$10 \cdot 310$	$10 \cdot 254$	$10 \cdot 224$	10 099	$10 \cdot 120$	$9{ }^{\circ} 972$	10.058	$10 \cdot 016$	10.216	10•197	$10 \cdot 339$	$10 \cdot 345$	10＇179
3 ．	$10 \cdot 333$	10．291	10＇244	10•133	10．126	9793	10 －094	$10 \cdot 049$	$10 \cdot 145$	10．065	10．224	10．296	10－149
4 ＂	$10 \cdot 360$	$10 \cdot 315$	$10 \cdot 254$	10．181	$10 \cdot 183$	$9{ }^{\circ} 942$	10.066	10 －050	10.224	$10 \cdot 247$	$10 \cdot 333$	10．297	$10 \cdot 204$
5 ＂	$10 \cdot 365$	$10 \cdot 349$	10•158	10•160	$10 \cdot 150$	$9 \cdot 956$	10．126	$10 \cdot 062$	$10 \cdot 232$	$10 \cdot 24^{2}$	$10 \cdot 379$	$10 \cdot 370$	10．212
6	$10 \cdot 360$	10．313	10.221	$10 \cdot 250$	$10 \cdot 246$	$9 \cdot 956$	10．133	10•181	$10 \cdot 208$	$10 \cdot 239$	10－397	$10 \cdot 361$	$10 \cdot 239$
7 ＂	10．373	$10 \cdot 341$	$10 \cdot 360$	10 265	10．319	$10 \cdot 001$	$10 \cdot 201$	10.234	10－315	$10 \cdot 273$	$10 \cdot 378$	$10 \cdot 321$	10．282
8 ＂	$10 \cdot 363$	$10 \cdot 344$	10•368	$10 \cdot 361$	$10 \cdot 363$	10•136	$10 \cdot 301$	$10 \cdot 276$	$10 \cdot 370$	$10 \cdot 208$	$10 \cdot 387$	$10 \cdot 257$	$10 \cdot 311$
	10：342	$10 \cdot 325$	10．340	10．378	10．387	10．168	10•305	10．294	$10 \cdot 273$	10．214	10－362	10.292	$10 \cdot 307$
10 ＂	10．354	$10 \cdot 364$	$10 \cdot 345$	10－322	10．383	$10 \cdot 223$	$10 \cdot 340$	$10 \cdot 336$	$10 \cdot 253$	$10 \cdot 237$	$10 \cdot 321$	$10 \cdot 333$	$10 \cdot 318$
11 ＂	10.334	$10 \cdot 336$	10•359	$10 \cdot 314$	$10 \cdot 338$	10－196	10－304	10＇299	10．225	10．22 3	10＇198	$10 \cdot 330$	$10 \cdot 288$
Means	$10 \cdot 287$	10＇244	$10 \cdot 252$	10.214	10．238	$10 \cdot 048$	$10 \cdot 157$	10／171	10•191	10．169	$10 \cdot 267$	$10 \cdot 284$	10.210
$\left.\begin{array}{r} \text { Number of } \\ \text { Days em- } \\ \text { ployed } \end{array}\right\}$	30	28	31	30	31	28	31	31	30	28	30	26	－•

Monthly Mean Electrical Potential of the Atmosphere，from Thomson’s Electrometer，on Rainy Days，at every Hour of the Day．
（The results depend on the Photographic Register，using all days on which the rainfall amounted to or exceeded oin．o20．The scale employed is arbitrary；the zero reading is $10^{\circ} 000$ ，and numbers greater than $10 \cdot 000$ indicate positive potential．）

Hour Greenwich Mean Solar Time（Civil reckoning）．	1882.												Yearly
	January．	February．	March．	April．	May．	June．	July．	August，	September．	October．	November．	December．	
Midnight	10•173	10.085	$10 \cdot 267$		10.060	$10 \cdot 184$	$10 \cdot 236$	$10 \cdot 243$	$10 \cdot 102$	10．133	$10 \cdot 063$	10．310	$10 \cdot 154$
$\mathbf{1}^{\text {b }}$ a a．m．	10．130	10•063	$10 \cdot 247$	$10 \cdot 068$	$10 \cdot 015$	10｀019	10•199	10.237	10.012	$10 \cdot 115$	9.980	$10 \cdot 274$	$10 \cdot 113$
＂	10－i38	$10 \cdot 057$	$10 \cdot 219$	$10 \cdot 076$	10．147	$10 \cdot 036$	10＇144	$10 \cdot 217$	$10 \cdot 024$	10.044	10•105	10.237	10．120
3 ＂	10－118	10．042	10．217	$10 \cdot 098$	$10 \cdot 075$	$10 \cdot 081$	10•105	10．186	10：000	10．111	10.049	$10 \cdot 159$	$10 \cdot 103$
4 ＂	10 088	$10 \cdot 045$	$10 \cdot 221$	$10 \cdot 119$	10•107	10＇105	10•124	$10 \cdot 178$	$10 \cdot 043$	10．111	10.087	$10 \cdot 172$	$10 \cdot 117$
5 ＂	10．085	$10 \cdot 040$	$10 \cdot 207$	10． 128	10．070	10．128	10•106	$10 \cdot 169$	$10 \cdot 057$	10．118	$9 \cdot 967$	$10 \cdot 188$	$10 \cdot 105$
6 ＂	10.098	10.040	10.204	10．019	$10 \cdot 089$	$10 \cdot 004$	10＇124	10．115	$10 \cdot 023$	10•128	10.007	10．180	10.086
7 ＂	10．112	10.048	10•194	$10 \cdot 073$	10＊074	10．091	10．119	10•197	$10 \cdot 043$	10．121	$10 \cdot 065$	10•163	$10 \cdot 108$
8 ＂	10＇112	$10 \cdot 032$	$10 \cdot 123$	10•115	$10 \cdot 116$	$10 \cdot 076$	10．143	10 $\cdot 198$	10.071	10＇104	$10 \cdot 074$	10•169	10．111
9 ＂	10：117	$10 \cdot 013$	$10 \cdot 122$	10＇103	10：092	10.019	$10 \cdot 123$	$10 \cdot 185$	10：076	10＇105	10－063	10.217	$10 \cdot 103$
10 ＂	$10 \cdot 137$	9 ＇997	10．174	9 797	10－009	$9 \cdot 967$	$10 \cdot 068$	9 970	9 972	10.085	$10 \cdot 183$	$10 \cdot 254$	10 \％ 05
11 ＂	10．148	10.007	$10 \cdot 173$	10．001	$9{ }^{\circ} 9{ }^{\prime}$	10.049	10.057	$9 \cdot 967$	10．025	$10 \cdot 057$	$10 \cdot 237$	$10 \cdot 240$	100079
Noon	10．165	$10 \cdot 083$	$10 \cdot 170$	9－840	10＊015	$9 \cdot 806$	$9 \cdot 969$	9996	$10 \cdot 146$	10.070	10.212	10.224	10 －056
$\mathrm{I}^{\text {h }}$ ．p．m．	$10 \cdot 130$	10 －880	10.229	$9 \cdot 727$	10.089	9779	9.920	9.885	10．086	10．163	10.228	10.289	$10 \cdot 050$
2 ＂	$10 \cdot 078$	$10 \cdot 063$	10.244	9763	$10 \cdot 084$	9．926	$9 \cdot 992$	9885	$10 \cdot 182$	10．165	10.234	$10 \cdot 350$	10.080
3 ＂	$9 * 998$	10．110	$10 \cdot 280$	9882	10．143	9．812	$10 \cdot 051$	$9 \cdot 996$	$9 ` 966$	$10 \cdot 043$	10＇191	$10 \cdot 181$	$10 \cdot 054$
4 ＂	$10 \cdot 078$	10•138	10.272	9 949	$10 \cdot 222$	$9 \cdot 993$	$9 \cdot 985$	10 －000	10.112	10＇195	10.257	10＇108	10•109
5 ＂	$10 \cdot 067$	$10 \cdot 137$	10.070	$9{ }^{9} 971$	10．077	9 －949	$10 \cdot 093$	10．128	10•102	10•172	$10 \cdot 334$	10.365	10．122
6 ＂	10•100	10•105	$10 \cdot 166$	$10 \cdot 104$	$10 \cdot 259$	$9 \cdot 964$	10.074	$10 \cdot 167$	10.010	$10 \cdot 142$	$10 \cdot 363$	$10 \cdot 382$	$10 \cdot 153$
7 ＂	$10 \cdot 152$	10•147	$10 \cdot 342$	10：046	$10 \cdot 376$	$9 \cdot 946$	10＇193	$10 \cdot 223$	$10 \cdot 147$	$10 \cdot 187$	$10 \cdot 329$	$10 \cdot 307$	10：200
8 ＂	10•185	10•153	$10 \cdot 273$	$10 \cdot 232$	$10 \cdot 389$	$10 \cdot 157$	$10 \cdot 296$	$10 \cdot 273$	10．284	$10 \cdot 093$	$10 \cdot 306$	$10 \cdot 091$	$10 \cdot 228$
9 ＂	10•193	10.063	$10 \cdot 174$	$10 \cdot 167$	10－395	10•153	10．287	$10 \cdot 252$	$10 \cdot 228$	10•108	10.272	$10 \cdot 178$	$10 \cdot 206$
10 ＂	10•193	10 \％og 3	10•138	9 9999	$10 \cdot 353$	10.232	10－322	10.247	$10 \cdot 264$	10．150	10.219	$10 \cdot 257$	10－206
II＂	10．183	10．118	10.228	10•153	10•249	10．180	$10 \cdot 287$	$10 \cdot 251$	$10 \cdot 287$	10．136．	$9{ }^{\circ} 954$	$10 \cdot 270$	10＇191
Means	10•124	$10 \cdot 073$	$10 \cdot 206$	10．018	10．146	$10 \cdot 027$	10•126	$10 \cdot 131$	10．094	10：119	$10 \cdot 157$	10.232	10．121
$\left.\begin{array}{c} \text { Number of } \\ \text { Days em- } \\ \text { ployed } \end{array}\right\}$	6	6	9	10		17	18	11	11	19	16	10	－•

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the zero reading is $10^{\circ} 000$, and numbers greater than $10 \cdot 000$ indicate positive potential.)

Hour, Greenwich Mean Solar Time (Civilreckoning).	1882.												YearlyMeans
	January.	February.	March.	April.	May.	June	July.	August.	September.	October.	November.	December.	
Midnight	10•316	10 374	$10 \cdot 355$	10*406	$10 \cdot 359$	10•169	$10 \cdot 318$	10'299	$10 \cdot 255$	$10 \cdot 357$	10-363	$10 \cdot 317$	$10 \cdot 324$
$\mathbf{I}^{\text {h }}$. a.m.	$10 \cdot 277$	$10 \cdot 326$	10-294	$10 \cdot 359$	10.347	10.212	$10 \cdot 283$	10.301	10.228	10-333	10.404	$10 \cdot 280$	10-304
"	$10 \cdot 290$	$10 \cdot 277$	$10 \cdot 275$	$10 \cdot 318$	$10 \cdot 331$	10•194	$10 \cdot 235$	$10 \cdot 252$	10.211	10-307	10-322	$10 \cdot 349$	10.280
3 "	10.282	$10 \cdot 240$	$10 \cdot 276$	10-299	10-341	$10 \cdot 182$	$10 \cdot 230$	10.211	10.203	10.271	$10 \cdot 379$	$10 \cdot 347$	$10 \cdot 272$
4 "	10.267	10.219	$10 \cdot 226$	$10 \cdot 302$	10.334	$10 \cdot 167$	10.186	10•197	$10 \cdot 208$	10.224	$10 \cdot 360$	$10 \cdot 301$	$10 \cdot 249$
5 "	$10 \cdot 244$	$10 \cdot 213$	$10 \cdot 240$	$10 \cdot 303$	$10 \cdot 331$	10.183	$10 \cdot 157$	10.219	$10 \cdot 187$	$10 \cdot 176$	10.370	$10 \cdot 329$	10.246
6 "	10. 219	10'204	$10 \cdot 245$	$10 \cdot 299$	$10 \cdot 345$	10.171	$10 \cdot 154$	$10 \cdot 226$	$10 \cdot 169$	$10 \cdot 174$	$10 \cdot 388$	$10 \cdot 307$	10.242
7	$10 \cdot 224$	$10 \cdot 215$	$10 \cdot 240$	$10 \cdot 276$	$10 \cdot 374$	10.157	10.143	10.225	10•156	$10 \cdot 159$	10.428	$10 \cdot 331$	$10 \cdot 244$
8 "	$10 \cdot 230$	$10 \cdot 222$	$10 \cdot 219$	$10 \cdot 261$	$10 \cdot 343$	10.139	$10 \cdot 124$	10.246	10•165	10•177	10.450	$10 \cdot 290$	$10 \cdot 239$
9 "	$10 \cdot 204$	$10 \cdot 178$	$10 \cdot 226$	$10 \cdot 259$	10-316	10•106	$10 \cdot 146$	10.213	10.215	$10 \cdot 193$	10.468	$10 \cdot 336$	10.238
10 "	10'194	10. 183	$10 \cdot 203$	$10 \cdot 263$	$10 \cdot 230$	10 -059	$10 \cdot 137$	10.142	10-187	10.226	10.430	10:336	$10 \cdot 216$
11 "	$10 \cdot 271$	10•192	10.168	$10 \cdot 247$	10.168	$10 \cdot 068$	$10 \cdot 144$	10•107	10•197	$10 \cdot 226$	$10 \cdot 386$	$10 \cdot 384$	10.213
Noon	$10 \cdot 342$	$10 \cdot 224$	10. 244	$10 \cdot 262$	$10 \cdot 114$	$10 \cdot 073$	10.161	10.079	10•193	10.281	10.423	10.404	$10 \cdot 233$
$\mathrm{I}^{\text {b }}$. p.m.	10-368	10.281	$10 \cdot 245$	$10 \cdot 331$	10•127	$10 \cdot 070$	$10 \cdot 162$	10.127	10.215	$10 \cdot 270$	10.494	10.436	$10 \cdot 260$
2 "	$10 \cdot 383$	$10 \cdot 327$	$10 \cdot 227$	$10 \cdot 272$	10.126	$10 \cdot 061$	10.155	$10 \cdot 092$	10.246	10.283	$10 \cdot 504$	$10 \cdot 451$	10.261
3 "	10.414	10-383	$10 \cdot 240$	$10 \cdot 292$	10 - 092	9 ${ }^{\circ} 977$	10'149	$10 \cdot 079$	$10 \cdot 240$	10.077	10.441	$10 \cdot 451$	10.236
4 "	10.439	10-399	$10 \cdot 256$	$10 \cdot 322$	10.142	$10 \cdot 011$	10'177	10 052	$10 \cdot 261$	$10 \cdot 397$	10.456	10.483	$10 \cdot 283$
5 "	$10 \cdot 443$	$10 \cdot 451$	10•197	$10 \cdot 292$	$10 \cdot 163$	$10 \cdot 006$	$10 \cdot 150$	$10 \cdot 063$	$10 \cdot 269$	$10 \cdot 450$	10.417	10.419	$10 \cdot 277$
6 "	10.434	$10 \cdot 475$	10:250	$10 \cdot 357$	$10 \cdot 227$	10.030	10•194	$10 \cdot 187$	$10 \cdot 295$	10.513	10.470	10.431	$10 \cdot 322$
7 "	10\%429	$10 \cdot 459$	10.385	$10 \cdot 432$	10 281	10.063	10•199	$10 \cdot 243$	$10 \cdot 395$	$10 \cdot 531$	10.429	10.453	$10 \cdot 358$
8 "	$10 \cdot 425$	10.447	$10 \cdot 436$	$10 \cdot 475$	$10 \cdot 338$	10.094	10-304	10.298	10.410	10.533	10.492	10499	10-396
9 "	10-398	10.437	$10 \% 432$	$10 \% 89$	10•367	10.167	10-361	10.334	$10 \cdot 257$	$10 \cdot 503$	10.483	10.496	10.394
10 "	10.416	10.478	$10 \cdot 451$	10.446	10.383	10.214	10-392	10.409	$10 \cdot 208$	10.477	$10 \cdot 546$	10.514	10.411
11 "	10.404	10.416	10.435	10.358	10.376	$10 \cdot 230$	$10 \cdot 345$	10-349	10.177	$10 \cdot 48 \mathrm{I}$	$10 \cdot 522$	$10 \cdot 539$	$10 \cdot 386$
Means	io 330	$10 \cdot 317$	$10 \cdot 282$	10:330	$10 \cdot 273$	10•117	10'209	$10 \cdot 206$	$10 \% 231$	$10 \cdot 317$	10.434	$10 \cdot 395$	$10 \cdot 287$
$\left.\begin{array}{c} \text { Number of } \\ \text { Days em- } \\ \text { ployed } \end{array}\right\}$	19	16	20	16	19	9	10	16	15	7	9	7	.

Amount of Rain collegted in each Month of the Year 1882.

$1882,$ MONTH.	Number of Rainy Days.	Monthly Amount of Rain collected in each Gauge.							
		Selfregistering Gauge of Osler's Anemometer.	Second Gauge at Osler's Anemometer.	On the Roof of the Octagon Room.	On the Roof of the Magnetic Observatory.	On the Roof of the Photographic Thermometer Shed.	Gauges	tly sunk	ground.
		No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	No. 6.	No. 7.	No. 8.
Janu	10	0.626	in. 0.599	in: 0.935	1.	in. I $\cdot 238$	in. $1 \cdot 352$	$\begin{aligned} & \text { in. } \\ & \text { 1•278 } \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \text { I } \cdot 238 \end{aligned}$
February.............	9	0.586	0.586	0.802	$0 \cdot 954$	1.090	$1 \cdot 153$	I'121	$1 \cdot 127$
March	11	0.533	0.561	$0 \cdot 751$	- 943	$1 \cdot 092$	$1 \cdot 144$	$1 \cdot 051$	1.070
April	13	1.302	1-349	1.587	x 968	$2 \cdot 263$	$2 \cdot 403$	$2 \cdot 114$	$2 \cdot 190$
May.	11	1.075	$1 \cdot 104$	1.183	1.222	1-330	$1 \cdot 367$	1.226	1.262
June.	19	I. 367	1.407	$1 \cdot 778$	$2 \cdot 038$	$2 \cdot 252$	2.356	$2 \cdot 114$	$2 \cdot 123$
July.	19	1.806	1804	1949	$2 \cdot 201$	$2 \cdot 348$	$2 \cdot 451$	$2 \cdot 180$	$2 \cdot 249$
August	15	0.651	0.606	0.833	$0 \cdot 921$	$1 \cdot 078$	1-159	1.024	$1 \cdot 003$
September.	14	1.736	$1 \cdot 753$	$2 \cdot 052$	$2 \cdot 217$	$2 \cdot 396$	$2 \cdot 405$	$2 \cdot 344$	$2 \cdot 348$
October	23	$3 \cdot 656$	3.833	4.282	4.943	$5 \cdot 333$	$5 \cdot 421$	5-297	$5 \cdot 337$
November	19	$1 \cdot 124$	$1 \cdot 127$.	1.616	1.831	$2 \cdot 095$	2-199	$2 \cdot 112$	2-179
December	17	0.835	0.847	$1 \cdot 379$	$1 \cdot 472$	I 678	1771	$1 \cdot 758$	1 770
Sums	180	$15 \cdot 297$	$15 \cdot 576$	19147	$21 \cdot 784$	$24 \cdot 193$	$25 \cdot 181$	23.619	$23 \cdot 896$
$\text { Height of } \int \begin{gathered} \text { above the } \\ \text { ground. } \end{gathered}$	$\}$.	ft. in. 50.8	$\begin{aligned} & \text { tt. in. } \\ & 50.8 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 38.4 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 21. } 9 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 10.0 } \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$
$\begin{aligned} & \text { receuring } \\ & \text { Surface } \end{aligned} \begin{gathered} \text { above mean } \\ \text { sea level. } \end{gathered}$	\}..	$\begin{aligned} & \text { ft. in. } \\ & 205.6 \end{aligned}$	$\begin{gathered} \text { ft. in. } \\ 205.6 \end{gathered}$	$\begin{array}{r} \text { ft. in. } \\ 193.2 \end{array}$	$\begin{aligned} & \text { it. in. } \\ & \text { In } 76.7 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 164.10 \end{aligned}$	$\begin{array}{r} \text { ft. in. } \\ .155 .3 \end{array}$	$\begin{array}{r} \text { ft. in. } \\ 155.3 \end{array}$	${ }_{155 .}^{\text {ft. }} \mathbf{}$ in.

Observations of Aurora Borealis in the Year 1882.
h m
1882, October 2, at 6
I could see no trace of Aurora. On looking at the sky at $7^{\mathrm{h}} .15^{\mathrm{m}}$ there was extended and diffused light along the northern horizon.
716 Three bright irregularly shaped luminous patches (forming a broken arch of great width) were observed, two below Andromeda and Pegasus, varying rapidly in brightness, and another (a bright white patch, also of varying brilliancy) a few degrees below Aquila. In the north below Ursa Major there is extended bluish or greenish white light, with dusky brownish masses beneath (probably auroral cloud) and dark lateral streaks.
24 The eastern mass of light has moved more to the southward and is now below a Pegasi, and in the south-west there is now a bright patch of light also (although not so large or intense as those in the south-east), and a very faint white streamer appears to be shooting from this mass.
729 An intense patch has developed itself below η Piscium ; the other patches have faded, although they brighten up from time to time.
7 3I Phosphorescent patch, very large and very intense in êast-south-east just below γ Pegasi, moving slowly westwards; at $7^{\mathrm{h}} .34^{\mathrm{m}}$ its centre was south-south-east over ε Pegasi; at $7^{\mathrm{h}} .36^{\mathrm{m}}$ it faded away somewhat rapidly. The stars shone through this patch with diminished brightness.
745 Nothing but diffused light now, low in the north. A thin veil of haze; stars dim for some minutes.
8 Haze now gone, stars brilliant again; diffused light remains below Ursa Major, and so continued till 9^{h}; at times between 8^{h}. and $8^{\mathrm{h}} .1^{\text {m }}$ clouds passed over.
9 Light intensified below Ursa Major, with dark transversal streaks.
98 Short streamers shooting up through and near Ursa Major, varying in length and brightness; at times they are seen as far westward as Boötes and as far eastward as Auriga.
915 Streamers numerous and very brilliant.
918 Ruddy appearance above and to the left of Ursa Major. Streamers continued to appear till $9^{\text {h. }} 25^{\mathrm{m}}$.
930 Nothing now visible except diffused light, but clouds have appeared, which are tinged with ruddy light in the north: The light of the rising Moon had now become powerful, and nothing further was seen.

William ${ }_{\sim}$ C. Nash.

1882, October 2, at $\begin{array}{cc}\text { h } & \mathrm{m} \\ 48 \frac{1}{2} & \text { Aurora now first seen, when streamers were numerous from north-east to north-west, reaching }\end{array}$ to a Cygni ; they appeared to meet in Cygnus. Splendid red light near Arcturus.
651 Streamers reaching to a Cygni, and cutting through Cassiopeia and Ursa Major.
652 Red tinge near Arcturus; two bluish-white masses in the east and west.
$653 \frac{1}{2}$ Light in the east and west, throwing streamers which meet in Cygnus.
658 Streamers very numerous.
7 I Fine streamers to above Polaris. Auroral light in the south (like a bank of cloud) stretching across sky from east to west, cutting through a point near Aquila. An arch near northern horizon has been noticeable all through, of a bluish-white colour ; in the northeast it nearly reached Capella ; at times it appears to throw out clouds of auroral light.
2 Wavy motion perceived in the north-east (only noticed at this time).
75 Red tinge above Arcturus.
77 Streamers forming in the west. Light in the east and west still seen.
79 Northern arch very intense, especially near Capella.
713 Northern arch very intense.
715 Streamers observed; tinged with red in I'erseus.
717 Streamers in north-east, reaching to Cassiopeia; red light still above Arcturus.
719 Thin but intense streamer, reaching a point between Polaris and Cassiopeia.

1882, November 17, at 514 Bright red light in zenith, fainter towards horizon. The mass of red light is increasing; it is brightest a little below Lyra.
517 The light to the east of zenith now fainter ; remaining brighter towards the west.
64 Bright streak of phosphorescent light (about $25^{\circ} \mathrm{long}$) appeared in the east-north-east, and passed over a little above the Moon to the west; it faded away in about $\frac{1}{2}$ a minute, shortly before reaching the western horizon. The whole horizon from west-north-west to northeast is now illuminated with bright light.
6 II Bright streamer due north, extending to above Polaris and remaining visible about 2 minutes.
6 is Well-defined streamer a few degrees west of north, reaching almost to the zenith and remaining visible about $\frac{3}{4}$ minute.
After 6 15 The light in the north faded until about $6^{\text {h }} .30^{\mathrm{m}}$, when it began again to brighten, but by 7^{h}. it had disappeared.

Frank Finch.

1882, November 17. The Aurora, when first seen, consisted principally of a ruddy glow extending all over the north-west. About $5^{\mathrm{h}} .30^{\mathrm{m}}$ a brilliant arm shot up from the northern horizon to the zenith, principally red but with a green vein in it, The rosy colour disappeared soon after this. The principal red display lay hetween a Lyræ and ε and η Ursæ Majoris, a broad band of light; a fainter band, at right angles to the first, went down to Boötes, (α Coronæ Borealis shining in the centre of it), and upward toward and nearly to the zenith.
The green Aurora, during the time of observation, consisted, with one marvellous exception, of little else than a pale-green light fringing the upper edge of the London smoke-cloud. The exception was the sudden appearance of a magnificent streak of light, which, rising in the east-north-east, and slowly mounting, seemed to follow a parallel of declination ; it passed just above the Moon, and sank with an even regular motion down to the west, fading somewhat after passing the meridian, and disappearing at $6^{\mathrm{h}} .5^{\mathrm{m}} .59^{\text {s }}$. It took about two minutes to cross the sky. It had risen some 20° when first seen, and slowly increased in length up to meridian passage ; decreasing afterwards. Its greatest length was perhaps about 30°.

Edward W. Maunder.

1882, November 17. The aurora was again seen at $11^{\mathrm{h}} .45^{\mathrm{m}}$. The appearance was then that of an arch, with faint streamers shooting upwards a short distance. At $11^{h} .55^{m}$ the arch had an irregular shape, with brilliant streamers reaching to within a few degrees of the zenith ; it extended from about north-north-east to about north-west, the most brilliant part being about north-north-west. At $12^{\mathrm{h}} .10^{\mathrm{m}}$ it was scarcely visible.

> J. W. H. Pead.

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

of

LUMINOUS METEORS

1882.

$\begin{aligned} & \text { Month and Day, } \\ & 1882 . \end{aligned}$	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. for Reference.
August	1 m \%				s		-	
	II. 23.41	F.	1	Bluish-white	1	Fine	\cdots	1
	11.24. 44	M.	2	Bluish-white	0.5	None	6	2.
	11.26. 43	N.	3	...	$0 \cdot 3$		5	3
	11.31 .58	N.	3	\cdots	0.5	Train	7	4
	II. 46.37	F.	3	Yellow	0.8	None	7	5
	II. 50.28	M.	3	Bluish-white	$0 \cdot 4$	None	5	6
	11.51. 55	M.	2	Bluish-white	$0 \cdot 8$	Slight	11	7
	12. 2.19	F.	1	Bluish-white	$1 \cdot 5$	Fine	.	8
	12. 6. 40	M.	1	Bluish-white	1	Fine	10	9
	12.13. 27	M.	>1	Bluish-white	$1 \cdot 2$	Fine	14	10
	12.20. 3.	M.	>1	Bluish-white	$1 \cdot 2$	Fine	12	11
	12.21. 45	F.	1	Bluish-white	1	Slight	6	12
	12.25.17	M.	Jupiter	White	1.6	Fine; 2^{8}	28	13
	12.29.12	M.	- 1	Bluish-white	1	Fine	12	14
	12.37.27	M.	2	Bluish-white	$0 \cdot 7$	Slight	8	15
	12.38. 49	F.	>1	Yellow	1	Fine	8	16
	12.45. 44	M.	1	Bluish-white	$1 \cdot 1$	Fine	12	17
	12.48. 5	F.	3	Bluish-white	$0 \cdot 5$	None	6	18
	12. 49.40	M.	Saturn	Yellow	$1 \cdot 3$	Fine	14	19
	12.50. 55	$\underset{\mathrm{M}}{\mathbf{F}}$	Jupiter	Bluish-white	$1 \cdot 2$	Fine; $4^{3.5}$.	20
	12.55.27	M.	>1	Bluish-white	$\stackrel{1}{0.6}$	Fine	10	21
	12.56 .50 12.59 .23	$\stackrel{\mathrm{F}}{\mathrm{M}}$.	2	Yellow Bluish-white	0.6 0.8	None Slight	6	22
	12.59 .23 13.1 .11	M.	2	Bluish-white Bluish-white	0.8 1.2	Slight	9	23
	13. 3.43	M.	2	Bluish-white	0.7	Slight	10	25
	13. 5. 5	F.	1	Bluish-white	$0 \cdot 7$	Slight	7	26
	13. 7.17	M.	1	Bluish-white	$0 \cdot 9$	Fine		27
	13.14.39	F.	3	Yellow	0.5		8	28
	13. 15. 4	M.	> Jupiter	Bluish-white	$1 \cdot 7$	Very fine ; $3^{\text {s }}$	20	29
September 20	11. 2.55	N.	1	- Bluish-white	I	Fine	\cdots	30
October 2	11.14. 5	N.	> 1	White	I. 5	Fine and enduring.	\cdots	31
October	10. 28.13	F.	2	Bluish-white	0.5	None	-	32
	10.55. 35	F.	1	Bluish-white	$0 \cdot 7$	Slight	\cdot	33
	11. 1. 56	F.	3	Bluish-white	1	None	9	34
October 24	16.17.士	E.	2	Reddish	\cdots	. \cdot	10	35
November 10	11.39 .30	N.	2	White	$0 \cdot 7$	Train	12	36
November $\begin{array}{r}30 \\ ", \\ \hline \text { ", }\end{array}$	9. 50.	G.	2	Bluish-white	$0 \cdot 7$	Slight	20	37
	10.20.	G.	2	Bluish-white	1	None	15	38
	10. 40.	G.	2	Bluish-white	$0 \cdot 7$	Train	. .	39

August 11. It was estimated by Mr. Nash that the meteors were appearing at the rate of 30 per hour.

No. for Reference.	Path of Meteor through the Stars.
1	Appeared near ϵ Cassiopeiæ, and disappeared near a Camelopardali.
2	From near a Draconis disappeared a little beyond ζ Ursæ Majoris.
3	Passed about 5° to left of the Pleiades, moving from ζ Persei.
4	Appeared 3° or 4° above a Pegasi, and moved parallel to line joining α and ζ Pegasi.
5	Appeared near 48 Cassiopeix, and disappeared near β Camelopardali.
6	From direction of a Ursæ Majoris disappeared a little below β Ursæ Majoris.
7	Appeared near γ Ursæ Minoris, and disappeared a little to left of ζ Ursæ Majoris.
8	Appeared near a Lacertæ, and disappeared in Delphinus.
9	From a point a few degrees below ε Pegasi disappeared near ζ Aquarii.
10	Appeared near β Andromedæ, passed between and disappeared a little below a and β Arietis.
11	Appeared near β Andromedæ, and disappeared near β Persei.
12	Appeared near ε Cassiopeiæ, and disappeared near 50 Cassiopeiæ.
13	Shot from Polaris, and disappeared about 4° to right of a Ursæ Majoris.
14	From a Pegasi disappeared near a Aquarii.
15	From direction of β Trianguli disappeared near λ Arietis.
16	Appeared near γ Persei, and disappeared near Piazzi III. 51 (Camelopardalus).
17	Appeared near a Persei, and disappeared a little to left of Capella.
18	Appeared near Piazzi III. 5ı (Camelopardalus), and disappeared near Piazzi III. 7 (Cassiopeia).
19	Shot from near Polaris, and disappeared near ε Draconis.
20	Appeared near β Camelopardali, and disappeared near Polaris.
21	Appeared near γ Cygni, and disappeared about 3° to right of a Lyræ.
22	Appeared near γ Andromedæ, and disappeared near β Andromedæ.
23	Shot from direction of γ Pegasi, passed between and disappeared near ، and θ Piscium.
24	Appeared near γ Andromedæ, and disappeared near θ Cassiopeiæ.
25	Appeared near β Andromedæ, and disappeared near a Arietis.
26	Appeared near a Trianguli, and disappeared near γ Andromedæ.
27	Shot from a Andromedæ, and disappeared about 2° to left of γ Andromedæ.
28	Appeared near a Trianguli, and disappeared near β Arietis.
29	From near β Cassiopeiæ disappeared about 4° to right of Polaris.
30	From ε Aurigæ moved almost to the Pleiades.
31	From near λ Draconis passed across α Draconis and several degrees beyond.
32	From ̧ Cephei to κ Cygni.
33	From a point a little below ε Cassiopeiæ to a point a few degrees above and north of Capella.
34	From a little below β Camelopardali disappeared near Capella.
35	Appeared at a point 10° to right and 5° below Sirius, and moved towards right on a path inclined to the horizon by an angle of [30 . (Sky not clear.)
36.	Passed midway between γ Ursæ Minoris and a Draconis, and between θ and ، Draconis.
37	From near a Draconis towards η Draconis.
38 39	Shot from a Draconis, and passed about 5 above ؛ Draconis. From direction of β Orionis passed a little kelow ε Leporis.

