RESULTS OF THE MAGNETIC AND METEOROLOGICAL OBSERVATIONS MADE AT THE ABINGER MAGNETIC STATION, SURREY AND THE ROYAL OBSERVATORY, GREENWICH RESPECTIVELY IN THE YEAR * 1946 UNDER THE DIRECTION OF SIR HAROLD SPENCER JONES, Sc.D., F.R.S. ASTRONOMER ROYAL Published by Order of the Board of Admiralty in Obedience to Her Majesty's Command LONDON: HER MAJESTY'S STATIONERY OFFICE #### CONTENTS | INTRODUCTION | | Pag | |---|---------|--------------| | PERSONAL ESTABLISHMENT AND ARRANGEMENTS | •• | | | Magnetic Section | | | | GENERAL DESCRIPTION OF BUILDINGS AND INSTRUMENTS | | , | | REDUCTION AND ARRANGEMENT OF RESULTS | •• | · x : | | Meteorological Section | | | | GENERAL | | xii | | DESCRIPTION OF INSTRUMENTS | | xiv | | REDUCTION AND ARRANGEMENTS OF RESULTS | •• | xviii | | NOTATION AND SYMBOLS | •• •• | XX | | RESULTS OF OBSERVATIONS IN TABULAR ARRANGEMENT | | | | MAGNETIC | | | | TABLE I Hourly means of Declination West for each day of the year | | D 2 | | TABLE II Hourly means of Horizontal Component of Magnetic Intensity | | D 8 | | TABLE III Hourly Means of Vertical Component of Magnetic Intensity | | D 14 | | TABLE IV Daily Mean and Extreme Values of Magnetic Elements recorded by the Magnetographs | | D 20 | | TABLE IV(A) Three-hour-range Indices 'K' | •• | D 26 | | TABLE V Mean Diurnal Inequalities of the Magnetic Elements | | D 28 | | TABLE VI Mean Diurnal Inequalities of the Magnetic Elements | | D 30 | | TABLE VII Mean Diurnal Inequalities of the Magnetic Elements | | D 32 | | TABLES VIII, IX Harmonic Components of the Diurnal Inequality of Magnetic Intensity | | D 34 | | TABLE X Range of Diurnal Inequalities for the Months, Year and Seasons | | D 35 | | TABLE XI Monthly and Annual Value of Non-Cyclic Change in the Magnetic Elements | •• | D 35 | | TABLE XII Mean Monthly and Annual Values of Magnetic Elements | | D 35 | | TABLE XIII Daily Mean Value of the Base Line of the Declination Magnetograms | | D 36 | | TABLE XIV Absolute Observations of Horizontal Intensity with the Schuster-Smith Coil Magneto and deduced values of the Base Line of the Horizontal Intensity Magnetograms | ometer; | D 37 | | TABLE XIV(A) No observations were made with Magnetometer Casella 181 | | | #### CONTENTS | and deduced values of the Base Line of the Vertical Intensity Magnetograms | ٠. | | •• | D 39 | |--|-------|-------|-----|------| | TABLE XV(A) Daily Value of the Base Line of the Vertical Intensity Magnetograms dedu observations of Dip with the Earth Inductor | ıced | from | | D 41 | | TABLE XVI(A) Magnetic Elements Determined at Greenwich between 1818-1925 | • • | • • • | •• | D 42 | | TABLE XVI(B) Magnetic Elements Determined at Abinger between 1925-1946 | •• | •• | •• | D 43 | | NOTES ON MAGNETIC ACTIVITY | •• | • • | • • | D 44 | | PLATES I - X. Photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances (Following D 50). | | | | | | Magnetic | | | | | | TABLE XVII Daily Results of the Meteorological Observations | •• | •• | •• | D 62 | | TABLE XVIII(A) Highest and Lowest Readings of the Barometer | •• | •• | | D 86 | | TABLE XVIII(B) Highest and Lowest Readings of the Barometer for each Month | •• | • • | •• | D 86 | | TABLE XIX Monthly Results of Meteorological Elements | •• | •• | •• | D 87 | | TABLE XX Monthly Mean Reading of the Barometer at every Hour of the Day | •• | •• | •• | D 88 | | TABLE XXI Monthly Mean Temperature of the Air at every Hour of the Day | •• | •• | •• | D 88 | | TABLE XXII Monthly Mean Temperature of Evaporation at every Hour of the Day | •• | •• | | D 89 | | TABLE XXIII Monthly Mean Temperature of the Dew Point at every Hour of the Day | •• | • • | •• | D 89 | | TABLE XXIV Monthly Mean Degree of Humidity at every Hour of the Day | •• | • • | •• | D 90 | | TABLE XXV Total Amount of Sunshine registered in each Hour of the Day in each Month | | • • | •• | D 90 | | TABLE XXVI Readings of Thermometers in the Stevenson Screen in the Christie Enclosure | e | •• | • • | D 91 | | TABLE XXVII Readings of Thermometers on the Revolving Stand in the Christie Enclosure | · · · | •• | •• | D 94 | | TABLE XXVIII Amount of Rain collected in each month by Gauges No.6 and No.8 | •• | •• | •• | D 94 | | TABLE XXIX Mean Hourly Measures of the Horizontal Movement of the Air in each Month, Greatest Hourly Measures as derived from the Records of Robinson's Anemometer | and | | •• | D 95 | C.B.H. 25989 - Wt. 4583 - Dd. - 360 - 5/55 #### THE ROYAL OBSERVATORY, GREENWICH AND ABINGER MAGNETIC STATION, SURREY. MAGNETIC AND METEOROLOGICAL OBSERVATIONS 1946. #### INTRODUCTION #### STAFF During the year 1946 the staff serving in the Magnetic and Meteorological Department consisted of W. M. Witchell, Superintendent, E. A. Chamberlain, G. F. Wells, P. L. Rickerby, B. R. Leaton, D. Oliver and Miss J. Mounteney. Mr. Chamberlain, resident observer and assistant-in-charge, and his assistant Mr. Rickerby, were employed exclusively at the Abinger Magnetic Station. #### ABINGER MAGNETIC OBSERVATIONS THE MAGNETIC STATION - Site (Lat. 51°11'5" N; Long. 0°23'12" W). Established in 1924, the station is situated on the northern slope of Leith Hill, Surrey, 800 feet above sea level. It is approximately 26 miles from the former site at Greenwich in a direction a little south of south-west. The nearest railway track lies at a distance of about 2½ miles. The Pavilions. The absolute observations are made in the main pavilion which is constructed of carefully chosen non-magnetic materials. It is approximately 28 feet long by 15 feet wide and contains four stoutly built hard wood piers embedded into concrete bases which are free from contact with the floor. On the north pier is mounted the declination instrument; on the central pier, the coil magnetometer for measuring horizontal intensity; on the south-east pier, the coil magnetometer for measuring vertical intensity; and on the south-west pier, the Earth-inductor for observing magnetic inclination. A second pavilion, erected in 1926 for the testing and standardising of magnetic instruments (work formerly undertaken at Kew Observatory), and measuring 16 feet by 12 feet, is situated about 40 feet south-east of the main pavilion and contains three concrete piers passing through the floor without contact. A third pavilion measuring 20 feet square was added in 1932. More convenient and suitable for comparative observations than the second, this pavilion occupies a corresponding position to the north-east of the main pavilion. It contains three circular wooden piers set into concrete and free from contact with the floor, similar to those in the main pavilion. The Magnetograph House stands 50 feet east of the main pavilion and is oriented with its principal axis north and south. An inner chamber, designed to house the magnetographs at a uniform temperature, measures 15 feet long by 12 feet wide by 8 feet high and is supported on small concrete piers. The whole structure is contained within an outer chamber whose walls are constructed to have a low thermal conductivity and are nearly two feet thick. Between the walls of the two chambers is an air space of from 2 to 3 feet. The inner chamber is electrically heated by a series of low-temperature non-magnetic metallic resistances distributed along the base of the walls and fed by alternating current drawn from the public mains supply. The temperature of the magnetograph chamber is controlled by a thermostat placed at the centre of the room at the same level as the magnetic instruments. Daily readings of a thermometer attached to one of the variometers show that the departures from a mean temperature do not exceed 0°.2 C. Projecting up through the floor are five concrete piers. Two of these, designed originally to support recording mechanisms, occupy the north-west and south-east corners of the room, their longer sides being transverse to the meridian. In 1938 a massive slate slab measuring 8 feet by 2 feet by 1½ inches was cemented upon the pier occupying the south-east corner. The other three piers are situated at positions 2 feet west and 2 feet 6 inches south of the north-east corner; 5 feet 6 inches west and 5 feet south of the same corner, and 2 feet east and 3 feet north of the south-west corner. Also, in 1938 a heavy wooden table 8 feet by 3 feet was installed near the centre of the room to carry new recording mechanism. The legs of this table pass freely through the floor of the chamber and are cemented into the concrete base of the main building. LAYOUT OF RECORDING INSTRUMENTS. At the beginning of March 1938 the apparatus used since 1925 to record D and H was superseded by La Cour variometers. These instruments are set up at the south end of the recording chamber in a line running geographically east and west. They occupy the eastern half of the slate slab previously described. The La Cour recording mechanism is mounted upon the table also referred to in the previous paragraph. Occupying the western halves of the slate slab and wooden table is a "quick-run" magnetograph (see p.vii). On the opposite corner pier is mounted the recording mechanism of a wide-range magnetograph, the declinometer of which is carried by the same pier (see p.vii). The accompanying H variometer is mounted on the south-west pier, formerly occupied by the Watson quartz-fibre Z variometer. VARIOMETERS - The La Cour Horizontal Intensity Variometer. A complete description of this instrument is to be found in Publikationer fra det Danske Meteorologiske Institut, No.11 (Copenhagen 1930), but for general information some details are given here. The magnet of cobalt steel is 8 millimetres long and weighs about 25
milligrams, the magnetic moment being 3.2 c.g.s. units. It is suspended at right angles to the Earth's horizontal field by means of a quartz fibre thickened at each end to form a small cone. Each cone fits into a conical brass socket having a fine slit in its side through which the fibre has passed. The focal length of the lens which projects the ray from the mirror attached to the magnet is 160 cms. Compensation for the effect of temperature of the moment of the magnet and the torsional constant of the quartz fibre is attained by optical means in which compensatory deflection of the emergent ray is produced by proportional curving (under temperature changes) of a bi-metallic lamina which supports a prism controlling the ultimate direction of the ray. A small Helmholtz-Gaugain coil, having a field of 7.43 gamma per milliampere and made to envelop the variometer, is used both to orientate the magnet correctly with respect to the earth's field and to determine the scale-value of the record. The orientation of the magnet was last adjusted on 1943 January 13 and was then correct within 0°.5. The adopted scale-value during 1946 was 4.35 gamma per millimetre. The La Cour Declination Variometer. The general features of this instrument correspond closely to those of the variometer just described. The scale-value adopted during 1946 was 0'.92 per millimetre. Expressed as magnetic intensity the scale-value would be 4.97 gamma per millimetre at the present time. The La Cour Vertical Intensity Variometer. This instrument is fully described in Publikationer fra det Danske Meteorologiske Institut No. 8. The recording magnet, including knife-edges and mirror, is fashioned from a single piece of cobalt steel, with the purpose of eliminating the possibility of relative movements among its parts. It is oriented approximately at right-angles to the magnetic meridian. Compensation for temperature changes is optically effected as in the horizontal intensity variometer. The scale-value, determined by the small Helmholtz-Gaugain coil already mentioned, is 4.35 gamma per millimetre. The Quick-run Variometers. These consist of a set of instruments closely resembling those described above and adapted by La Cour's method to record on a time scale of 3 mm. to one minute, i.e. twelve times as great as the normal scale. This recorder has been in regular use since 1938 November. The Wide-range Variometers. Instruments formerly serving as standard variometers for H and D have been adapted to serve as wide-range recorders capable of registering on a small scale the largest variations in the two elements deemed possible of occurrence at Abinger. The H variometer, which was superseded as the standard by the La Cour recorder, has been "desensitised" by the addition, immediately beneath its base-plate, of a bundle of strongly magnetised needles set at right-angles to the magnetic meridian. The scale-value is 19.5 gamma per millimetre. The D variometer used at Greenwich from 1917 to 1925 is now fitted with a lens of 50 cms. focal length, which gives a scale-value of 3'.7 per millimetre. The two instruments are located as described on p. vi. The present position of the D variometer is such that it is necessary to deflect the recording light rays towards the recording cylinder through a large angle, and an appropriate mirror rigidly supported between the variometer and cylinder forms part of the apparatus. The wide-range variometers have been in regular operation since 1940. Recording Mechanism. The two principal features of the La Cour recorders are: the three elements H, D and Z are recorded on separate strips of a single photographic sheet; the range over which the elements are able to record is greatly extended by the use of prisms in the optical train which furnish a multiple set of images. For each element are formed six secondary images, three on each side of the principal image, the separation being so adjusted that the image from one prism appears at the edge of the record just before the adjacent image passes off the opposite edge. The time-scale is approximately 15 mm. to the hour. The time-marks are in all cases photographically printed on the sheets by momentary automatic illumination of an electric lamp. In the case of the La Cour magnetograph the original arrangement provides a series of small dots which con- stitutes a second, interrupted, trace of the element. These marks, however, have been supplemented by thin time lines extending the whole width of each record, these lines being produced by adjustable long narrow mirrors which reflect light from an auxiliary time signal lamp. In the case of the "quick-run" and "wide-range" recorders, only the thin lines are printed. The time-signals are derived from a relay connected to a mean solar clock in the computing room. For a period of one second at every tenth minute of Universal Time the clock operates a relay which in turn operates the lamps. Additional signals at the first and fifty-ninth minute of each hour serve to distinguish the hour signals. The error of the clock is observed daily by comparison with a time-signal radiating from one of the official broadcasting stations. The error, which seldom exceeds one second, is eliminated by temporarily adjusting the clock rate electromagnetically over the required period of a minute or two. OBSERVING INSTRUMENTS - Declinometer. A hollow cylindrical magnet with scale and collimating lens is used in conjunction with a small telescope mounted independently on the same pier. The magnet is suspended by tungsten wire of diameter 0.02 mm. Frequent reversals are made to eliminate the collimation error of the magnet from the results, and the position of torsional zero of the suspension wire is also frequently checked. 90° of torsion deflects the magnet about 3'. The telescope has a six-inch circle on which azimuths are read by means of two microscope-micrometers to 1". An azimuth mark is fixed on the top of a concrete pillar 10 feet high, erected at the northern extremity of the Observatory grounds at a distance of approximately 300 feet from the observing pier. Determinations of the azimuth of this mark are made at intervals by means of observations of Polaris. During each observation both direct and reflected views of the star are taken. The effect of error of level of the telescope is thus entirely eliminated. Reflection is obtained from the surface of mercury contained in a shallow copper dish. The Schuster-Smith Coil Magnetometer. This instrument is on loan to the Observatory from the National Physical Laboratory. It is the second of the type constructed and is rather smaller than the original instrument, a detailed description of which is to be found in Philosophical Transactions of the Royal Society, Vol.223 (1923), pp.175-200. It is erected on a pier in the centre of the absolute observation pavilion and was brought into use as the standard instrument for measurement of horizontal intensity on 1927 February 1. In general eight independent determinations are made each week-day. The following is a brief description of the instrument and the method employed in measuring horizontal intensity:- A hollow marble cylinder of 50 cms. diameter rests, with its axis horizontal, on a brass support which can be turned in azimuth. The azimuth may be read to 10" from a graduated circle on the base-plate by the usual vernier attachment. On the periphery of the cylinder, near each end and at a mean distance of 25 cms. from each other, are two windings, in series, of ten turns of bare silver wire, the method of winding in a double spiral being that adopted in the original instrument referred to above. The whole forms a Helmholtz-Gaugain system at the centre of which a very uniform magnetic field parallel to the axis exists when an electric current is passing through the coils. A chromium-steel magnet, 15 mm. long and 2 mm. square in cross section, is supported horizontally in a light vertical aluminium frame; the frame carries also a small concave mirror and a damping vane and is suspended by a single silk fibre in a suspension tube passing through a hole in the upper surface of the cylinder. A square box with optically-plane glass sides supports the tube and encloses the magnet frame, allowing the mirror to project an image of a source of light during observation. The suspension fibre is adjusted so that the magnet hangs at the centre of the coil system. To afford an easy means of reading the azimuth of the cylinder and the indications of the magnet, graduated ivorine scales are placed horizontally on stands at a distance of approximately 2 metres from the pier, and spots of light are reflected to them by small concave mirrors in the instrument. Situated outside the observing pavilion, about 40 feet to the south, is a storage battery of 25 cells which produces the current required for the observation. The amount of current employed is very accurately adjusted to a specific quantity by rheostat according to the indications of a Broca galvanometer in a potentiometer circuit in which the fall of potential across a known resistance is brought to equality with the voltage of a Weston standard cell. Careful precaution is exercised in arranging the circuits both to eliminate accidental magnetic fields and to secure the highest degree of insulation. The latter has been found, in practice, to be of great importance, especially with regard to insulation of the galvanometer circuit, as any stray current here will lead to a difference of potential between the terminals of the standard cell and the standard resistance. It is desirable that the resistance of the galvanometer should be as low as possible consistent with sensitivity. Theory of the observation:- If a horizontal magnetic field whose intensity is slightly greater than that of the earth is imposed at an angle of nearly 180° with the earth's field, a precise angle can be found at which the resultant
of the two fields becomes directed at right angles to the earth's field. The intensity F of the imposed field, and its angle α with the earth's field being known, the horizontal intensity of the earth's field can then be calculated from the simple relation F cos F. An observation proceeds as follows:- Torsion having been eliminated from the suspension thread by substituting a copper bar of similar dimensions for the magnet, the magnet is replaced and allowed to hang freely in the earth's field. The position on the appropriate scale of the spot of light reflected by the magnet-mirror is noted. This scale is normally on the west side of the instrument. By optical methods, reference marks on two other scales placed respectively to the magnetic north and south of the instrument are adjusted accurately to points 90° from the spot reflected by the magnet mirror. A current is next passed round the coil in the direction which produces a field augmenting that of the earth, and the coil is turned in azimuth until the addition of the imposed field produced no alteration in the direction of the magnet. The axis of the coil is then accurately parallel to the horizontal component of the earth's field, and the coil-mirror can be adjusted so that it reflects a spot of light to the reference mark, i.e. to the zero graduation of the north scale as already set. The current is now reversed in the coil by a commutator switch and the coil is turned until the resultant force on the magnet is in a direction at right angles to the earth's field. This is indicated on either the north or south scale by the magnet-mirror, which is carried round 90° by the magnet. The azimuthal angle through which the coil has been turned is read from the north scale, and the coil is then turned to an approximately equal angle on the opposite side of the magnetic meridian. This reverses the direction of the resultant field and a further small adjustment of the coil brings the spot of light reflected by the magnet-mirror accurately to the reference mark on the opposite scale to that last used. A second reading of the azimuth of the coil completes the observation. The suspension box and tube are turned by the observer as the magnet turns, so that no torsional change is introduced. The effect of any small error in the assumed direction of the Earth's horizontal field, due, say, to residual torsion on the suspension thread, is eliminated on taking the mean of the two results. After preliminary details have been gone over, a complete measurement of horizontal intensity is readily obtained in two minutes. If F be the factor of the coil and i be the current passing, in amperes, then the intensity of the field at the centre of the coil, in gamma units, is $Fi \times 10^4$. The adopted value of the factor F of the coil is 3.59570 (1-.0000043t), t being temperature Celsius. The observed value of horizontal intensity obtained from this instrument is subject to a correction of -1γ for the effect of the field of magnets in instruments placed permanently in the vicinity. The effect is determined experimentally by reversal of the magnets. The correction is applied in the reduction of the observation. The constants of the coil and of the potentiometer at various standard temperatures have been precisely determined at the National Physical Laboratory and are checked from time to time. The dimensions of the coil were re-examined in November 1931. The electrical constants on which the reduction of observations made in 1946 is based were verified in August 1943. To convert the measure of current from international units to c.g.s. units the factor adopted prior to 1938 January 1 was .99997; but from this date onward the value adopted has been .99988. The change introduced a discontinuity into the deduced values of H of -1.7γ. The Vertical Intensity Coil Magnetometer. This instrument, designed by D. W. Dye for direct measurement of vertical intensity and constructed under his supervision at the National Physical Laboratory, Teddington, is on loan to the Royal Observatory from the Laboratory. It is erected on the south-east pier of the observing pavilion and was adopted as the standard for measurement of vertical intensity from 1929 January 1. A full description of the instrument is published in *Proceedings of the Royal Society*, Ser.A, Vol.117 (1928), pp.434-458. In brief, the instrument consists of a Helmholtz-Gaugain coil wound on a marble cylinder, the axis of which is vertical as truly as can be determined, together with accessory apparatus for accurately controlling and measuring the current passed through the coil, and for testing the resultant field at its centre. The observation consists of an adjustment of the current until the artificial field imposed at the centre of the coil exactly annuls the vertical component of the earth's field. The intensity of this component is then easily calculable from a knowledge of the dimensions of the coil and the amount of current indicated by potentiometer measurement $(cf \ p. \ x)$. The current is taken from the battery which supplies the Schuster-Smith instrument. The special feature of the instrument is the means adopted for ascertaining when the vertical component of the Earth's field is exactly annulled at the centre of the marble cylinder. This consists of a diamond-shaped vibrating test-coil about 2 cms. long suspended by bronze strip stretched horizontally between two supports and carrying a light plane mirror. The principle of the instrument requires that the axis of rotation of the detector coil should be horizontal and its plane vertical in the equilibrium position. The method of securing these adjustments is included in the full description mentioned above. A weak alternating current, supplied from a generator at some distance from the instrument, passes through the test-coil. The reaction between the field produced and the surrounding magnetic field subjects the test-coil to a forced oscillation which vanishes only when the vertical field is annulled. The resulting vibration is brought to a maximum by adjustment of the generator frequency to synchronism with the natural frequency of the coil (about 15 per second) and high sensitivity is thus obtained. Microscopic vibration is exhibited by projection from the small mirror on the test-coil of an image of illuminated cross-wires to a screen erected about 2 metres distant. The adopted value of the factor F of the coil is F=3.59643 (1-.0000079t) t being temperature Celsius. The constants of the potentiometer is use during the year 1946 for the measurement of the current were verified at the National Physical Laboratory in August 1943. The factor adopted for the conversion from international units to c.g.s. units was the same as for the Schuster-Smith coil (see p.x). The change on 1938 January 1 introduces a discontinuity of -3.9 γ into the deduced value of Z. The Absolute Inclination Instrument. An Earth Inductor by the Cambridge Instrument Company, in conjunction with a Broca galvanometer, is used to determine magnetic inclination. About six determinations are made each week. Observations are made in four positions to eliminate any small errors arising from slight asymmetry in the instrument. After the first adjustment the coil support is reversed about a horizontal axis and a second adjustment is obtained; the instrument is then reversed in azimuth and two further adjustments are made. The circle for the measurement of inclination is 8 inches in diameter and is read by means of microscope-micrometers to one second of arc. The levels on the base can likewise be read to one second. A detailed description of the inductor will be found in the volume for 1915. Since 1929 January 1 the observations of inclination have not been used for determination of vertical intensity. REDUCTION OF RESULTS - Time - The system of time used in the reductions is $Universal\ Time\ (U.T.)$. Hourly Values. The estimated mean ordinates of the photographic traces for each hour are measured from the base-line by the aid of an etched glass scale - the hour being the period of sixty minutes commencing at the time named in the tables. From the tables of these measures are obtained the mean daily and mean monthly values for each hour of the day and the value of the elements for each day of the month. Base-lines. Values of the base-lines are adopted from smooth curves drawn through points plotted upon charts, each point representing the mean of several independently observed values. Ten observations of declination, eight of horizontal intensity and six of vertical intensity are made, on an average, each week-day. Prior to 1929 the base-line values for vertical intensity traces were computed from absolute observations of inclination I, combined with simultaneous values of horizontal intensity H, taken from the magnetograms, in accordance with the relation Z = H tan I. From 1929 January 1 the values have been obtained directly from observations of vertical intensity with the coil-magnetometer. The change introduces a discontinuity of about 30γ into the definitive values of vertical intensity, corresponding to 0'.9 in inclination. The latter is to be attributed to hitherto unsuspected wear in the bearings of the Earth inductor which, at the time of its discovery, made the observed values of inclination too large by this amount. Temperature Corrections. As the magnetograph chamber is maintained at a sensibly constant temperature and, moreover, the temperature compensation in the variometers themselves has been closely attained, in general no temperature corrections are required. K - Indices. In conformity with a resolution passed at the Washington Assembly of the International Association of Terrestrial Magnetism and Electricity in 1939 September, the magnetic character of each day is estimated by means of three-hour-range indices, the index "K" for each three-hour period
from 0 to 24 U.T. being assigned according to the principles described in an article published in Terrestrial Magnetism and Atmospheric Electricity, Vol.44, pp.411 et seq (December 1939). The scale adopted for this purpose is constructed as follows:- The average quiet day variation during a particular three-hour period being reckoned as "0", any excess greater than 5 γ but less than 10 γ is reckoned as "1"; an excess between 10 γ and 20 γ as "2"; between 20 γ and 40 γ as "3"; between 40 γ and 70 γ as "4"; between 70 γ and 120 γ as "5"; between 120 γ and 200 γ as "6"; between 200 γ and 330 γ as "7"; between 330 γ and 500 γ as "8"; greater than 500 γ as "9". The traces of all three elements are examined and the largest variation recorded in the interval is used to give the "K" index for that interval. THE TABLES. Tables I to III contain respectively the hourly mean values of declination, horizontal intensity and vertical intensity. Table IV gives for each element the mean daily value, the maximum and minimum values with the times of their occurrence and the daily range. Table IVA contains, for each day of the year, the eight individual K-indices, arranged in succession, together with their sums. Tables V to VII contain the mean diurnal inequalities obtained from "All" days and from "Quiet" and "Disturbed" days as selected by the International Committee. In addition to monthly and annual values there are given values for the seasons, viz. Winter (January, February, November, December), Equinox (March, April, September, October) and Summer (May, June, July, August). The values in these tables are not adjusted for the effect of non-cyclic change. The figures quoted for the north and west components and the inclination are computed from the corresponding inequalities in declination, horizontal intensity and vertical intensity, the computations being in general carried out to one significant figure beyond that printed. Extreme values are indicated in heavy type. Tables VIII and IX contain the harmonic coefficients obtained from an analysis of the inequalities in the north (X), west (-Y) and vertical (Z) components. In the case of the International Quiet and Disturbed days, the inequalities are adjusted for non-cyclic change before analysis, but in analysing the results for "All" days the non-cyclic change is ignored. The phase-angles in Table IX are corrected to refer to Abinger Local Mean Time. Table X. In the annual volumes from 1926-1931 this table contains the range of the mean diurnal inequalities abstracted from the figures given in Tables V to VII for the months, the year and the seasons. In 1932 a change was made which was inadvertently not noted at the time. Thenceforth the figures given for the year and the seasons are derived from Table X itself by meaning the values of the months constituting the particular group. Table XI gives in similar arrangement the non-cyclic change 24^h minus 0^h. The quantities are computed from Tables I to III, the value of 0^h or 24^h being taken as the mean of the last value on one day and the first value on the day following. Table XII contains the mean monthly and annual values of the components collected together. In forming this table corrections are applied when necessary, to the values of H and Z taken from Table IV to remove the effect of any small secular changes in potentiometer constants found at the periodical re-measurement of the constants at the National Physical Laboratory. Tables XIII to XVA contain the daily values of the base-lines of the magnetograms reduced from the absolute observations. Table XVI. The first part of this table contains mean annual values of magnetic elements determined at the Royal Observatory, Greenwich, over the whole period of observation. Included in the table are results of early observations of declination made from 1818 to 1820. The second part contains corresponding values determined at the Abinger Station since 1925. REPRODUCTION OF MAGNETOGRAMS. A brief descriptive summary of the more significant movements recorded in the magnetic elements during the year is accompanied by reduced copies of the Abinger Magnetograms illustrating disturbances of special interest. #### GREENWICH METEOROLOGICAL OBSERVATIONS, 1946. GENERAL. The majority of the meteorological instruments are situated in an enclosure in Greenwich Park, 350 yards to the east of the Astronomical Observatory. In the enclosure (which will be referred to as "The Christie Enclosure") there are the barometer, the thermometers used for ordinary eye observations, the recording wet-bulb and dry-bulb thermometers, thermometers for solar and terrestrial radiation, two earth thermometers and two rain gauges; also the instrument for automatically recording pollution of the air. The anemometers, the self-registering rain gauge and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory). The observations comprise eye observations of the ordinary meteorological instruments, including the barometer, dry-bulb and wet-bulb thermometers, radiation and earth thermometers; continuous autographic record of the variations of the barometer, dry-bulb and wet-bulb thermometers; continuous automatic record of the direction, pressure and velocity of the wind and of the amount of rain; registration of the duration of sunshine and at night of the visibility of stars near the celestial Pole; the general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud and estimations of "visibility"; registration and measurement of the pollution of the air by solid matter. Universal Time (U.T.) - which at the Royal Observatory coincides with local Mean Solar Time - has been employed throughout the meteorological section, except in regard to the sunshine registers (see p.xvii). INSTRUMENTS. Standard Barometer. The standard barometer is Newman No.64. Its tube is 0.565 inch in diameter, and the depression of the mercury due to capillary action is 0.002 inch, but no correction is applied on this account. The cistern is of glass and the graduated scale and attached rod are of brass. At its lower end the rod terminates in a point of ivory which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to 0.05 inch, sub-divided by vernier to 0.002 inch. The barometer was mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room at a height above mean sea level of 159 feet. On 1917 April 3 it was transferred to the new magnetograph house in the Christie Enclosure, where the height above mean sea level is 152 feet (see also p.xviii). The barometer is read at 9^h, 12^h (noon) and 15^h every day. Each reading is corrected by application of an index-correction and reduced to the temperature 32° F. The readings thus found are used to determine the value of the instrumental base-line on the photographic record. The Photographic Barometer. A siphon barometer is employed which, at its open end, operates a plunger resting on the surface of the mercury. On account of the optical magnification associated with a moving mirror at some distance from the recording drum, the motion of the plunger must be mechanically reduced in being transferred to the arm which carries the mirror. In the actual arrangement two levers are used. One is connected to the stem of the plunger resting on the free surface of the mercury and is 12 inches long from plunger to pivot. A pin with a rounded conical point is screwed into this lever at a distance of 1 inch from the pivot. On this pin rests the plane under-surface of a shorter lever, which is 4 inches long from its pivot to the pin and is set at right angles to the first lever. Both levers are approximately horizontal in their mean position. The moving mirror of the instrument is mounted horizontally, in a suitable frame, just above the pivots of, and attached to the short lever. The first lever lies east and west, so that the axis about which the mirror turns is in the same direction. The recording drum is horizontal and the motion of the beam of light is transformed, so as to be horizontal, by a fixed right-angled prism supported above the mirror. A lens of suitable focus is mounted in a vertical plane in front of the prism and brings the beam of light from the straight-filament electric lamp to a focus on the drum. A base-line mirror, similar to the moving mirror, is mounted in a vertical plane below the lower half of this lens. Provision is made for all the necessary adjustments of the directions of the two beams of light. The weight of the plunger and lever mechanism is relieved by a balance-weight on the far side of the pivot, so that the plunger rests on the mercury surface without appreciably depressing it. The instrument is 12 feet from the recording drum. At this distance the calculated scale-value of the record is 3 inches on the sheet for 1 inch change of height of the standard barometer. (Near the free surfaces of the mercury, both arms of the siphon tube are of the same bore, so that the plunger moves through one half the change of the indication of the standard barometer). The scale-value of the instrument is, in effect, determined experimentally by comparison with the readings of the standard barometer. The base-line values corresponding to the three daily readings of the standard are represented graphically by points on a chart. The adopted value at any time is read from a smooth curve drawn through the points. The photographic sheets being 9½ inches wide, a range of over 3 inches barometric motion can be included and re-adjustment of position of the trace is unnecessary. Dry-bulb and Wet-bulb Thermometers. On 1937 December 31 the standard dry-bulb and wet-bulb thermometers and maximum and
minimum self-registering thermometers, both dry- and wet-bulb, were transferred from the revolving open screen, on which hitherto they had been mounted, to a Stevenson screen of large dimensions which had been set up a few yards to the westward. The old screen was subsequently erected in a new position on the north side of the Christie Enclosure, and daily readings, at 9^h, of maximum and minimum temperature in the open screen were resumed from 1938 May 1. The corrections to be applied to the thermometers in ordinary use are determined by comparison with the Kew standard thermometer No.515. The dry-bulb thermometer used throughout the year was Negretti and Zambra No.45354. The correction -0°.4 has been applied to the readings of this thermometer. The wet-bulb thermometer used throughout the year was Negretti and Zambra No.94737. The correction -0°.3 has been applied to the readings of this thermometer. The dry-bulb and wet-bulb thermometers are read at 9^h, 12^h (noon) and 15^h every day. Readings of the maximum and minimum thermometers are taken at 9^h and 15^h every day. The readings are employed to correct the indications of the recording dry-bulb and wet-bulb thermometers. Dry-Bulb and Wet-bulb Recording Thermometers. The photographic apparatus which had been in use since 1887 was superseded on 1938 January 1 by a distant-recording thermograph. The action of this instrument depends on the pressure of mercury in a long flexible capillary tube of steel. The pressure alters the curvature of a Bourdon coil which in turn controls the position of a recording pen. C.B.H. 25989 - Wt. 4583 - Dd. - 250 - 5/55 The thermometers exerting the pressure are mounted in the Stevenson screen which contains also the standard thermometers. The recording mechanism is set up in the basement of the building, about 40 feet distant, constructed for the Yapp equatorial telescope, and the steel tube transmitting the pressure is laid in earthenware pipes buried about eighteen inches beneath the surface of the ground. The traces (in ink) showing the variations in temperature are directly visible through a window. The scale-value is approximately 20°F per inch. Radiation Thermometers. These thermometers are placed in an open position in the Christie Enclosure. The thermometer for solar radiation is a mercurial maximum thermometer with its bulb blackened and enclosed in a glass sphere from which the air has been exhausted. The thermometer employed was Negretti and Zambra No.DB.3544. The thermometer for radiation to the sky is a spirit minimum thermometer, Negretti and Zambra No.DC. 30597. The thermometers are laid on short grass, freely exposed to the sky. Earth Thermometers. There are two thermometers in use, the bulbs of which are sunk to depths of 4 feet and 1 feet, respectively, below the surface. Both thermometers are read daily at noon, the readings of the former being given in the daily results. Osler Anemometer. This self-registering instrument, devised for continuous registration of the direction and pressure of the wind together with the amount of rain, is fixed above the north-western turret of the ancient part of the Observatory. The direction of the wind is registered by means of a large vane (9 ft. 2 in. in length), connected by shaft and pinion with a rack-work carrying a pencil; the latter marks on a flat sheet of paper, moving horizontally. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground and 215 feet above the mean level of the sea. A fixed mark near the north-eastern turret in azimuth 90° east, as determined by celestial observation, is used for examining at any time the position of the direction-plate over the registering table to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. A circular pressure plate with an area of 192 square inches is attached 2 feet below the vane; moving with the latter it is always kept directed against the wind. A light wind causes the plate to compress slender springs, the motion being registered on the horizontal sheet by a pencil connected with the plate by a flexible brass chain which is always in tension. Higher wind pressures bring stiffer springs into play behind the plate, and the two sets of springs are adjusted by screws and clamps so as to afford fixed scales on the sheet, the scale for light winds being double that for strong winds. The scale is determined experimentally in pounds per square foot from time to time. The most recent determination was made on 1934 November 20. The recording sheet is changed daily at noon. The time scale is approximately 15 millimetres to the hour. The instrument was brought into use as long ago as 1840. Robinson Anemometer. This instrument, for registration of the horizontal movement of the air, is mounted above the roof of the Octagon Room and was brought into use in 1866. The four hemispherical cups are 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground and 211 feet above the mean level of the sea. A motion of the recording pencil through 1 inch corresponds approximately to horizontal motion of the air through 100 miles. The time scale is the same as for the Osler anemometer and the sheet is also changed daily at noon. The velocity recorded by the instrument is three times the actual velocity v of the cups. After certain structural alterations were carried out in 1941 October, which included the introduction of a ball bearing for the revolving shaft, a series of comparisons was made between wind speed deduced from the pressure recorded by the Osler anemometer and the velocity of the cups, known from the above-mentioned relation. These comparisons established a new empirical formula, valid at all ordinary speeds and very close to $V = 2.70 \ \nu$. Accordingly, from 1942 January 1, the formula $V = 2.70 \ \nu$ has been adopted to modify the velocity recorded by the instrument. Rain Gauges. During the year 1946 three rain gauges were employed. The gauge No.1 forms part of the Osler anemometer apparatus and is self-registering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The apparatus is fully described in volumes previous to 1914. Gauge No.6 is an 8 inch circular gauge placed with the receiving surface 5 inches above the ground. No.8 is a newer gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It is fixed about 4 feet north of the standard gauge No.6 which is read daily at 9^h and 15^h. No.8 is used as a check on the readings of No.6 and is normally read at 9^h only. The gauges are also read at midnight on the last day of each calendar month. The present height of the standard gauge above mean sea-level is 5 feet 9 inches less than in its old position in the Observatory grounds before its removal to the Christie Enclosure in 1899 January. The monthly amounts of rain collected in gauges Nos.6 and 8 are given on page D 94 of the Meteorological Results. Sunshine Recorder. The hourly results relate to apparent time. The instrument in use is of the Campbell-Stokes pattern with 4 inch glass globe. It was examined at the Meteorological Office in 1926 and found to be in satisfactory condition. It bears the serial number M.O.113. The recorded durations are those of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud or is very near the horizon. Conformity with Meteorological Office standards of measurement is maintained as far as possible. Night-Sky Recorder. The object of this instrument is to supplement the daily sunshine record in so far as it gives an indication of the amount of cloud. It consists of a small camera constructed of wood, mounted (until 1946 August 15) on a brick pier about 20 yards south of the Altazimuth building, and permanently directed towards the celestial pole. On 1946 August 15 the site was changed to its original position (prior to 1940 November 18) in the courtyard to the north of the Transit Pavilion. The lens is of 18.8 inches focal length and 0.8 inch aperture. The actual camera is enclosed in a larger box about twice its length, extending nine inches beyond the lens. The lens itself is further surrounded by a hood. Adequate protection from dew is thus obtained, and also from rain, except when hard driven from the north. The photographic plates used are ordinary quarter-plate (3½ by 4½ inches). Exposure is intended to be made during the period that the sun remains more than 10° below the horizon. The period is thus centred approximately on apparent midnight, but in practice the mean times of commencing and ending the exposure are not varied at intervals of less than seven days. The traces selected for measurement are those of Polaris and δ Ursae Minoris. The measurement is effected by means of a glass scale on which pairs of concentric circles are photographically imprinted. The radii of these circles are slightly greater and slightly less than the radius of the trace to be measured, and the circles are divided into a time-scale of hour-angle, with ten-minute units. The plate is placed over the scale in a measuring frame and adjusted so that the trace is concentric with the containing circles on the scale. The hour-angle of the star, according to the scale, at the commencement and ending of the various portions of the trace is then read off to the nearest minute of time. The correction for error of orientation of the plate is made during the computation of mean time corresponding to hour-angle of star in the following manner. Whenever the sky is seen to be clear at the commencement of exposure, the difference between the hour-angle given by the scale for the beginning of the trace
and the corresponding mean time noted by the observer is taken as the quantity to be applied to the scale readings throughout the night, due allowance being made for the acceleration of sidereal time over mean time. When the sky is not clear at commencement, a computed quantity is used which includes an adopted mean value of the error of orientation. Variations in the error of orientation are found seldom to exceed two or three minutes of time and are unimportant to the records. ARRANGEMENT OF RESULTS. The results given in the Meteorological Section refer to the day commencing at 0 h U.T., excepting the case of the night-sky record, for which they relate to the period from dusk on the day named to dawn of the following day. All results in regard to atmospheric pressure, temperature of the air and of evaporation, with deductions therefrom, are derived from the continuous records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers, reference being made, however, to the autographic register, when necessary, to obtain the values corresponding to the limits "midnight to midnight". The hourly readings for the elements mentioned are measured direct from the traces and reduced so as to be based fundamentally, both as regards scale and zero, on the readings of the standard instruments. The barometer results are not reduced to sea-level, neither are they corrected for the effect of gravity by reduction to the latitude of 45°. The monthly mean barometer reading is, however, corrected for the effect of the change of site of 1917 April before deducing the deviation from the mean of sixty-five years 1841-1905 (pp. D 62-84). This correction, amounting to -.007 inch, was by oversight omitted in the years 1917-1926. From 1926 January 1 the mean daily temperature of the dew-point and degree of humidity have been deduced from the mean daily temperatures of the air and of evaporation by use of Hygrometric Tables, issued by the Meteorological Office, Air Ministry. In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pp. D 89 and 90) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pp. D 88 and 89) The excess of the mean temperature of the air on each day above the average of sixty-five years, given in the "Daily Results of the Meteorological Observations" is found by comparing the numbers contained in column 5 with a table of average daily temperatures obtained by smoothing the accidental irregularities of the daily means derived from the observations for sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII, Reduction of the Greenwich Neteorological Observations, Part IV, also in the Introduction to the Results for 1910. In the case of maximum and minimum temperature the average of sixty-five years has been corrected for the presumed effect of the change of thermometer screen which took place on 1938 January 1. The corrections are given below. They were derived from comparisons between readings on the revolving stand and in a closely adjacent Stevenson screen, recorded daily during the period 1900 April to 1913 December. | Maximum
Temp. | | Feb. | | Apr.
-1.1 | _ | June
-1.8 | _ | | | | Nov. | Dec.
0.0 | |------------------|------|------|------|--------------|------|--------------|------|------|------|------|------|-------------| | Minimum
Temp. | +0.5 | +0.5 | +0.5 | +0.5 | +0.5 | +0.5 | +0.5 | +0.6 | +0.6 | +0.6 | +0.5 | +0.5 | The daily register of rain contained in column 16 is that recorded by the gauge No.6, whose receiving surface is 5 inches above the ground (see p.xvii). The continuous record of the Osler self-registering gauge shows whether the amounts measured at 9^h are to be placed to the same, or to the preceding day; and also gives, in cases in which rain fell both before and after midnight, the means of ascertaining the proper proportion of the 9^h amount which should be placed to each day. The number of days of rain given in the footnotes and in the abstract tables pages D 87 and D 94 is formed from the records of gauge No.6. In this numeration only those days are counted on which the fall amounted to, or exceeded 0.005 inch. It may be understood that the greatest wind pressures usually occur in gusts of short duration. In the "Mean of 24 Hourly Measures" each measure represents the mean hourly value centred at the nominal hour. With regard to "Proportions of wind referred to the cardinal points" in the monthly summary on pages D 62-85, formerly the figures were such that the whole month was represented by the number of days in the month. In the "Results" for 1933 a change was made, and the whole month is now represented by 100, so that the figures are the equivalent of "percentages". The mean amount of cloud given in the footnotes on the right-hand pages D 63 to D 85, and in the abstract table, page D 87, is the mean found from observations made at 9h, 12h (noon), 15h and 21h each day. As regards the notation for clouds and weather, several changes were made in the 1934 volume in order to bring the symbols into general accordance with those in use at the British Meteorological Office. The following are the symbols which have been adopted. Where a change from the symbols previously in use has been made, an asterisk (*) is placed after the word or words for which the symbol stands. #### BEAUFORT WEATHER NOTATION (modified in conformity with the usage of the British Meteorological Office) - b blue sky (less than one quarter covered with cloud) - bc sky partially cloudy (less than three quarters covered) - c sky generally cloudy, but not completely overcast - d drizzle - e wet air without falling rain - f fog, with objects invisible distant more than 1100 yards - F fog, with objects invisible distant more than 220 yards - g gloom (*) - h hail (*) - i intermittent - k storm (in combination with other symbols) (*) - l lightning - m mist, with limit of visibility between 1100 and 2200 yards - o sky overcast with unbroken cloud - p passing showers (*) - q squall (*) - r rain - s snow (*) - rs sleet (*) - t thunder - u threatening sky - v exceptional visibility; i.e. abnormal transparency of air - w dew (*) - x hoar frost (*) - y dry air; i.e. relative humidity less than 60 per cent - z haze (*) A capital letter indicates "intense" The suffix o indicates "slight" A letter repeated indicates "continuous" #### CLOUDS FORMS (*) | Acu | Alto-cumulus | Cist | Cirro-stratus | | Stratus | |-----|-------------------------|------|--------------------------|----|------------------------| | | Alto-stratus | | Cumulus
Cumulo-nimbus | | Strato-cumulus Fracto- | | | Cirrus
Cirro-cumulus | | Nimbo-stratus | ., | 11,000 | #### ADDITIONAL SYMBOLS lu-ha lunar halo prhn Parhelion so-ha solar halo ### ROYAL OBSERVATORY, GREENWICH. ABINGER MAGNETIC STATION. # Results of Magnetic Observations 1946 | U.T. 0 | n h | | | | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 11111 | ONA | OF. | MAGI | MET I | υD | ىلىت | IMAI | IUN | | | | | | | | | | | | |---------------------------------|---|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------------|---------------------------------|------------------|---|----------------------|--------------------------|----------------------------------|------------------------------|---|--------------------------|--------------------------------------|-------------------|--------------------------|------------------------------|-------------------|----------------------------------|----------------------------------|--------------------------|--------------------------|---|--------------------------|---|------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|------------------------------|--------------------------| | |) ·· | 1 h | 2 h | 1 3 | 3 h | 4 1 | h | 5 h | 6 h | 1 | 7 h | 8 | h | 9 h | 10 |) h | 11 h | 1. | 2 h | 13 h | 14 | h | 15 h | 161 | 1 | 7 h | 18 h | 19 ¹ | h 2 | 20 h | 21 h | 2 | 2 h | 23 h | 24 | | January | | | | | | | | | | | | | | 9 | ° + | Tat | ular | · Qu | ant i | ties | | | | | | | | | | | | | | | | | 1
2
3 **
4 ** | 51. 4
55. 2
42. 8 | 51.
55.
47. | 8 5 9 5 | 54.7
55.8
51.8 | 55.
56.
48. | 7 2 2 2 1 | 54. 3
55. 3
50. 8 | 53.
54.
54.
55.
55. | 0
8 | 54. 4
54. 7 | 5 53
1 54
7 55 | . 4 | 54.
56. | 5 5
2 5
2 5 | 3. 9
7. 4 | 55.
57. | 3 59
3 56
3 56
8 54
2 57 | . 3 | 57.
62.
58. | 3 57
3 57
2 59 | 7.8
7.8
9.1 | 57.
58.
58. | 7 57.
3 55.
8 55. | 5 5
4 5
7 4 | 4. 1
1. 8
8. 8 | 58. 3
54. 4
56. 3
56. 3
55. 3 | 55
38
5 52 | .8 5
.8 5
.1 4
.4 4 | 4. 7
0. 8
7. 7 | 7 54.
3 36.
7 51. | 7 5
4 4
6 4 | 4.8
0.8
9.4 | 54.
40.
56. | 6 54
0 42
3 51 | i. 7
2. 2 | | 6
7
8
9 *
10 | | 55.
55. | 3 5 5 5 | 5.1
5.6
5.6 | 55.
55.
55. | 2 5 | 55. 6
55. 5
55. 3 | 54.
56.
55. | 8
1
2 | 54. 8
55. 7
55. 4 | 54
54
55 | . 7
. 9
. 4 | 54.
55.
55. | 8 5
4 5
3 5 | 4.8
6.0
5.6 | 55.
56.
55. | 7 57
8 57
6 56
9 56
5 55 | . 0 | 57.
56.
57. | 4 58
6 57
2 57 | . 5 | 57. 4
57. 1
56. 9 | 4 57.
1
56.
9 56. | 6 5
4 5
5 5 | 6. 1
5. 8
6. 1 | 50. 8
55. 9
55. 9
56. 9
57. 3 | 48
55
56 | . 2 5
. 5 5
. 6 5 | 1. 1
3. 9
5. 1 | 54.
54.
55. | 1 54
0 54
1 54 | 4.2
4.6
4.0 | 53.
54.
54. | 5 52
6 54
0 54 | . 5 | | 11 **
12
13 *
14 * | 54. 2
54. 0
54. 5
55. 2
55. 1 | 54.
54.
55. | 7 5
6 5
3 5 | 4. 2
4. 8
5. 3 | 53.
55.
55. | 9 5 | 54, 4
54, 2
55, 8 | 54.
54.
54. | 6
6
3 | 54.6 | 55
54
54 | .6
.3
.3 | 56.
54. (
54. | 1 5
5 5
7 5 | 5.9
5.0
4.7 | 56.
55.
55. | 5 57
7 56
2 56 | . 3
. 9
. 2 | 58.
58.
57. | 3 58
1 57
1 57 | . 7 | 57.0
56.8
56.3 |) 56.
3 56.
3 56. | 3 5
1 5
7 5 | 5. 6
5. 7
6. 5 | 56. 0
55. 2
56. 3
56. 8 | 54
55
55 | . 0 5
. 7 5
. 1 5
. 5 5 | 2. 9
2. 9
4. 9 |) 54.
) 53.
) 54. | 2 5
6 5
7 5 | 3.0
3.6
4.3 | 54.
54.
54. | 5 55
8 55
6 54 | . 0
. 2
. 7 | | 16
17
18
19
20 * | 49.9
54.3
54.5
52.6
51.2 | 54.
54.
52. | 3 5
5 5
9 4 | 5.8
4.9
8.9 | 55.
54.
50. | 9 5
8 5
2 5 | 56. 4
54. 4
53. 2 | 55.
54.
55. | 9
7 | 55. 2
55. 7
53. 8
54. 9
53. 8 | ' 56
1 53 | . 1 | 55. :
52. 6 | 3 5.
5 5. | 4.9 | 55. i | B 56. | . 2 | 56.
59.
57. | 6 56
4 60
3 58 | . 4
. 2
. 6 | 55. 8
57. 8
57. 7 | 3 56.
3 56.
7 57. | 1 50
3 50
7 5 | 6. 1
B. 4
7. 6 | 56. 2
53. 2
56. 8
58. 2
54. 8 | 52
54
57 | 8 5
8 5
8 5
9 5 | 4. 4
1. 8
6. 0 | 55.
51.
53. | 8 50
3 51
5 52 |). 4
l. 5
2. 8 | 51.
49. | 9 53
4 48
4 52 | . 2
. 2
. 0 | | 21 *
22
23
24 **
25 | 54. 6
52. 8
53. 1
52. 8
52. 2 | 52.
54.
54. | 7 4
6 5
7 5 | 8. 4
5. 2
6. 7 | 49.
54.
55. | 4 4
2 5
6 5 | 19.3
54.2
52.8 | 50.1
55.
54. | 8
2
9 | 54. 4
52. 4
55. 7
55. 8
55. 2 | 52
55
59 | .9 | 53. 8
54. 8
56. 5 | 3 5:
3 5:
5 5: | 5.7
4.8
5.3 | 57.
55. (| 1 58.
8 56.
6 58. | . 0
. 9
. 5 | 58.
59.
61. | 3 58
7 58
2 56 | . 8
. 2
. 5 | 57. 9
57. 1
57. 7 |) 56.
 56.
 57. | 8 50
2 50
9 50 | 6. 3
5. 2
2. 6 | 56. 6
55. 8
55. 8
56. 8 | 55. | 3 56
8 51
3 54
4 41
9 51 | 4. 8 | 53. | 3 49 |). 4 | 39. | 349 | . 4 | | 26 **
27
28
29
30 | 54. 3
53. 9
55. 1
54. 3
54. 3 | 53.
55.
55. | 9 5
1 5
0 5 | 2. 8
4. 7
5. 0 | 51.
54.
54. | 9 5
5 5
5 5 | 53.7
54.3
54.9 | 53. 54.
53. | 8
1
7 | 56. 2
54. 4
54. 3
53. 7
54. 5 | 54
54
53 | . 6
. 2
. 6 | 54. (
54. (
53. (|) 54
) 54
) 53 | 4. 1
4. 1
3. 6 | 55.
55. | 2 56.
2 56.
8 57. | . 8
. 7
. 0 | 57.
58.
56. | 9 58
2 59
7 58 | . 3 | 57. 7
57. 8
56. 9 | 7 56.
3 57.
9 56. | 4 50
1 50
5 50 | 5.8
5.8
5.3 | 47. 0
55. 8
56. 5
56. 0
56. 6 | 55.
56.
55. | 6 56
3 56
3 56
7 55 | 4.8
6.0
5.3 | 54.
55.
53. | 2 53
6 53
6 54 | 3. 1
3. 0
1. 4 | 54.
51.
54. | L 54
2 53
2 53 | . 7
. 7
. 6 | | 31 | 53.6 | 53. | 6 5 | 4.5 | 54. | 6 5 | 54. 2 | 54. | 4 | 54.7 | 54 | . 3 | 53. 2 | 2 5 | 4. 1 | 55. | 8 57 | . 7 | 59. | 2 59 | . 1 | 58. 0 | 57. | 0 5 | 4. 3 | 56. 2 | 55. | 9 5 | 5. 6 | 54. | 6 54 | 1. 5 | 52. | 53 | . 6 | | Mean | 53.5 | | | | | | | | - | 54.9 | | | | | | | | | | | | | | | | 55. 6
56. 0 | | 5 53
7 54 | | | | | | | | | Mean * Mean ** | 54.0
51.9 | | | | | | | | | 54. 6
55. 8 | | | | | | | | | - | | | | | | | 54. 5 | | 3 59 | | | | | | | | | February | | | | | | | | | | | | | | 9' | ۰ + | Tab | ular | Qua | ntit | ies | | | | | | | | | | | | | | | | | 1 *
2
3
4
5 | 54. 1
54. 3
54. 0
52. 2
50. 1 | 54.
53.
54. | 2 5
8 5
2 5 | 4. 4
3. 7
5. 0 | 52.
53.
54. | 3 5
8 5
6 5 | 1.8
3.6
4.3 | 52. (
53.
54. | 0
3
3 | 54. 2
52. 4
53. 3
54. 1
52. 6 | 53
53
53 | . 3 | 54. 2
52. 3
52. 4 | 2 5:
3 5:
1 5: | 5. 1
1. 8
2. 2 | 57. 4
53. 3 | 4 59.
3 55.
4 55. | . 7
. 3
. 7 | 61.
56.
58. | 3 61
9 59
7 57 | . 1
. 3
. 2 | 59. 2
61. 3
56. 6 | 57.
60.
56. | 8 5
7 6
7 5 | 7.1
0.2
7.9 | 56. 0
56. 7
58. 5
56. 1
56. 3 | 55.
56.
58.
55. | 6 5:
7 5:
2 5:
1 54: | 5.7
7.1
4.4 | 55.
56.
54. | 1 54
8 55
0 53 | . 3 | 54.
52.
53. | 3 53
3 52
3 50 | . 3
. 8
. 2 | | 6
7 **
8 **
9 | 53. 5
49. 6
27. 5
53. 7
56. 2 | 53.
43.
53. | 5 5
9 4
9 5 | 3.9
2.7
3.5 | 54.
53.
53. | 4 5
3 4
2 5 | 3.7
16.6
3.1 | 53.
53.
52. | 2
7
4 | 53. 1
52. 7
54. 4
53. 0
60. 2 | 54
50
52 | . 3 | 55.
50. 7
55. 4 | 1 5
7 5
4 5 | 5.8
1.2
1.5 | 48.
54.
55. | 7 41.
8 60.
2 56. | . 2 | 61.
60.
56. | 5 63
2 60
7 56 | . 7
. 7
. 5 | 65.7
54.3
52.2 | 72.
53.
50. | 6 69
2 40
6 5 | 5. 2
5. 8
1. 9 | 55.6
60.6
46.2
52.3
51.7 | 57.
50.
51.
53. | 8 54
1 49
8 49
8 5 | 9. 1
9. 1
1. 3
4. 1 | 47.
52.
53.
53. | 4 21
2 53
2 55
7 53 | . 9
. 2
. 1 | 46.
52.
55.
53. | 7 54
7 53
7 55
8 53 | . 1
. 6
. 6
. 7 | | 11 *
12
13
14 ** | 54. 4
54. 1
54. 1
54. 1
53. 4 | 54.
55. | 3 5
3 5
8 5 | 4.7
6.2
3.6 | 54.
56. | 6 5
6 5 | 53. 2
56. 2
52. 8 | 52.
56.
52. | 7
3
5
4 | 52.6
52.7
57.4
53.3
57.2 | 52
55
58
54 | .9 | 52. 5
54. 6
52. 5
52. 5 | 5 50
5 50
3 50
5 50 | 2. 7
0. 4
2. 9
2. 1 | 54.
47.
54.
53. | 6 55
8 50
2 55
7 55 | . 7
. 8
. 8 | 58.
48.
57.
57. | 0 58
8 46
1 56
7 58 | . 7
. 9
. 6 | 58. 1
50. 2
55. 6
58. 2 | 57.
54.
54.
57. | 3 5
0 5
8 5
5 5 | 4.5
4.7
4.4
5.2 | 53.8
54.7
55.3
54.7
55.9 | 54
55
56
55 | .6 54
.8 55
.1 54
.3 55
.2 54 | 5.3
4.7
5.2
4.7 | 54.
54.
53.
53. | 1 50
4 54
8 53
9 53 | 1. 7
1. 3
3. 3 | 54.
54.
51.
53. | 2 52
2 54
7 52
2 53 | . 7
. 2
. 5
. 6 | | 16
17
18
19 **
20 | 53. 6
54. 4
53. 7
53. 3
53. 1 | 53.
53.
53. | 7 5
7 5
8 5 | 4.3
3.7
3.4 | 54.
53.
54. | 3 5
8 5
3 5 | 54. 1
53. 4
54. 3 | 54.
53. | 4
0
6
3 | 54. 2
54. 3 | 52
53
54
54 | . 7
. 1
. 6
. 2 | 51. 2
52. 3
53. 6 | 2 5
3 5:
7 5:
6 5 | 1. 2
2. 1
3. 5
4. 3 | 52.
53.
54.
56. | 4 56
4 56
6 57
2 56 | . 1 | 58.
57.
58.
57. | 2 58
7 59
1 59
6 58 | . 4 | 57. 4
59. 3
59. 5
56. 8 | 56.
58.
60.
56. | 2 5
2 5
1 5
4 5 | 4.8
8.0
9.1
6.2 | 55. 7
54. 9
57. 1
58. 8
56. 1 | 54.
56.
58.
56. | .7 5
.6 5
.6 5
.8 5 | 3. 9
5. 2
5. 0
4. 6 | 53.
53.
51.
51. | 6 53
8 53
1 50
5 43 | 3. 3
3. 3
3. 7
3. 3 | 53.
53.
50.
43. | 2 53
2 53
1 53
3 39 | . 4 | | 21 **
22
23
24
25 | 36. 9
52. 7
53. 5
52. 5
52. 2 | 51.
51.
54. | 8 5
3 4
7 5 | 2.4
19.6
3.1 | 48.
52.
52. | 8 4
0 5
7 5 | 48.0
53.0
52.1 | 51.
52.
52. | 4
8
1 | 52. 3
53. 8
52. 4 | 3 52
3 55
1 52 | . 3
. 7
. 1 | 53. (
56. (
52. | B 5
B 5
2 5 | 5. 2
9. 2
3. 3 | 54.
57.
54. | 7 57
7 54
7 58
3 55
3 55 | . /
. 6
. 2 | 55.
55.
56.
58. | 1 56
5 56
1 56
1 58 | . 7 | 57. 7
56. 8
57. 4
57. 7 | 7 55.
3 52.
4 56.
7 55. | 8 5
8 5
6 5
3 5 | 5.7
2.4
6.2
4.7 | 54. 0
55. 7
54. 2
55. 3 | 55
46
53
2 55 | .6 5
.0 5
.6 4
.2 4 | 1.3
7.8
9.8
2.8 | 52.
52.
52.
53. | 1 50
3 52
3 49
6 53 |). 8
2. 4
). 7
3. 2 | 52.
52.
51.
52. | 5 22
8 53
6 48
7 49 | . 1
. 3
. 2 | | 26 *
27 *
28 * | 50. 2
53. 2
53. 3 | 53. | . 1 . 5 | 53. 3 | 53. | 1 : | 53. 2 | 53.
53.
53. | 7 | 52 1 | I 52 | • • | 51. | 25 | 1.3 | 53. | 3 56
2 55
7 55 | . 3 | 56 | 6 57 | 1 | 56 6 | 5 55. | 85 | 4.9 | 54. 4
55. 3
56. 6 | 55 | .7 5
.3 5
.1 5 | 4. 7 | 7 54. | 2 53 | 3.8 | 53. | 7 53 | . 9 | | Mean * Mean ** | 51. 7
53. 0 | 52. | 8 5 | 52. 9
54. 2 | 53.
54 | 6 : | 53. 3
53. 8 | | 8 | 53. | 2 52 | . 7 | 51. | 9 5 | 2. 0 | 53. | 0 55
8 55
2 54 | . 7 | 57. | 6 58 | 3. 1 | 57. | 2 56. | 5 5 | 5. 4 | 55. 3
55. 3
54. 9 | 2 54 | .8 5
.9 5 | 4. 7 | 7 53. | 8 5 | 3.8 | 53. | 6 53 | 3.7 | ^{*} International Quiet Day. ** International Disturbed Day. 1946031 | | MAGNETIC OBSERVATIONS, ABINGER 1946. D 3 TABLE I HOURLY MEANS OF MAGNETIC DECLINATION | | |-------------------------------------
---|--------------------------| | | | 24 1 | | | | 24. | | March | 9° + Tabular Quantities | , | | 1
2
3
4
5 | 53.2 53.8 49.3 46.2 48.0 47.2 49.7 50.7 51.2 54.3 54.2 56.0 57.2 56.7 55.5 54.7 53.6 54.8 53.8 53.3 53.5 53.6 53.8 53.3 53.3 53.3 53.3 53.6 53.8 53.3 53.4 53.3 53.3 53.3 53.3 53.3 53.3 53.4 53.3 53.7 55.9 55.2 54.2 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 54.7 | . 6
. 2
. 1 | | 6
7
8
9
10 ** | 51. 1 52. 1 51. 7 51. 0 51. 2 50. 1 50. 4 48. 7 49. 3 50. 7 54. 4 58. 7 60. 8 63. 0 61. 3 57. 9 56. 4 54. 1 52. 1 52. 7 52. 1 52. 8 51. 3 51. 52. 0 52. 0 51. 1 50. 6 50. 7 50. 4 49. 4 49. 0 49. 0 51. 0 52. 1 57. 0 61. 4 60. 5 59. 8 58. 5 56. 6 54. 4 52. 9 51. 6 52. 1 51. 1 52. 6 53. 2 53. 1 53. 1 53. 0 52. 7 52. 1 50. 8 50. 4 50. 7 53. 2 55. 7 58. 0 59. 2 59. 1 57. 6 56. 5 55. 6 54. 5 54. 6 53. 7 51. 3 53. 1 53. 2 52. 8 52. 6 51. 6 51. 5 50. 6 51. 5 50. 9 50. 5 51. 0 53. 0 55. 1 57. 7 60. 3 63. 2 63. 6 64. 0 63. 2 58. 6 50. 8 48. 6 48. 1 49. 5 50. 51. 9 54. 6 58. 1 49. 6 54. 7 51. 6 51. 6 53. 1 51. 4 53. 3 51. 6 54. 0 56. 6 60. 5 63. 3 61. 6 58. 3 55. 2 55. 5 55. 5 6. 6 45. 4 65. 2 44. 5 46. | . 1 . 4 . 0 . 3 | | 11
12 *
13 *
14 * | 39.6 52.6 48.7 52.6 54.2 53.5 53.1 52.9 51.2 51.5 52.6 55.8 58.7 57.5 56.2 57.1 53.0 53.1 52.2 48.2 53.5 53.7 52.6 49.5 53.7 53.2 52.9 52.7 52.9 52.2 51.6 50.9 52.1 54.2 56.1 56.3 56.5 55.1 54.1 53.1 53.8 54.1 53.6 53.9 53.9 53.7 53.9 53.7 53.5 52.9 52.5 52.0 50.6 49.7 51.5 53.3 56.6 58.0 58.3 57.0 55.2 54.0 52.6 50.9 53.0 53.5 53.0 53.0 53.0 53.0 53.0 53.0 | . 0
. 9
. 5 | | 16 *
17
18
19
20 | 53. 4 53. 2 53. 1 52. 9 52. 5 52. 0 51. 5 50. 0 48. 9 50. 0 52. 9 56. 1 58. 9 60. 0 58. 9 57. 1 55. 9 55. 5 55. 0 54. 1 54. 0 52. 0 52. 1 54. 4 52. 2 52. 8 52. 1 54. 4 58. 9 60. 0 58. 9 57. 1 55. 9 55. 5 55. 0 54. 1 54. 0 52. 0 52. 0 52. 1 54. 4 52. 2 52. 8 52. 1 54. 4 58. 9 59. 0 58. 1 54. 9 50. 7 55. 5 54. 5 54. 5 54. 5 55. 5 54. 5 55. 5 55. 5 54. 5 55. 5 <td< th=""><th>. 8
. 5
. 0
. 9</th></td<> | . 8
. 5
. 0
. 9 | | 21
22 **
23
24 **
25 ** | 53.9 53.3 53.2 55.5 52.5 51.9 50.9 50.5 49.0 48.1 50.3 54.8 58.1 62.5 60.5 59.4 57.3 56.0 55.2 54.6 54.5 54.1 53.5 53.5 53.5 59.0 62.9 59.6 57.6 56.1 55.9 54.1 54.1 54.1 54.3 53.6 53.4 53.6 53.4 53.9 59.0 62.9 59.6 57.6 56.1 55.9 54.1 | .9
.9
.5 | | 26
27
† 28 **
29
30 | 35.0 38.0 41.1 40.0 44.5 46.9 46.5 47.0 50.1 50.2 50.0 55.5 59.0 61.6 62.1 60.5 58.9 55.3 51.5 50.9 47.5 49.5 50.5 46.5 51.2 50.1 46.5 51.1 51.0 50.1 49.1 48.4 49.9 53.0 56.9 62.2 65.0 66.0 60.1 58.5 57.1 55.4 54.2 53.1 53.6 51.1 47. 48.1 42.9 38.0 50.0 46.0 50.0 47.9 45.9 49.9 60.1 70.5 48.4 51.2 54.7 53.4 51.0 50.4 47.7 46.3 46.1 46.5 49.5 53.1 57.8 61.6 62.1 58.9 57.4 55.5 53.5 52.5 51.5 50.9 50.1 51.5 52.1 51.5 52.4 52.5 51.5 50.5 49.0 47.1 47.5 50.2 53.0 55.1 57.5 58.5 58.0 56.3 54.0 52.9 53.0 52.6 52.5 50.6 51.5 51. | . 1
. 5
. 1 | | 31 | 52.0 51.5 51.6 51.4 51.0 50.0 51.5 48.1 46.9 49.5 51.7 55.9 59.3 60.3 58.5 57.5 55.1 53.5 52.5 52.4 52.5 49.9 45.8 43. | . 0 | | Mean
Mean *
Mean ** | 50.4 50.8 51.2 51.1 51.6 51.0 51.2 50.4 50.0 51.2 53.1 56.4 58.9 60.3 59.6 58.5 56.0 55.0 53.6 53.1 52.1 51.2 51.3 50. 53.4 53.4 53.1 52.9 52.7 52.2 51.8 50.8 50.1 51.4 53.6 56.2 57.9 58.3 56.8 55.5 54.3 54.0 53.2 53.5 53.7 53.2 53.1 53.2 53.2 53.2 53.2 53.2 53.2 53.2 53.2 | . 3 | | April | 9° + Tabular Quantities | | | 1
2
3
4
5 | 46. 5 48. 0 50. 9 48. 6 50. 2 49. 4 48. 5 48. 0 50. 1 49. 0 53. 3 58. 0 61. 4 60. 7 58. 1 56. 1 53. 6 52. 9 50. 2 49. 4 48. 8 44. 0 45. 5 46. 49. 4 54. 5 50. 9 50. 1 51. 4 49. 4 47. 7 47. 0 46. 5 47. 4 50. 7 58. 1 59. 3 61. 5 58. 4 57. 4 55. 0 50. 5 52. 4 52. 8 51. 3 50. 0 46. 5 49. 51. 4 52. 2 52. 0 51. 9 51. 5 50. 8 49. 8 48. 9 47. 9 49. 1 52. 3 57. 4 60. 5 60. 4 60. 4 58. 5 55. 8 51. 9 51. 5 52. 3 52. 0 50. 9 50. 0 50. 50. 5 50. 3 51. 9 50. 9 50. 4 50. 3 49. 3 46. 8 45. 7 47. 8 52. 4 56. 8 59. 1 59. 7 59. 1 56. 9 54. 8 53. 5 53. 1 53. 0 53. 3 51. 1 49. 9 50. 48. 8 48. 5 50. 4 50. 9 50. 5 49. 9 48. 5 46. 0 44. 6 45. 4 48. 5 54. 9 60. 4 63. 4 63. 2 62. 4 59. 4 58. 4 54. 4 52. 9 53. 0 52. 1 51. 9 50. | . 3
. 4
. 4 | | 6
7
8
9 ** | 50.4 48.5 48.8 49.7 50.0 50.8 49.5 47.4 46.9 48.8 52.8 57.1 60.4 63.4 62.0 60.7 57.1 55.2 54.5 53.4 53.2 52.2 48.4 49.9 49.6 46.1 47.6 47.3 48.4 46.4 46.9 48.4 52.0 55.9 59.5 62.9 63.8 62.4 58.8 54.5 53.1 52.4 50.9 52.0 52.3 52.0 52.0 52.0 52.3 51.9 52.6 50.8 49.8 50.9 52.9 56.0 60.1 61.7 60.0 57.4 54.5 52.8 52.2 52.4 53.5 53.7 53.3 52.5 51.4 52.0 52.0 51.4 51.4 50.4 49.4 47.9 46.8 50.3 56.0 60.0 60.8 63.4 61.8 59.9 55.5 53.9 52.3 52.4 52.5 52.8 47.3 46.5 48.4 46.5 45.5 46.4 50.0 53.6 56.8 57.2 56.6 55.8 54.2 52.9 52.6 52.8 52.6 52.5 52.2 52.8 47.3 46.5 48.4 46.5 45.5 46.4 50.0 53.6 56.8 57.2 56.6 55.8 54.2 52.9 52.6 52.8 52.6 52.5 52.2 52.8 52.6 52.5 52.2 52.8 52.6 52.5 52.2 52.8 52.6 52.5 52.2 52.8 52.6 52.8 52.8 52.6 52.8 52.8 52.6 52.8 52.8 52.8 52.8 52.8 52.8 52.8 52.8 | . 6
. 9
. 6
. 2 | | 11 *
12
13
14 **
15 ** | 52. 1 52. 0 52. 0 52. 0 52. 1 51. 6 51. 0 47. 9 47. 9 50. 1 53. 1 55. 9 59. 1 59. 57. 6 55. 1 53. 3 51. 8 51. 5 52. 1 53. 0 53. 1 53. 4 52. 52. 2 52. 5 48. 9 46. 4 48. 4 49. 5 53. 9 55. 1 52. 5 51. 6 51. 0 50. 5 48. 2 46. 5 47. 0 50. 5 54. 6 58. 9 61. 5 64. 2 58. 7 59. 5 52. 9 53. 5 52. 6 54. 1 54. 2 54. 9 51. 4 51. 53. 9 55. 1 52. 5 51. 6 51. 0 50. 5 48. 2 46. 5 47. 0 50. 5 54. 6 58. 9 61. 5 64. 2 58. 7 59. 5 55. 9 53. 5 52. 4 50. 5 49. 0 48. 1 49. 1 53. 51. 3 52. 7 47. 1 47. 1 50: 0 51. 7 53. 1 62. 6 60. 1 54. 9 60. 0 63. 1 62. 1 61. 7 60. 4 58. 1 54. 6 52. 6 50. 0 47. 1 51. 9 52. 6 52. 6 52. | . 8
. 9
. 6 | | 16
17
18
19 *
20 * | 52. 2 51. 9 52. 2 52. 1 51. 7 50. 1 | . 5
. 5
. 9
. 1 | | 21 *
22
23 **
24 **
25 | 51.8 51.4 51.3 51.1 50.1 48.9 47.5 47.6 48.0 50.5 54.1 57.6 59.9
58.3 57.1 56.1 55.1 54.1 53.2 53.2 53.0 53.0 52. 51.6 51.5 51.5 50.7 50.5 49.5 47.9 51.5 55.6 56.0 58.0 59.7 59.6 58.5 57.7 57.0 55.5 54.5 53.7 53.5 53.4 52. 51.7 52.5 53.8 54.1 56.5 56.9 56.9 57.9 54.0 55.0 54.1 56.9 61.1 61.1 64.4 66.6 61.5 48.9 51.9 48.2 40.9 35.1 35.5 12. 48.9 44.0 46.2 47.4 46.6 48.7 47.4 45.5 47.2 48.7 50.9 53.7 55.0 55.2 55.0 53.9 53.3 52.8 51.3 50.9 51.2 51.4 51.0 50. | . 0
. 9
. 9
. 2 | | 26
27
28
29
30 * | 50. 4 49. 0 47. 8 46. 8 46. 5 47. 4 47. 9 48. 0 48. 8 50. 1 52. 7 54. 8 56. 8 57. 4 57. 8 56. 5 54. 2 52. 8 53. 1 51. 4 50. 5 51. 8 50. 4 46. 4 48. 9 53. 2 52. 8 53. 7 52. 3 50. 4 49. 2 48. 0 48. 8 48. 9 47. 5 47. 9 49. 3 48. 4 49. 4 48. 9 | . 0
. 3
. 0 | | Mean | 50.1 50.1 50.1 49.7 50.2 50.2 49.2 48.1 47.7 49.2 52.3 56.0 58.7 59.9 58.9 57.7 55.3 53.5 52.6 51.7 51.3 50.8 50.1 49. | _ | | Mean * | 51.8 52.1 51.9 51.5 51.1 50.5 49.1 47.4 47.2 48.5 51.1 54.2 57.3 58.6 57.7 56.4 55.1 54.1 53.2 53.0 53.1 52.9 52.6 51. | _ | | Mean ** | 47.4 47.9 48.0 47.5 49.8 52.2 50.1 52.0 50.4 52.2 55.6 58.7 60.5 62.0 60.6 60.2 55.1 52.1 51.7 49.4 49.3 47.5 46.7 42. | | ^{*} International Quiet Day. ** International Disturbed Day. † March 28 has been omitted in computing the monthly mean values. | | | | | | | | | | | | TA | BL | E 1 | | - | но | URI | Y | ME | ANS | 3 0 | Fì | ía gi | ΈT | IC | DE | CLI | NA' | rio | N | | | | | | | | | | | | | | | |-----------------------------------|--------------------|----------------------|-------------------------|-------------------------|-------------------|-------------------------|---|----------------------|---------------------------------|-------------|-------------------|-------------------|-------------------|-------------------|----------------|--------------------------|-----------------|-------------------|-------------------|-------------------|---------------------------------|--------------|----------------------|-------------------|--------------------------|------------------|--------------------------|--------------------------|------------------------------|---------------------------------|------------------|---|------------------|---|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------|------------------------------|------------------------------|------------------------------|----------| | U.T. | 0 h | 1 | h | 2 h | 3 | h | 4 h | 5 | 5 h | 6 | h | 7 | h | 8 | h | 9 | h | 10 |) h | 11 | b | 12 | 2 h | 13 | 3 h | 14 | h | 15 | 1 | 6 h | 17 | h | 181 | • | 19 h | 2 | 0 h | 21 | h | 22 | h | 23 ^h | | 24 h | | May | ··· | | | | | | | | | | | | | | | | 9° | + | Та | bu: | lar | Qu | ant: | t1 | es | 1
2
3
4
5 | 53
48
52 | 3. 1
3. 0
2. 9 | 49. 3
49. 7
48. 3 | 3 47
7 50
3 48 | . 0 | 47. 9
50. 8
49. 0 | 3 5
3 5
4 | 7.9
0.4
7.1 | 48.
46.
47.
46.
47. | 9
8
9 | 45
45
47 | . 4
. 9
. 4 | 46
44
47 | . 0
. 8
. 0 | 46
46
47 | .9 | 48
48
50 | . 8
. 0
. 6 | 53.
51.
53. | . 0 | 57.
58.
56.
57. | 7 5 | 61
59
60 | . 3 | 61.
60. | 5 3 8 | 60.
58.
61. | 0 5
7 5
4 5 | 7.4
7.8
9.4 | 56.
56.
56.
57. | 4
5
8 | 51.
55.
54. | 9
1
5 | 52. 4
51. 5
53. 4
53. 4 | 5 5
4 49
4 5 | 1. 9
9. 4
2. 4 | 52
50
51 | . 5 | 52.
51.
50. | 3 : | 51.
51.
50. | 9 5
B 5
4 5 | 0.4
1.4
0.2 | | | 6 **
7
8
9 **
10 | 51
51
4 49 | . 0 | 50.4
51.9
48.5 | 50
53
48 | . 1
. 4
. 9 | 50. 3
53. 8
52. 3 | 3 5
3 5
1 4 | 0.9
3.4
9.0 | 51.
58.
57.
45.
48. | 4
0
4 | 60
63
46 | . 2
. 5
. 4 | 52
58
49 | .0.4 | 48
52
50 | . 4 | 47
49
48 | . 4
. 2
. 8 | 48.
50.
51. | . 8
. 8
. 9 | 53.
53.
53.
55. | 6
2
7 | 56
55 | . 7 | 57.
56. | 8 | 57.
57. | 4 5 | 7.9
6.9 | 55.
57.
55.
57.
56. | 4 | 55. (| 1 | 54. :
53. :
52. (
46. 4
55. (| 3 5 | 1. 9
1. 8 | 51
49 | . 9
. 0 | 52.
49. | 3 | 51.
48. | 4 50
0 48 | 0.4
8.0 | | | 11 **
12
13
14 *
15 * | 51
52
51 | . 8
. 8
. 1 | 51.3
50.8
52.8 | 50.
3 47.
3 52. | . 4
. 9
. 0 | 49.4
48.6
50.8 | 4 | 9.8
5.4
8.9 | 50.
47.
46.
47.
47. | 3
9
8 | 45
46
46 | .9
.0
.4 | 46
45
46 | . 4
. 8
. 9 | 47
47
48 | . 5 | 50
48
50 | . 2
. 5
. 9 | 52.
51.
54. | . 7
. 5
. 0 | 56.
54.
53.
56. | 7
2
0 | 55
55
57 | .9 | 56.
56.
58. | 0 | 55.
56.
58. | 4 5 2 5 1 5 | 3. 6
5. 0
6. 1 | 52.
52.
54.
54.
54. | 2 8 | 51. 4
53. 4 | 4
0
4 | 50. 4
50. 8
52. 6
52. 6 | B 5:
0 5:
4 5: | 1.0
1.7
1.9 | 51.
51.
51. | . 3 | 51.
49.
51. | 7
8
5 | 52.
47.
51. | 2 5
4 5
5 5 | 1.9
1.5
1.7 | | | 16
17
18
19 *
20 | 53
52
50 | 1.0 | 53.9
52.8
51.0 | 50.
55.
51. | .0 | 51.4
50.8
50.5 | 5 4° | 3.7
7.4
9.8 | 50.
47.
46.
47.
48. | 3
7
5 | 45
44
45 | .8 | 45.
44.
45. | . 8 | 46
46
46 | .9 | 49
48
50 | . 5 | 52.
49.
54. | . 8
. 8
. 1 | 53.
56.
53.
57.
54. | 5
9
3 | 59
55
60 | .0
.4
.7 | 59.
56.
61. | 5 | 59.
55.
59. | 0 5
4 5
4 5 | 7.8
4.4
6.9 | 54.
57.
52.
55.
56. | 9 9 | 56.
51. <u>3</u>
53. 8 | 1
3
3 | 52. 4
53. 4
51. 1
53. 2
53. 6 | 4 53
1 51
2 52 | 3.0
1.4
2.7 | 52.
51.
52. | . 7
. 5
. 4 | 52.
51.
52. | 8 : | 52.
51.
51. | 3 5:
5 5:
8 5: | 2. 3
1. 3
1. 8 | | | 21
22 **
23 **
24
25 | 48
49 | . 9 | 48.0
49.1
49.3 | 47.
50.
47. | . 6
. 0
. 1 | 48.0
47.0
47.5 |) 4°
) 4°
5 4° | 7.1
5.5
8.2 | 46.
50.
44.
46.
47. | 8
0
5 | 48.
42.
46. | .3 | 52.
45.
44. | . 6
. 5
. 8 | 53
44
46 | .0 | 50
47
50 | . 6 | 53.
49.
53. | . 9
. 1 | 56.
57.
52.
57.
54. | 9
7
0 | 59
55
59
57 | .9
.5
.0 | 58.
54.
60.
58. | 1
8
6
0 | 58.
56.
61.
57. | 1 5 5 5 5 5 4 5 | 7.7
6.5
6.2
6.0 | 59.
53.
54.
57.
52. | 6 2 4 9 4 | 52. (
51. (
55. <u>:</u>
19. (| 5 | 53. 4
52. 7
47. 1
53. 9
50. 8 | 7 45
1 50
9 53
3 50 | 5.0
0.0
2.2
0.0 | 51.
48.
51.
51. | 1 5 5 4 | 51.
50.
51.
51. | 6 9 | 52. 4
50. 8
51. 6 | 4 50
8 44
0 50
4 50 | 2.6
4.5
1.5
0.8 | | | 26
27 *
28
29
30 * | 51
51
52 | . 3 | 50.4
51.4
51.0 | 50.
50. | . 5
. 8
. 0 | 50.6
48.6
48.6 | 6 4
6 4 | 9.0
7.6
7.6 | 45.
46.
44.
45.
47. | 9
6
9 | 45
43
47 | . 4
. 8
. 0 | 46.
43.
45. | . 0 | 46
43
46 | .0 | 47
47
50 | .8 | 51.
51.
55. | .0 | 56.
55.
55.
58.
57. | 7
4
4 | 58
57
59
59 | .9 | 59.
58.
59.
59. | 9 4 5 5 | 59.
57.
58.
59. | 4 5
9 5
7 5
4 5 | 7.4
4.6
6.0
7.6 | 54.
55.
52.
55. | 0 9 1 0 | 52. 9
52. 0
54. 0
52. 9 |)
)
) | 50. 8
51. 0
50. 4
53. 2
51. 9 | 50
4 50
2 51
9 51 | 0.5
0.8
1.3
1.8 | 51
48
50
48 | . 6
. 9
. 8 | 50.
50.
51.
48. | 4
3
4
8 | 50.9
52.6
50.6
48.9 | 9 5
9 52
6 50
5 49 | 1.5
2.0
0.0
9.4 | | | 31 | 45 | . 1 | 46.0 | 47. | . 7 | 45.2 | 2 4 | 5.8 | 48. | 3 | 45 | . 5 | 44. | . 0 | 46 | . 6 | 48 | . 8 | 51. | . 1 | 56. | 0 | | | | | | | | 57. | | | | 53. 7 | | | | | | | | | | | | Mean
Mean * | | | | | | | | | 48.
47. | | | | | | | | | | | | 55.
56. | | - | | - | | |
| | 55.
54. | _ | | _ | 52. 2
52. 2 | | | | | | | | | | | | Mean ** | - | | | | | | | | 48. | | | | | | | | | | | | 55. | | | | | | | | | 54. | | | | 50. 2 | 2 49 | 9.3 | 50 | . 3 | 51. | 2 | 51. | 0 4 | 8.9 | | | June | | | | | | | | | | | | | | | | | 9° | + | Та | bu] | lar | Qua | anti | ti | es. | 1
2 *
3 *
4 | 51
51
51 | . 2 | 52.0
52.0
51.8 | 53.
51.
52. | . 9
. 3
. 0 | 51. 9
50. 8
51. 4 | 5 49
4 5 | 0.0
9.5
0.5 | 49.
47.
47.
47.
47. | 6
5
4 | 46.
45.
44. | . 0
. 5
. 2 | 44. | . 6
. 9
. 5 | 43
44
44 | . 8
. 1
. 9 | 44.
46
47 | . 5
. 8
. 0 | 47.
51.
50. | . 6
. 6 | 52.
51.
54.
54.
53. | 5
7
8 | 55
56
58 | . 5
. 9
. 5 | 57.
59.
60. | 6 1 3 | 59.
59.
60. | 3 5
7 5
1 5 | 8. 5
8. 3
8. 5 | 56.
57.
55.
57. | 0 5 | 54. 9
53. 8
54. 9 | 3 | 52. 8
53. 9
52. 2
53. 9 |) 52
2 53
5 53 | 2. 5
1. 7
2. 8 | 51.
52.
51.
52. | . 6 | 52.
51.
52. | 9
5
9
8 | 52. (
52. (
52. | 5 5
5 5
7 5
1 5 | 2.0
1.6
2.0 | | | 6
7 **
8 **
9 | k 53
k 50
49 | 3. 5
3. 2
3. 4 | 53. 3
52. 9
50. 4 | 1 51
55.
1 53. | . 2
. 4
. 0 | 50.8
51.0
50.4 | 3 4
3 4
1 5 | 9.5
8.1
0.9 | 46.
48.
45.
52.
45. | 5
1
0 | 46
44
51 | . 8
. 5
. 4 | 45.
45.
51. | .9
.1 | 46
46
51 | .5 | 48
47
52 | .0 | 50.
51.
52. | . 7 | 56.
56.
55.
53. | 0
7
4 | 59
58
55 | .9
.0 | 60.
60.
57. | 8
9
0 | 63.
64.
57. | 2 6
5 5
3 5 | 0.3
9.9
6.7 | 54.
60.
60.
55. | 6 | 55. ;
55. ;
53. ; | 5
5
4 | 52. 1
54. 6
54. 5
52. 4
53. 4 | 5 54
5 54
4 51
4 51 | 4.0
4.0
1.4
2.5 | 49.
54.
51.
52. | . 1
. 8
. 9
. 6 | 51.
54.
52.
52. | 7
1
0
8 | 51.
47.
51.
52. | 5 49 5 5 5 5 5 | 9.9
8.1
1.4
1.4 | | | 11
12 **
13
14
15 | k 52
48
50 | 2. 1
3. 8
3. 8 | 51. 9
47. 8
50. 8 | 52.
3 46.
3 49. | . 0
. 6
. 8 | 51. 3
44. 4
48. 8 | 3 5
4 4
3 4 | 1.4
7.5
8.0 | 49.
48.
49.
48. | 0
8
4 | 43
47
47 | .9 | 45.
44.
49. | . 6
. 8
. 0 | 46
44
49 | . 4
. 8
. 8 | 49
47
50 | . 2 | 52.
49.
51. | . 4 | 55.
54.
51.
55.
54. | 8
5
3 | 57
55
57
57 | .8
.3
.5 | 57.
55.
57.
58. | 9 8 5 | 60.
55.
56.
58. | 8 5
8 5
5 5
4 5 | 4.8
4.7
4.9
6.9 | 54.
55.
53.
54.
54. | 9 1 8 | 55. 4
53. 4
53. 4 | 4
4
8 | 52. 8
52. 4
51. 8
52. 4
51. 7 | 4 50
3 51
4 51
7 50 | 0.4
1.6
1.3
0.8 | 50.
51.
52.
50. | . 7
. 8
. 3
. 4 | 50.
51.
52.
52. | 0
5
6 | 48. 51. 52. 651. 51. 5 | 9 50
5 5
4 5
9 5 | 0. 2
1. 4
1. 4
2. 2 | | | 16
17
18
19 **
20 | 39
51
k 45 |). 8
l. 1
5. 9 | 41. 2
52. 0
47. 9 | 2 48.
0 49.
9 45. | . 4 | 40.8
47.4
45.9 | 3 4
4 4
9 4 | 3. 1
5. 4
3. 3 | 46.
48.
45.
43.
47. | 4
8
8 | 46
43
47 | . 3
. 9
. 3 | 43
43
47 | . 8
. 0
. 3 | 45
43
48 | . 4
. 6
. 6 | 47
46
51 | . 4
. 0
. 8 | 50.
48.
54. | .9
.3 | 51.
54.
51.
56.
53. | 8
0
6 | 56
54
60
54 | .0 | 57.
56.
59.
56. | 7
8
8 | 59.
58.
58.
56. | 4 5 4 5 0 5 | 8.5
8.8
6.0
4.6 | 56.
57.
57.
55. | 8
8
4 | 55. (
55. (
53. (| 0
0
4
2 | 52. 5
53. 5
51. 8
54. 0
52. 8 | 3 51
3 51
3 54
3 50 | 1.4
2.3
4.5
0.8 | 51.
49.
52.
50. | .9
.4
.6 | 52.
46.
50.
51. | 0 /
9 /
5 | 48.
46.
50.
50. | 4 48
5 46
0 50
8 5 | 8.9
6.3
0.3
1.0 | | | 21
22
23 *
24 *
25 | 46
50
50 | 5. 4
). 4
). 4 | 46.0
50.1
50.0 | 5 47
L 49
5 50 | . 5 | 48.
49.
50. | 2 4 1 4 2 4 | 7.4
8.2
8.9 | 48.
46.
46.
47.
46. | 5
7 | 44
45
47 | . 8
. 2
. 1 | 45
47
46 | . 4
. 0
. 8 | 45
48
46 | . 8
. 9
. 3 | 47
48
46 | . 9
. 4
. 4 | 51.
50.
48 | . 4
. 0
. 0 | 52.
54.
52.
51.
53. | 5 | 55
55
56 | .9.4.3.8 | 58.
57.
57.
56. | 0 0 0 8 | 57.
57.
57.
56. | 5 5
0 5
8 5
4 5 | 7. 1
5. 5
6. 3
6. 5 | 54.
56.
53.
54.
55. | 8
5
4
9 | 53. 5
52. 6
53. 5
52. 6 | 9 | 52. 4
53. 0
52. 2
52. 6
51. 0 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1.3
2.4
2.1
1.5 | 51.
52.
52.
52. | . 4
. 0
. 4 | 50.
51.
51.
52. | 8
4
5
8 | 51.
51.
51.
52. | 4 5
0 50
5 50
4 5 | 1.4
0.6
0.9
1.8 | | | 26
27
28
29 **
30 * | 51
49
k 47 | l.4
).7
7.9 | 51. 3
49. 4
46. 6 | 2 50
4 48
5 46 | . 2
. 9
. 3 | 49.
48.
44. | 3 4
9 4
9 4 | 8.6
6.6
1.4 | 48.
48.
45.
43.
47. | 9
0
4 | 48
46
42 | .5 | 51
48
45 | . 3
. 5
. 3 | 51
49
48 | .9
.4
.2 | 51
48
49 | . 5
. 7
. 8 | 50.
48.
53. | . 4
. 4
. 1 | 53.
50.
50.
57.
54. | 6
.4
0 | 54
54 | . 0
. 4 | 55.
57.
64. | 8 4 | 56.
58.
64. | 9 5
6 5
0 6 | 6. 4
8. 4
1. 4 | 56.
55.
57.
58.
55. | 4 4 8 | 54.
56.
54. | 9
B
9 | 51. (
54. 9
55. 8
54. 8
52. 4 | 9 53
8 54
8 4 | 3.7
4.4
7.9 | 49
53
45 | . 4
. 0
. 6 | 50.
49.
44. | 8
4 | 51.
51.
49. | 4 40
0 49
2 5 | 8.3
9.4
1.4 | | | Mean | 50 |).3 | 50. | 2 50 | . 0 | 49. | 2 4 | 8. 4 | 47. | 5 | | | | | | | | | | | 53. | | | | | | | | | 55 | | | | 52.9 | | | | | | | | | | | | Mean * | _ | | | | | | | | 47. | _ | | | | | | | | | _ | | 53.
56. | _ | | | | | | | | 55.
58. | | | | 52. :
54. : | | | | | | | | | | | | Mean ** | * 45 | 7.9 | ου. <u>'</u> | יסכ כ | . U | 40. | 0 4 | 0. / | 45. | 0 | +) | | 4) | . 0 | ٦/ | . 4 | 77 | | | | <i></i> | <u> </u> | ^{*} International Quiet Day. ** International Disturbed Day. M40071 | | | MAGNETIC OBSERVATIONS, ABINGER 1946. D 5 TABLE I HOURLY MEANS OF MAGNETIC DECLINATION | |-------------------------------------|---|---| | U.T. | 0 ^h 1 ^h 2 ^h 3 ^h 4 ^h 5 ^h 6 ^h | 7 h 8 h 9 h 10 h 11 h 12 h 13 h 14 h 15 h 16 h 17 h 18 h 19 h 20 h 21 h 22 h 23 h 24 h | | July | | 9° + Tabular Quantities | | 1 * | 51.3 50.5 49.9 49.9 48.8 46.4 | 44.9 44.5 44.0 45.7 48.8 52.0 55.4 56.5 57.0 56.3 55.0 54.0 53.4 52.8 51.9 51.8 52.0 51.1 | | 2
3
4 *
5 * | 51.0 50.8 50.4 51.8 52.5 48.5 51.1 51.3 51.7 50.9 53.3 52.9 50.3 49.7 49.3 48.4 47.3 46.3 50.9 50.4 50.7 49.1 47,4 46.4 | 46.8 46.3 47.4 46.9 48.1 50.7 53.3 54.8 55.9 55.9 55.2 53.4 52.3 52.5 53.0 51.9 51.3 48.8 51.7 53.7 53.2 54.6 54.2 55.2 54.1 54.3 53.8 53.7 52.8 53.8 54.0 53.2 52.8 52.3 51.1 45.3 45.9 47.1 48.8 50.6 54.8 58.2 59.0 57.4 56.8 56.3 55.3 54.3 53.5 52.8 51.9 51.3 50.7 46.6 46.7 46.4 47.3 49.2 52.9 55.4 57.3 57.4 57.1 54.9 53.9 54.3 53.9 53.7 52.8 51.8 51.2 | | 6
7 **
8
9
10 | 50. 5 50. 3 50. 1 49. 4 48. 6 48. 3 50. 3 50. 3 50. 8 51. 8 53. 3 48. 9 42. 9 42. 3 41. 0 40. 5 41. 2 41. 7 51. 7 51. 7 53. 6 46. 9 44. 2 42. 2 50. 7 50. 4 51. 7 50. 8 47. 8 46. 7 | 48. 3 48. 3 49. 3 50. 8 53. 4 55. 4 57. 0 56. 9 56. 1 54. 9 54. 3 53. 9 52. 6 53. 1 52. 5 52. 0 51. 3 50. 0 46. 1 45. 2 46. 7 50. 5 53. 5 52. 9 56. 8 59. 2 60. 5 58. 7 57. 8 57. 4 53. 3 53. 9 52. 6 53. 1 52. 5 52. 0 51. 3 53. 3 44. 2 45. 7 48. 7 51. 5 55. 1 56. 2 56. 2 56. 4 56. 6 54. 3 53. 3 52. 8 52. 4 49. 8 49. 8 50. 9 46. 6 47. 7 49. 6 50. 9 54. 8 56. 7 57. 3 56. 9 55. 6 54. 5 50. 9 51. 3 53. 8 54. 1 53. 7 52. 8 51. 3 | | 11
12
13 *
14
15 | 51. 2 51. 8 53. 0 1. 5 47. 8 47. 2 51. 0 50. 5 49. 8 48. 6 48. 5 47. 3 51. 8 51. 7 51. 7 51. 3 49. 9 47. 9 50. 9 50. 8 51. 0 49. 7 48. 7 46. 6 47. 6 48. 9 49. 1 46. 5 46. 6 47. 8 | 46. 2 45. 7 46. 7 47. 3 48. 8 51. 3 53. 3 53. 8 53. 3 53. 3 52. 7 52. 3 50. 4 51. 8 50. 3 50. 8 52. 3 647. 2 48. 3 48. 9 49. 7 50. 0 52. 4 54. 5 55. 4 54. 5 53. 3 52. 0 51. 7 51. 9 52. 1 52. 0 51. 9 52. 4 52. 3 47. 4 49. 3 49. 2 51. 4 52. 5 54. 8 57. 5 58. 8 58. 3 56. 0 53. 4 52. 3 50. 7 50. 3 51. 3 51. 5 51. 8 51. 3 46. 4 47. 4 49. 5 47. 8 49. 5 54. 2 57. 4 58. 9 58. 8 56. 9 58. 3 56. 4 53. 9
54. 4 53. 6 53. 0 50. 5 48. 4 44. 8 46. 5 46. 8 48. 0 50. 9 54. 1 56. 4 57. 9 58. 0 55. 3 52. 5 51. 6 51. 3 51. 5 51. 1 51. 0 50. 5 50. 0 | | 16
17
18 **
19
20 * | 49. 9 49. 2 49. 4 48. 8 48. 2 46. 6
49. 2 50. 5 48. 0 47. 0 47. 1 47. 1
47. 3 47. 9 49. 0 48. 9 47. 1 45. 5
48. 5 51. 0 52. 0 47. 9 50. 8 51. 5
50. 5 48. 5 48. 6 47. 5 45. 8 44. 1 | 45. 5 46. 0 47. 1 47. 3 50. 3 53. 5 55. 0 55. 8 56. 6 56. 7 50. 8 53. 0 51. 9 51. 4 51. 2 50. 5 48. 6 48. 2 49. 1 45. 3 46. 4 48. 9 52. 0 54. 2 57. 2 59. 5 58. 3 57. 0 55. 0 54. 0 51. 9 51. 5 51. 6 50. 8 48. 5 46. 9 44. 2 44. 1 45. 2 45. 6 48. 6 51. 9 55. 7 58. 6 65. 0 66. 4 60. 0 58. 4 54. 4 50. 0 51. 4 48. 6 47. 5 49. 5 49. 9 50. 9 48. 9 47. 5 50. 0 53. 5 57. 4 57. 9 54. 6 54. 1 52. 8 51. 1 50. 8 51. 3 48. 6 50. 8 50. 9 48. 8 43. 2 43. 4 44. 1 46. 0 49. 1 52. 9 56. 3 58. 8 59. 0 57. 2 54. 5 52. 5 51. 5 50. 9 51. 0 51. 1 50. 9 50. 5 | | 21
22
23
24
25 | 46. 3 45. 6 46. 7 46. 6 44. 1 42. 9
50. 1 49. 6 49. 1 49. 0 47. 6 46. 9 | 44.0 44.1 45.0 48.4 50.6 53.8 57.0 58.7 58.6 57.1 54.5 52.5 52.2 48.3 49.1 46.5 42.9 43.1 44.9 47.6 50.6 53.4 55.9 57.5 58.0 58.1 56.7 53.4 51.5 51.2 52.1 50.9 51.2 47.6 43.4 43.2 45.5 47.7 51.0 55.6 55.5 57.1 58.1 58.4 56.7 52.9 51.4 50.7 51.0 50.6 50.8 50.9 47.1 47.5 47.1 49.4 52.5 55.1 56.0 55.1 54.2 52.9 52.5 51.0 50.6 50.8 50.9 45.1 47.9 49.2 53.0 55.9 57.1 58.5 57.5 56.1 54.0 48.9 50.5 51.4 50.0 50.3 51.0 50.3 51.0 50.3 51.0 50.3 51.0 50.3 51.0 50.3 51.0 50.3 51.0 50.3 51.0 <td< td=""></td<> | | 26 **
27 **
28
29 **
30 | 46.8 18.3 22.0 26.9 43.2 39.5
48.5 48.0 46.7 46.1 45.2 44.5
49.5 48.9 47.5 48.9 49.5 54.8 | 46.0 45.6 45.6 45.5 48.5 52.0 56.1 58.1 57.2 57.0 55.0 53.4 53.5 56.3 67.9 60.9 49.5 58.6 61.5 35.7 38.9 44.2 52.5 56.5 57.9 56.5 54.7 51.6 48.9 47.5 46.5 46.0 46.5 46.9 47.2 48.3 43.9 42.4 42.4 44.1 47.9 54.1 56.5 56.0 56.4 54.5 51.5 50.3 48.2 47.5 47.8 48.1 50.6 48.5 53.0 50.0 48.7 48.4 52.5 58.5 60.3 58.5 57.6 55.6 54.8 50.0 48.9 49.4 51.0 51.0 48.1 51.5 42.6 42.0 42.3 45.0 48.1 52.0 54.4 58.5 55.6 54.8 53.1 50.5 49.3 49.7 50.4 49.9 50.0 49.9 | | 31 | 51.9 51.6 49.1 48.1 47.2 47.1 | 46.8 45.9 47.0 47.8 48.9 53.5 57.5 59.6 58.7 56.1 52.9 50.5 48.1 48.5 48.6 49.6 50.6 50.6 | | Mean | | 46.6 45.8 46.6 47.9 50.6 53.9 56.4 57.4 57.2 56.2 54.3 52.7 51.8 51.6 51.9 51.2 50.5 50.2 | | Mean ** | | 45. 5 45. 8 46. 2 47. 8 50. 0 53. 5 56. 6 58. 1 57. 8 56. 7 54. 8 53. 6 52. 8 52. 4 52. 1 51. 8 51. 6 51. 0 50. 9 44. 3 44. 7 46. 1 50. 5 54. 5 57. 2 57. 9 58. 6 57. 7 54. 7 53. 0 51. 6 50. 7 53. 4 51. 3 48. 0 50. 7 | | August | | 9° + Tabular Quantities | | 1
2
3
4
5 | 50. 5 50. 4 51. 0 51. 0 49. 6 47. 2
51. 2 50. 8 50. 5 50. 5 49. 9 48. 1
49. 5 49. 4 49. 4 49. 1 48. 2 46. 1 | 47.5 45.5 43.8 44.9 47.5 52.4 56.5 58.7 58.5 56.6 53.0 50.4 47.6 47.9 49.1 50.1 49.5 50.0 45.1 44.0 44.7 45.6 48.5 52.3 54.1 55.4 54.7 53.0 50.9 48.9 48.1 49.5 49.9 50.8 50.2 50.8 46.7 44.1 44.5 46.5 50.1 53.9 56.5 57.0 55.9 53.5 51.9 50.8 50.1 50.2 50.1 49.6 49.6 49.5 44.2 43.5 44.9 47.1 51.0 54.9 56.9 58.3 56.1 53.9 52.6 51.5 51.6 51.7 51.9 51.9 51.3 45.6 45.5 46.0 47.1 49.4 54.8 58.0 57.6 55.9 53.7 52.6 51.5 52.0 51.4 51.0 50.1 50.2 50.0 | | 6
7 **
8
9
10 | 49. 4 48. 9 48. 5 48. 2 47. 1 46. 6 | 45. 8 45. 4 45. 9 47. 0 50. 0 52. 9 56. 6 57. 4 56. 8 55. 5 53. 6 51. 7 51. 6 51. 7 51. 5 52. 9 52. 4 51. 2 45. 4 45. 0 46. 8 48. 7 51. 4 55. 1 61. 1 63. 2 63. 6 60. 2 58. 6 54. 4 51. 1 45. 6 50. 3 52. 8 51. 5 50. 5 46. 4 46. 1 45. 5 46. 1 48. 0 50. 6 53. 0 54. 9 54. 9 53. 6 52. 5 52. 0 51. 0 51. 8 50. 9 49. 7 48. 9 49. 6 46. 0 45. 7 46. 5 48. 5 51. 1 54. 7 57. 7 57. 5 56. 5 54. 9 53. 1 50. 9 50. 8 49. 9 50. 5 51. 5 51. 0 50. 1 44. 1 43. 2 44. 0 47. 4 52. 1 57. 1 59. 8 59. 7 58. 0 54. 6 52. 5 51. 0 49. 5 49. 1 50. 6 51. 2 49. 7 48. 3 | | 11 **
12
13
14 **
15 ** | 49. 0 49. 0 48. 6 47. 5 46. 3 45. 5 | 52. 2 48. 5 45. 1 47. 1 52. 1 54. 0 55. 6 58. 3 57. 1 54. 8 54. 5 47. 6 46. 0 50. 2 51. 0 50. 8 50. 1 46. 1 46. 1 44. 2 43. 2 46. 0 50. 1 57. 5 58. 0 56. 7 54. 6 53. 1 51. 2 50. 2 50. 6 50. 6 49. 6 47. 4 44. 1 45. 6 44. 1 45. 0 49. 1 53. 5 57. 3 58. 7 57. 0 54. 3 51. 6 50. 2 50. 6 50. 6 49. | | 16
17
18
19
20 | 45. 3 46. 4 47. 1 46. 8 47. 8 49. 0
49. 1 48. 6 48. 9 48. 6 47. 7 46. 6
44. 1 43. 1 45. 8 47. 1 46. 6 46. 6 | 42.6 42.0 43.9 46.6 50.9 53.9 56.6 57.6 55.7 54.6 54.6 53.5 53.4 47.4 42.5 45.7 42.6 44.2 51.2 52.7 48.2 48.3 50.1 53.6 58.2 60.0 59.6 55.5 54.6 52.6 49.7 48.0 49.4 47.6 50.1 49.1 46.0 45.7 45.6 46.4 48.7 52.7 56.6 57.9 57.4 56.2 54.6 52.5 50.1 50.0 48.4 48.9 48.1 46.1 45.6 44.9 45.2 47.5 52.9 56.6 56.8 56.2 55.0 53.3 51.0 50.1 50.0 48.1 48.9 48.9 46.1 45.6 44.9 45.2 47.5 52.9 56.6 56.8 56.2 55.0 53.3 51.0 50.1 49.6 49.7 48.7 48.9 48.9 46.1 45.6 44.9 45.2 47.5 52.9 56.6 56.8 | | 21 *
22 *
23 *
24
25 | 49. 5 49. 2 49. 2 49. 1 47. 6 46. 6 50. 0 49. 6 49. 4 48. 5 47. 1 46. 3 | 45. 2 44. 1 44. 3 47. 4 50. 6 54. 7 58. 0 58. 6 57. 6 55. 6 53. 0 51. 5 50. 3 50. 2 50. 0 49. 5 50. 1 45. 1 44. 0 44. 0 46. 0 49. 6 53. 2 55. 2 55. 7 54. 9 53. 1 51. 2 50. 3 50. 2 50. 6 50. 3 49. 6 49. 6 49. 6 49. 6 49. 6 50. 5 5 | | 26 *
27
28
29 *
30 | 49. 2 48. 6 48. 7 48. 3 47. 2 46. 2
49. 3 48. 8 48. 5 47. 9 46. 2 44. 1
48. 5 46. 2 46. 2 46. 1 45. 7 46. 3
48. 7 48. 4 48. 2 48. 2 47. 7 47. 4
48. 4 48. 2 48. 0 47. 9 47. 7 47. 5 | 44.7 43.7 44.4 47.7 51.7 55.3 57.0 57.2 56.1 53.1 50.0 49.3 50.3 51.2 50.7 50.6 50.2 49.7 43.4 43.2 43.4 45.7 50.1 55.1 56.2 55.8 55.3 53.8 51.8 50.5 50.7 50.4 50.7 50.4 50.7 48.5 48.2 45.8 45.7 47.1 50.2 54.0 57.3 59.3 61.1 59.3 56.7 54.1 51.8 50.4 49.3 50.3 49.7 49.3 48.5 49.7 49.3 49.3 49.3 50.4 49.3 50.5 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 49.3 48.5 49.3 49.3 49.3 50.3 50.4 49.3 50.3 49.7 49.3 48.5 48.2 47.2 49.8 49.1 49.3 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 < | | 31 ** | 50.6 42.7 39.2 43.7 55.2 60.2 | 49.3 43.4 44.0 46.1 48.3 49.2 53.1 57.3 59.3 59.3 58.6 55.3 52.4 52.2 50.7 49.7 48.7 47.7 | | Mean | 49. 2 48. 4 48. 1 48. 2 47. 6 46. 8 | 45.8 44.9 45.1 47.0 50.3 54.2 56.9 57.8 56.9 54.9 53.1 51.1 50.2 50.0 49.7 49.9 49.4 49.0 45.2 44.2 44.3 46.9 50.7 54.8 57.1 57.3 56.1 53.9 51.7 50.4 50.3 50.7 50.6 50.3 49.9 49.8 | | Mean * Mean ** | | 45. 2 44. 2 44. 3 46. 9 50. 7 54. 8 57. 1 57. 3 56. 1 53. 9 51. 7 50. 4 50. 3 50. 7 50. 6 50. 3 49. 9 49. 8 47. 1 44. 9 45. 7 47. 3 50. 6 54. 0 57. 4 59. 0 59. 2 57. 4 56. 4 51. 9 49. 7 49. 5 48. 4 49. 4 49. 1 48. 4 | | LEGIL TT | 2/1/ 3/1/ 3/10 3/17 3/13 2/16 | | ^{*} International Quiet Day. ** International Disturbed Day. | | o h | | h | - h | | | | , h | | <u> </u> | | | | | | | | | | | | | | | | | | - | TIO | | | | | | | | | | . • | | | | | |------------------------------------|------------------|--------------------------------------|--------------------------|--------------------------|---------------------------------|----------------------|-------------------|--------------------------|-------------|--------------------------|------------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------------|---|-------------------------|----------------------|------|-------------------------|----------------------|----------------------|---------------------------|-------------------|---|----------------------|----------------------|--------------------------|------------------|-------------------------------|--------------------------------------|----------------------|----------------------|-------------------|-------------------|---------|-------------------------|----------------------|----------------------| | U.T. | 0 h | 1 | h | 2" | | 3 " | 4 | | | | 61 | | | n
 | 8 | n
 | | | | | | | | | | 1 | 4 n | 15 | n j | 16 n | 17 | - n | 18 h | ·
 | 19 h | | 20 h | 21 | l ⁿ | 22 | n . | 23 h | 2 | | eptember | | | | | | | | | , | | | | | | | | | 9° | + | Tab | ula | r G | \uan | tit | ies | | | | | | | | | | | | | | | | | | | | 1 *
2 3
4 5 | 4
4
4 | 6. 9
8. 6
9. 6
9. 3 | 48.
48.
48. | 3 4
9 5
7 4 | 8. 1
0. 4
7. 7 | 48
49
47 | . 7 | 48
48
48 | . 1 | 46.
47.
48. | 3
6
1 | 46.
46.
48. | 2 3 7 | 47.
44.
47. | 3
7
3 | 46.
44.
45. | 0 | 46.
45.
45. | 6
0
8 | 46.
47.
47.
47. | 8 5
3 5
1 5 | 1.7
1.8
1.7 | | 54.
56.
54. | 2 55
7 59
5 56 | 5. 4
9. 8
5. 3 | 56.
59.
5 7. | 7 7 1 | 54. 1
56. 1
59. 1
56. 8
56. 8 | 7 54
1 57
3 54 | i. 7
7. 8
i. 2 | 52.
52.
49. | 2
8
1 | 48.
50.
49. | 3 50
3 49
3 50
7 40
3 5 | 9.7
0.3
8.5 | 7 49
3 49
5 47 | . 1
. 9
. 2 | 49.
47.
47. | 1 1 8 | 48.
47.
49. | 7 40
2 40
4 40 | 8. 9
9. 5
9. 2 | | 6 *
7
8
9 | 4
4
4 | 5. 9
9. 6
8. 7
8. 2
8. 3 | 49.
48.
47. | 2 4
8 4
9 4 | 9. 2
7. 7
7. 8 | 48
46
46 | . 7
. 9
. 4 | 48.
47.
46. | 3 | 48.
46. :
46. | 1
3
1 | 48.
44.
46. | 8 | 47.
45.
44. | 4
2
8 | 46.
45.
45. | 2
7
2 | 50.
48.
46. | 5
3
8 | 47. (
54. §
51. (
50. § |) 54
1 54 |
7.9
4.7
2.9 | | 58.
56.
54. | 3 60
5 55
7 55 | . 8
. 2
. 0 | 57.
54.
56. | 2 8 | 54. 3
52. 8
52. 3
56. 0
53. 3 | 3 51
3 51
3 55 | . 1 | 49.
50.
52. | 6
5
8 | 49.
49.
47. | 8 50
4 4
1 40
7 40
3 49 | 7.7
5.7
B.4 | 7 48
7 48
1 49 | . 4
. 1
. 8 | 51.
48.
49. | 8 | 49.
48.
48. | 8 49
9 44
3 41 | 9. 4
4. 7
8. 5 | | 11
12
13
14
15 * | 4
4
4 | 5. 6
8. 7
8. 7
3. 3
7. 6 | 48.
48.
46. | 2 4
7 4
1 4 | 7. 7
8. 0
7. 6 | 48
48
48 | . 2
. 2
. 4 | 48.
48.
47. | 0 7 | 47.
50.
47. | 2
2
8 | 45.
46.
46. | 7
2
4 | 46.
45.
44. | 7
1
7 | 47.
44.
43. | 8 - | 47.
45.
43. | 5 4
7 4
8 4 | 49.
49.
48.
46.
48. | 2 5
1 5
7 5 | 3.7
1.7
1.7 | - | 56.
55.
54. | 5 57
5 57
3 56 | . 4
. 3
. 7 | 55.
57.
56. | . 0
. 7
. 6 | 56. 0
54. 2
55. 2
54. 7
56. 3 | 2 53
2 53
7 52 | . 2 | 52.
51.
51. | 0
9
1 | 51.
51.
50. | 1 48
0 49
0 49
6 49
7 50 | 9. 8
9. 7
9. 7 | 49
49
49 | . 1
. 1
. 2 | 47.
49.
48. | 1 1 | 43.
48.
46. | 7 47
6 40
9 40 | 7.8
5.3
5.6 | | 16
17
18 **
19 **
20 | 4
5
4 | 8. 6
0. 5
1. 4
5. 3
5. 6 | 40.
42.
43. | 3 4:
2 4:
6 4: | 5. 1
5. 1
0. 8 | 46
44
50 | . 5
. 8
. 9 | 47.
39.
43. | 6
7
7 | 50. (
53. ;
41. ; | 5
1
7 | 45.
55.
42. | 7
2
9 | 43.
48.
41. | 2
2
0 | 43.
51.
41. | 6 | 45.
55.
43. | 3 4
2 5
8 4 | 48.
48.
52.
49. | 3 52
2 52
3 54 | 2.0
2.6
4.9 | | 53. 6
56. 9
51. 0 | 5 54
9 54
0 60 | . 8
. 8
. 7 | 54.
57.
61. | 7 3 1 | 55. 7
53. 6
58. 8
53. 1
52. 3 | 50
59
51 | . 3 | 50.
51.
49. | 6
5
7 | 49.
54.
49. | 4 40
6 47
1 44
5 49
4 49 | 7.5
1.3
7.5 | 45
44
47 | . 6
. 1
. 7 | 45.
46.
48. | 7 4 1 | 46. ;
44.
48. (| 3 50
7 47
0 47 |). 1
7. 6
7. 3 | | 21
22 **
23 **
24
25 * | 4
5
3 | 9. 7
5. 3
3. 4
8. 7
8. 4 | 44.
54.
41. | 7 4
8 5
5 4 | 3.9
5.4
1.7 | 40
59
46 | . 3 | 51.
59.
44. | 8 | 69.
58.
44. | 3
3
2 | 47.
61.
43. | 8
2
7 | 34.
48.
41. | 3
2
8 | 37.
46.
41. | 8 2 | 47.
50.
42. | 6 :
8 :
5 : | 48. 7
52. 7
51. 8
45. 8 | 7 46
3 55
3 49 | 6. 2
5. 3
9. 8 | | 56. 2
56. 7
51. 3 | 2 62
7 55
3 53 | . 7 | 77.
55.
54. | 7
7
2 | 54. 2
69. 2
56. 4
52. 2
52. 5 | 58
47
49 | . 7 | 52.
46.
48.: | 2
1
9 | 50.
42.
4 8. | 6 57
6 35
4 44
9 48
5 47 | 5. 7
4. 7
3. 0 | 46
46
48 | . 1
. 9
. 4 | 47.
43.
48. | 2 2 | 41.
40.
48. | 2 47
9 40
7 48 | 7. 1
). 7
3. 4 | | 26 *
27
28 **
29
30 | 4
4
4 | 8. 1
7. 3
6. 3
2. 2
1. 7 | 47.
47.
47. | 7 41
5 49
4 3 | 8.6
9.8
7.8 | 47
46
42 | . 3
. 8
. 5 | 46.
45.
43. | 9 4 7 | 46.
48.
43. | 9
3
3 | 47.
52.
42. | 1
9
8 | 49.
60.
41. | 1
4
8 | 49.
51.
42. | 8 . | 49.
48.
44. | 8 4
2 5
7 4 | 48. 7
49. 8
53. 4
47. 5 | 5 5 1
1 5 4
5 5 2 | 1. 4
4. 5
2. 1 | | 54. 6
55. 8
54. 6 | 5 55
8 55
5 55 | . 1
. 7
. 4 | 54.
55.
55. | 8
2
8 | 54. 5
53. 4
53. 9
56. 2
50. 4 | 51
48
51 | . 5
. 8
. 8 | 41.
47.
44. | 8
5
8 | 40.
43.
46. | 9 49
2 36
8 46
8 42
3 38 | 5. 8
5. 5
2. 3 | 42
44
44 | . 8
. 8
. 6 | 40.
43.
46. | 8 4 2 | 36.
40.
46. | 7 43
3 38
3 41 | 3. 2
l. 0 | | Mean | 4 | 6.9 | 46. | 8 4 | 7. 1 | 47 | . 8 | 47. | 6 | 48. | 5 | 47. | 3 | 45. | 8 | 45. | 3 | 46. | 8 | 49. | 2 5: | 2. 4 | | 55. 4 | 4 56 | 5. 5 | 56. | 9 | 55. 2 | 2 52 | . 8 | 50. | 3 | 49. | 0 47 | 7. 1 | 47 | . 9 | 47. | 8 | 47. (| 0 46 | 5.8 | | lean *
lean ** | | 7. 4
8. 3 | | | | | - | | | | | | | | | | | | | 47. 9
51. 8 | | | | | - | | | | 54. 3
58. 3 | | | | | | 0 49 | | | | | | | | | | October | | | | | | | | | | | | | _ | | _ | | | | | | | | uan | | | | | | | | | | | | | | | - | | | | | | | 1 | 4 | 6.9 | 46. | 3 4 | ,
8. 0 | 48 | , 2 | 48. | 8 | 50.6 |
5 | 48. | 4 | 48. | 1 | 46. | | , | | 46.8 | | -, | | -, | | , 9 | 55. | 4 | 52. 4 | 51 | ,
.3 | 50. | 4 | 47. | 3 42 | 2. 3 | 46 | . 4 | 48. | 8 | 47. | 3 46 | 5. 7 | | 2
3
4
5 | 4
4
4 | 8. 3
7. 8
8. 8
8. 7 | 48.
48.
48. | 5 4
2 4
3 4 | 7. 8
6. 4
8. 7 | 48
46
47 | .6
.9
.8 | 47.
47.
45. | 7
8
8 | 47.
51.
47. | 5
B
3 | 46.
50.
47. | 2
4
7 | 44.
45.
45. | 7
9
6 | 44.
44.
46. | 4 4 | 45.
45.
47. | 3 4 | 48.
47.
49.
50. | 2 51
7 52
5 53 | 1.9
2.2
3.5 | | 55. 4
56. 2
55. 5 | 4 55
2 56
5 55 | .7 | 54.
56.
54. | 4
3
8 | 52. 7
53. 8
52. 2
56. 7 | 51
50
48 | . 4 | 49.
51.
49. | 1
4
1
2 | 50.
50.
45. | 2 48
3 49
2 49
9 48 | 9. 2
9. 7
8. 6 | 49
48
49 | . 3
. 7
. 7 | 49.
48.
49. | 4 . 7 . | 48.
48.
49. | 5 48
4 48
7 48 | 3. 5
3. 3
3. 9 | | 6
7
8 *
9 **
10 | 4
4
4 | 8. 5
5. 2
8. 2
8. 3
6. 3 | 46. 1
48.
46. 1 | 8 40
1 40
8 40 | 6. 9
8. 3
4 . 7 | 49
48
41 | . 0
. 1
. 6 | 48.
48.
44. | 8
0
6 | 48. 5
47. 6
43. 8 | 5
3
3 | 48.
47.
43. | 0
4
8 | 47.
46.
48. | 0
0
9 | 46.
44.
45. | 5 4
7 4 | 46.
44.
45. | 9 4 | 50. 1
48. 8
46. 8
46. 7
48. 1 | 52
3 49
50 | 2. 7
9. 7
). 3 | | 52. 8
52. 5
53. 0 | 3 55
5 53
3 54 | . 7
. 7
. 6 | 55.
53.
52. | 3
7
1 | 51. 7
54. 1
52. 8
51. 2
53. 6 | 54
51
50 | .0 | 53.
51.
50. | 1
7
1 | 50.
51.
1 9. | 8 45
7 49
4 50
7 48
3 49 |). 7
). 7
J. 3 | 49
50
46 | . 1
. 7
. 8 | 48.
49.
45. | 3 7 | 48.
49.
47. 9 | 3 48
1 49
2 46 | . 4
. 2
. 9 | | 11
12
13 *
14
15 | 4
5
4 | 7.9
8.5
0.7
7.2
8.7 | 47.
48.
46. | 8 50
4 4
8 4 | 0.3
8.5
7.1 | 45
48
47 | . 8
. 3
. 8 | 46.
47.
48. | 8 3 | 46. 8
47. 9
47. 8 | 8
9
8 | 48.
47.
46. | 7 0 3 | 43.
45.
44. | 7
8
5 | 43.
44.
43. | 3 4 | 43.
45.
43. | 8 4
4 4
7 4 | 49. 7
47. 4
47. 9
48. 2 | 51 | 1. 4
1. 7
3. 2 | | 52. 9
53. 8
56. 8 | 9 53
8 54
8 57 | . 2
. 8
. 7 | 52.
54.
56. | 3 2 0 | 53. 5
50. 8
52. 3
52. 8
51. 8 | 49
50
50 | . 8
. 7
. 7 | 49.1
50.
50. | 8
4
4 | 49.
49.
51. | 8 46
8 49
9 49
1 50
8 48 |). 3
). 7
). 5 | 48
49
48 | . 8
. 5
. 8 | 48.
48.
49. | 8 3 | 47. 9
48. 9
48. 9 | 9 49
7 47
9 47 |). 7
7. 8
7. 9 | | 16
17 *
18 *
19
20 ** | 4
4
4 | 6. 4
8. 4
8. 6
7. 7 | 48.
48.
47. | 2 4:
7 4:
7 4: | 7. 8
8. 7
7. 6 | 47
48
47 | . 8
. 1
. 7 | 47.
47.
47. | 7
8
4 | 46.
47.
46. 8 | 5
3
8 | 46.
47.
47. | 8
5
2 | 45.
46.
46. | 2
7
1 | 43.
46.
45. | 7 4 | 43.
47.
46. | 2 4 7 4 | 48. 2
46. 2
50. 2
48. 7 | 5 50
5 53
7 52 |). 4
3. 1
2. 3 | | 53. 5
54. 7
53. 9 | 3 54
7 54
9 54 | . 7 | 54.
52.
54. | 3
7
1 | 52. 1
52. 7
50. 8
52. 2
53. 8 | 51
49
50 | . 1
. 7
. 8 | 51.
50.
50. | 1
4
2 | 50.
50.
48. | 3 49
7 50
3 49
6 48
2 48 |). 6
). 7
3. 7 | 50
49
48 | . 1
. 5
. 6 | 49.
49.
47. | 7 . | 49.
49. (
46. (| 48
47
3 41 | 3. 8
7. 7
1. 7 | | 21
22
23
24
25 | 4
4
4 | 8. 2
8. 3
9. 0
8. 0
5. 8 | 49.
48.
47.
48. | 0 4
5 4
4 4
3 4 | 8.8
7.9
6.7
8.1 | 47
48
47
47 | .9
.2
.3 | 48.
48.
47.
47. | 2 3 8 8 | 47.
47.
49.
47. | 7
8
3
2 | 47.
49.
46. | 8
0
3 | 46.
49.
45. | 7
3
1 | 44.
47.
43. | 8
2
8 | 45.
47.
45. | 8 4
9 5
4 4 | 47. 8
49. 2
50. 2
49. 3 | 2 5 | 2. 7
3. 1
2. 6 | | 54.0
53.3
56.4 |) 53
3 53
4 54 | . 7
. 4
. 7 | 52.
51.
54. | 2 2 | 50. 7
51. 3
49. 8
53. 2
51. 5 | 50
49
51 | . 3
. 8
. 4 | 49.
49.
50. | 5
8
1 | 49.
49.
49. | 3 49
3 48
5 48
7 48
1 47 | 3. 9
3. 9
3. 8 | 48
48
48 | . 8
. 4
. 1 | 48.
46.
47. | 9 4 | 48.
47.
47. | 3 47
2 47
3 45 | 7.9
7.8
5.8 | | 26 **
27 **
28
29
30 * | 4
3
4
4 | 1. 6
4. 2
8. 4
6. 6 | 45.
37.
47.
46. | 8 4
4 2
7 4
1 4 | 5.5
7.3
7.8
8.3 | 44
36
48
49 | . 2
. 9
. 4 | 46.
43.
48.
47. | 9 3 1 8 | 52.
52.
48.
47. | 2
2
7
3 | 47.
49.
46. | 5 2 9 | 45.
47.
46. | 8
1
7 | 47.
45.
46. | 3 . | 48.
44.
47. | 5 2 | 51. 9
52. 4
47. 4
50. 7 | 1 50
1 51
7 51 | 5.5
1.9
1.9 | 3 | 55.8
53.9
54.2 | 8 54
9 54
2 54 | . 0 | 58.
52.
53. | 8 | 53.6
53.2
51.8
52.0
51.3 | 46
49
51 | . 3 | 50.
46.
50. | 2
4
8 | 49.
49.
49. | 2 47
7 44
9 49
8 47
6 49 | 1. 4
7. 5
7. 8 | 43
48
44 | . 6
. 8
. 8 | 43.
48.
46. | 7 4 7 | 42. (
47.)
47.) | 3 48
7 40
7 47 | 3.4
5.8
7.8 | |
31 ** | | 7.9 | | | | | | | | | | 47. | 4 | 46. | 3 | 46. | 2 - | 4 7. | 9 4 | 49. 4 | 53 | 3. 9 | | 54. 8 | B 56 | . 5 | 53. | 3 | 53. 5 | 52 | . 3 | 47. | 8 | 51. | 4 47 | 7.4 | 45 | . 7 | 43. | 8 | 42. | 3 44 | i. 3 | | Mean | 4 | 7.0 | 47. | 4 4 | 6. 9 | 47 | . 3 | 47. | . 4 | 47. | 8 | 47. | 5 | 46. | 3 | 45. | 2 | 45. | 8 | 48. | 7 5 | 2. 2 | : : | 54. | 4 55 | . 0 | 54. | 2, | 52. 4 | 50 | . 7 | 50. | | | 6 48 | | | | | | | | | | Mean * | 4 | 8. 7 | 48. | 2 4 | 8. 1 | 47 | . 9 | 47. | . 7 | 47. | 3 | | | | | | | | | 48. | | | | | | • | | | 52.0 | | _ | | _ | | 4 50 | | | | | | | | | | Mean ** | 4 | 2.7 | 44. | 9 4 | 2. 4 | 43 | . 4 | 45. | 6 | 48. | 1 | 47. | 6 | 47. | 6 | 46. | 2 | 46. | 6 | 49. | . 5 | 2. 8 | |)4. (| o 55 | . 2 | 74. | 0 | 53. 1 | ייכ ו | • > | χυ. | • | マブ・ | 6 47 | | . 4) | . , | 77. | | -2 3. (| , , , | :• J | ^{*} International Quiet Day. ** International Disturbed Day. | | <u> </u> | | | | | | | | | | 1 | _ | | | | | | | EAN | s o | | | | | | | | | | | | | | | | | | | D | <i>,</i> | | |--------------------------------------|----------|---|-------------------|----------------------|---------------------------|-------------------|-------------------|---------------------------------------|----------------------|----------------------|-----|-------------------------|---------------------------------------|----------------------|-------------------|-------------------|---------------------|-------------------|---|-------------------|-------------------|----------------|------------------------------|--------------------------|-------------|------------------------------|------------------------------|----------------------|---|----------------------|--------------------------|-------------------|-------------------|----------------------|---------------------------------|-----|-------------------------|----------------------|-------------------|-------------------------|--------------------| | U.T. | 0 h | | l p | 2 h | | 3 h | 4 | h | 5 h | | 6 h | | 7 h | | 3 h | 9 | h | 10 | h 1 | 1 h | 1: | 2 h | 13 | 3 h | 14 | h j |
15 h | 16 | h | 17 h | 18 | h | 19 h | 1 2 | 0 h | 21 | h ; | 22 h | 23 | h | 24 h | | November | | | | | | | | | | | | | | | | | —
9° | + ' | Tabı | ılar | Qu | ant | itie | es | | | | | | | | | | | | | | | | | | | 1 ** | | 44. 3 | 44. | 8 4 | 6, 6 | 46. | , 3 | 49. | 7 48 | 3. 4 | | 49. | 3 4 | 8.3 | 47 | . 6 | 49. | 5 5 | 52.6 | 53 | ,
. 2 | 5. | 1, 2 | 53. | , 4 | 54. 1 | . 52 | 2. 3 | 53. | 2 49 | ,
1 | 45. | 7 4 | 6.7 | 44. | 2 | 41.8 | 3 42 | , 0 | 46. |
! | | 2
3
4
5 | | 47. 4
49. 4
48. 6
47. 6 | 47.
48.
47. | 5 4
4 4
1 4 | 7. 7
7. 1
7. 7 | 47.
47.
48. | . 7
. 4
. 0 | 48.
47.
48. | 1 47
6 47
1 47 | 7.5
7.6
7.9 | | 51. (
47. (
47. (| 5 4
5 4
5 4 | 0.8
7.0
5.7 | 46
45
45 | . 6
. 3
. 2 | 46.
45.
45. | 5 4
3 4
2 4 | 49. 0
47. 0
47. 6
49. 4 | 51
48
50 | .9
.5
.7 | 5:
4:
5: | 3. 1
9. 7
3. 4 | 52.
50.
53. | 7 1 7 | 51. 5
49. 6
52. 6 | 5 50
5 49
5 51 |). 7
). 5
 . 8 | 49. 6
49. 6
51. 1
51. 7 | 7 49
5 49
1 49 | . 0
. 6
. 8 | 48.
48.
49. | 3 4
8 4
6 4 | 4. 2
8. 7
8. 6 | 43.
48.
48. | 8 4 | 45.]
47.]
48.] | l 46
7 46
l 47 | . 3
. 1
. 1 | 48. (
47. :
47. : | 5
2
2 | | 6 **
7
8
9
10 | | 46. 7
44. 2
47. 8
42. 0
47. 2 | 46.
47.
43. | 0 4
7 4
6 4 | 5. 4
7. 7
5. 9 | 46.
48.
46. | . 3
. 1
. 6 | 47. (
47. <u>)</u>
47. <i>(</i> | 6 46
9 47
4 46 | 5.3
7.6
5.6 | | 46. 4
47. 6
46. 6 | 4 4 5 4 5 4 5 4 5 | 5.9
7.2
5.9 | 44
46
45 | . 2
. 0
. 6 | 44.
45.
46. | 1 4
1 4
5 4 | 18.6
15.4
16.9
19.1
18.4 | 48
50
53 | . 1
. 1
. 0 | 50
50
54 |).3
).7
[.1 | 51.
52.
54. | 6 | 51.6
51.7
53.2 | 5 51
7 51
2 52 | . 1 | 54. 2
50. 2
50. 2
50. 6
51. 2 | 50
50
549 | . 3
. 0
. 7 | 50.
50.
49. | 1 4
0 4
2 4 | 9. 1
8. 6
9. 1 | 47.
48.
48.
48.
40. | 6 | 47.9
48.0
47.8 | 47
47
45 | . 5
. 2
. 9 | 47. (
44. ;
44. ; | 2 | | 11
12
13
14 * | • | 46. 7
46. 7
47. 2
47. 2
47. 6 | 47.
47.
47. | 4 4
1 4
2 4 | 4. 2
7. 6
7. 3 | 42.
47.
47. | . 7
. 7 | 46. :
48. :
47. : | 5 45
2 47
8 47 | 7.3 | • | 45. 2
47. 4
47. 2 | 2 4:
4 4:
2 4: | 5.7
5.8
5.8 | 44.
46
46. | . 7
. 2
. 5 | 44.
46.
46. | 4 4
2 4
4 4 | 18.6
15.6
16.5
17.6
17.7 | 48
48
50 | .0
.7
.7 | 50
51
51 |).6
l.1
2.2 | 51.
52.
52. | 9 : | 51. 5
51. 4
52. 1 | 5 50
1 51
1 51 | 1. 2
1. 4 | 51. 7
49. 7
50. 6
50. 6
53. 6 | 50.
550.
550. | . 1
. 7
. 5 | 47.
50.
50. | 5 4
2 4
0 4 | 4.7
8.8
9.6 | 48.
47.
48.
49.
50. | 6 | 47.6
46.5
47.7 | 46
45
47 | .7
.6
.5 | 47. 3
48. 9
47. 4 | }
}
i | | 16
17
18
19
20 | | 38. 1
46. 7
45. 1
39. 7
42. 1 | 47.
45.
42. | 2 40
7 4
1 4 | 6.7
7.2
4. 5 | 49.
47.
46. | 2 1 | 47. (
47. (
45.) | 7 46
6 47
3 45 | 5. 8
7. 3
5. 4 | | 46. 4
46. 7
46. 6 | 4 40
7 40
5 48 | 5. 1
5. 6
3. 0 | 45.
46.
46. | . 5
. 6
. 4 | 46. (
46.
47. | 0 4
1 4
7 4 | 18. 4
17. 4
16. 7
17. 2
18. 3 | 49
49
47 | .7
.3
.9 | 50
50
49 | l. 1
). 7
). 7 | 51.
51.
52. | 8 2 3 | 51. 6
51. 3
52. 3 | 5 50
3 50
3 50 |).7
).7
).8 | 50. 4
49. 6
50. 6
48. 7
50. 9 | 49
49
48 | . 3
. 7
. 8 | 48.
49.
49. | 7 4
2 4
4 5 | 8.6
8.6
0.4 | 47.
49.
48.
46.
48. | 2 . | 44. 7
47. 8
43. 7 | 43
47
37 | . 6
. 6
. 6 | 45. (
45.)
42 | i
l | | 21 **
22
23
24 **
25 ** | | 46, 2
44, 1
46, 8
46, 2
46, 4 | 47.
50.
46. | 1 44
4 44
5 4 | 8.0
8.0
7.5 | 50.
47.
48. | 0
8
5 | 48.
47. (
49.) | 4 48
5 47
3 48 | 3.6 | 4 | 48.6
48.3
49.6 | 41 | 3.0
7.5
2.7 | 48.
46.
49. | 6 | 48.
46.
48. | 1 4
7 4
1 4 | 0. 2
18. 6
18. 6
19. 0
18. 5 | 50.
50.
51. | . 2
. 5
. 9 | 50 |). 2
2. 2
5. 2
1. 6 | 51.
52.
53.
51. | 1 4 5 5 8 5 | 19.6
52.1
53.2
51.5 | 5 50
1 51
2 51
5 44 | . 1 | 49. 3
44. 6
50. 1
49. 0 | 46
49
48
48 | . 1
. 2
. 8
. 9 | 48.
48. | 5 4
6 4
6 4 | 7.7
8.1
7.2 | 47.
46.
47.
46.
45. | 6 | 46.6
47.5
46.4 | 46
47
46 | . 4 | 46.6
47.2
46.6 | | | 26
27 *
28 *
29 *
30 * | | 45.0
46.9
47.0
47.3
45.5 | 47.
47.
47. | 2 4
6 4
6 4 | 7.2
7.6
8.0 | 47.
48.
48. | 6
2
1 | 47. (
47. (
48. (| 5 47
8 47
9 47 | 7.7 | | 47. 2
47. 6
47. 6 | 4 4 4 4 | 7.1
7.7
7.1 | 46.
47.
46. | 7 7 2 | 46.
46.
45. | 1 4
9 4
7 4 | 7. 3
17. 6
17. 8
17. 2 | 49
49
49 | . 7
. 1
. 1 | 51
51
51 | l. 6
l. 2
l. 2 | 51.
51.
51. | 1 2 | 50.8
51.4
50.6 | 50
51
549 | .6 | 46. 4
49. 7
49. 6
49. 2
49. 3 | 49.
49.
49. | . 6
. 3
. 1 | 49.
49.
48. | 3 4
1 4
8 4 | 8.6
8.4
8.6 | 47.
48.
47.
48.
48. | 9 | 47.6
47.3
47.7 | 46
47
47 | . 9
. 4
. 2 | 47. 2
47. 6
46. 5 | 5 | | Mean | | 45.8 | 46. | 5 40 | 6.8 | 47. | 1 | 47.4 | 4 47 | . 1 | 4 | 47. 3 | 47 | 7. 2 | 46. | . 4 | 46. | 5 4 | 8. 0 | 50. | . 2 | 51 | . 8 | 52. | 4 5 | 51.8 | 51 | . 0 | 50. 1 | 49. | . 9 | 49. | 2 4 | 8. 1 | 47. | 4 | 4 6.3 | 45 | . 6 | 45. 9 |) | | Mean * | | 46.8 | | | | | | | | | | | | | | | | | 7.5 | | | | | | | | | | 49.7
50.9 | | | | | | 48.
46. | | | | | | | | Mean ★★ | | 46.0 | | | 0. 6 | 4/. | | 4/. | | | | 47. | | | 4./. | | | | | | | | | | | | | | | | . , | | | <u> </u> | | | | | | | | | December | 14 | 46 | - (.5 | | , | | , | , | | , | | | <u></u> | , | | , | 9 - | + 1 | rabu
, | llar | , Qu | ant | 1116 | es
 | | , | | , | , | | , | , | | , | | | | | , | , | | | 1
2
3
4
5 ** | | 45. 6
43. 7
40. 1
46. 7
47. 5 | 46.
41.
47. | 4 4
7 4
2 4 | 7. 2
6. 1
7. 2 | 47.
45.
47. | 7 2 2 | 48.
48. (
47. (| 2 48
0 48
0 46 | 3. 2
3. 6
5. 1 | | 48.
47.
46. | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7.6
7.1
7.3 | 47
46
46 | . 2 | 46.
45.
46. | 0 4
9 4
1 4 | 17. 2
17. 1
17. 6
17. 5
17. 2 | 48
49
49 | . 7
. 3
. 1 | 50
49
50 |). 5
). 6
). 6 | 51.
50.
50. | 7 1 | 51. 6
19. 7
19. 2 | 5 5 2
7 4 8
2 4 9 | 2. 0
3. 6
3. 2 | 48. 7
50. 2
48. 1
48. 6
51. 1 | 49.
48.
48. | . 1
. 2
. 3 | 49.
48.
48. | 6 4
0 4
2 4 | 6. 7
7. 5
8. 1 | 46.
47.
46.
47.
47. | 7 . | 46. 2
46. 5
47. 1 | 2 44
5 46
47 | . 0
. 7
. 2 | 39. 4
46. 9
47. 3 | <u>.</u>
) | | 6
7
8
9 *
10 ** | • | 47. 4
46. 2
45. 2
44. 8
44. 6 | 47.
45.
45. | 2 4:
5 4:
6 4: | 5. 1
6. 9
6. 1 | 44.
48.
46. | 0 2 6 | 45.
49.
47. | 7 45
2 46
4 47 | 5. 0
5. 8
7. 1 | 4 | 47.0
46.7
46.6 | 40
7 40
5 40 | 5. 5
5. 4
5. 0 | 44.
45.
45. | . 6
. 7
. 7 | 45.
46.
45. | 1 4
1 4
2 4 | 7. 7
16. 9
16. 7
16. 6 |
49.
47.
48. | . 2
. 9
. 5 | 5:
49
49 | l. 0
). 4
). 9 | 50.
50.
50. | 7 4 3 5 1 4 | 19. 7
50. 0
19. 6 | 7 50
) 49
5 50 |). 2
). 8
). 0 | 49. 1
48. 6
49. 1
50. 1 | 47.
48.
50. | . 9
. 7
. 0 | 49.
48.
48. | 5 4
0 4
8 4 | 8. 2
8. 1
8. 2 | 47.
46.
47.
46.
46. | 9 4 | 46. 5
46. 5
47. 0 | 44
46
46 | . 2
. 2
. 3 | 45. 2
45. 8
46. 0 | l
3 | | 11 **
12 **
13
14 *
15 * | • | 46. 2
44. 1
43. 8
46. 2
46. 3 | 45.
46.
46. | 5 4
3 4
2 4 | 4. 9
6. 3
6. 4 | 46.
46.
46. | 6 7 6 | 47.
47.
46. (| 7 47
1 46
8 46 | 7. 3
5. 8
5. 7 | 4 | 7.
47. (| 3 47
5 41
1 40 | 7.2
7.1
5.3 | 46
46
46 | . 7
. 9
. 2 | 45.
46.
46. | 9 4
2 4
3 4 | 6. 5
17. 7
17. 2
17. 6
16. 6 | 49
49
49 | . 7
. 5
. 2 | 52
53
50 | 2.6
l.1
).7 | 52.
52.
51. | 7 2 2 2 2 | 52.0
50.4
50.7 | 48
49
750 | 3.9
3.8
3.0 | 51. 1
47. 1
50. 2
49. 4 | 48
2 49
3 48 | . 7
. 7
. 7 | 48.
48.
48. | 3 4
1 4
2 4 | 5. 7
7. 7
8. 0 | 43.
47.
46.
47.
48. | 8 4 | 46. 7
46. 7
47. 5 | 44 46 47 | . 7
. 6
. 0 | 42. :
46. :
46. : | ?
5 | | 16
17
18
19 **
20 * | | 46.6
43.8
46.0
47.4
46.7 | 44.
45.
47. | 7 4
3 4
8 4 | 5. 0
7. 0
9. 0 | 45.
45.
47. | 5 7 | 45.
44.
47. | 6 45
2 45
4 48 | 5. 6
5. 1
3. 2 | | 46. :
46. :
48. ! | 2 40
3 50 | 5. 1
5. 8
0. 6 | 46
46
51 | . 1 | 46.
45.
50. | 3 4
6 4
6 5 | 7. 9
17. 5
16. 5
11. 6 | 49
48
53 | . 6
. 5
. 1 | 50
50
54 |).9
).6
1.9 | 50.
52.
55. | 7
6 | 50.6
51.4
56.5 | 5 49
6 50
5 54 | . 7
. 7 | 49. 3
48. 9
49. 6
52. 3 | 48
48
43 | . 3
. 6 | 48.
48.
45. | 5 4
0 4
5 4 | 8.0
7.6
4.4 | 49.
46.
47.
45.
47. | 7 | 46.0
47.0
45.7 | 44
47
46 | . 1 . | 46. :
47. 4
46. (| }
! | | 21
22
23
24
25 | | 47.6
44.7
46.7
44.2
46.2 | 43.
47.
42. | 7 4
0 4
6 4 | 3. 4
7. 1
4. 2 | 45.
46.
44. | 6
7
7 | 45. (
46. (
44. (| 6 46
6 46
7 49 | 5. 2
5. 9
5. 0 | 4 | 49. 2
46. 2
45. 9 | 2 40 | 7.0
5.2
5.7 | 46
46
45 | . 2 | 46.
45. (
46. | 1 4
0 4
1 4 | 50. 5
17. 6
15. 7
17. 1 | 49
48
48 | .9
.9
.9 | 50
50 | l.6
).7
).6 | 52.
51.
51. | 5 5 | 50.6
51.2
51.1 | 5 49
2 51
1 49 |).6
 .6
 .6 | 49.0
47.5
50.7
48.0
48.5 | 46
49
48 | . 3
. 1
. 1 | 47.
49.
48. | 6 4
5 4
0 4 | 7.0
7.6
7.2 | 46.
46.
47.
46.
47. | 5 . | 46. 5
46. 5
46. 6 | 46
45
46 | . 1
. 6
. 5 | 46. :
44. 8
46. : | 2
3
2 | | 26
27
28
29
30 * | | 46.6
44.3
43.5
46.0
46.1 | 45.
47.
46. | 1 4
0 4
2 4 | 4.0
4.3
7.2 | 43.
44.
48. | 5 | 45.
45.
47. | 4 47
7 46
1 46 | 7. 2
5. 1
5. 2 | | 49.
46.
46. | 1 4°
1 40
1 40 | 7. 2
5. 5
5. 2 | 47
46
45 | . 2
. 1
. 6 | 47.
46.
45. | 2 4
1 4
2 4 | 17. 1
17. 6
17. 5
16. 6 | 49
49
49 | . 4
. 0
. 1 | 50
49
50 |). 0
). 6
). 5 | 49.
50.
51. | 3 4 | 49. 3
51. 0
50. 8 | 3 48
3 50
3 49 | 3.7
).1
).6 | 52.0
48.6
48.9
46.6
48.3 | 48
48
48 | . 6
. 1
. 1 | 46.
48.
47. | 7 4
4 4
5 4 | 3.6
7.6
7.6 | 46.
45.
46.
46.
47. | 7 | 43.9
45.6
45.7 | 42
45
46 | . 2
. 7
. 2 | 45. (
45. (
45.) |)
3
7 | | 31 | | 46. 8 | 47. | 6 4 | 6.6 | 46. | 6 | 46. | 8 46 | 5. 7 | | 46. | 5 4 | 5. 6 | 46 | . 1 | 45. | 8 4 | 16. 6 | 47 | . 6 | 4 | 3. 6 | 49. | 6 | 50.2 | 2 50 | . 5 | 49. | 48 | . 3 | 47. | 8 4 | 7. 6 | 46. | 9 | 45. | 46 | . 5 | 46. | 5 | | Meεn | | 45. 5 | 46. | 0 4 | 6. 2 | 46. | 5 | 46. | 7 46 | 5. 6 | | 46. | 3 4 | 5. 6 | 46 | . 4 | 46. | 1 4 | 17. 2 | 49 | . 1 | , | | | | | | | 49. | | | | | | 46. | | | | | | | | Mean * | | 46.0 | | | | | | | | | | | | | | | | | 16. 3 | | | | | | | | | | 48. 8 | | | | | | 47. | | | | | | _ | | Mean ★ | | 46.0 | 46. | 4 4 | 7.0 | 47. | 4 | 47. | / 47 | . 3 | • | 4/. | 4 | /· 6 | 4.7 | . 0 | 4/. | v 4 | 48.0 |)U | ٠ ٦ | , , | 0 | ,۷ | - | , 40 : | , ,, | | 37. | . 40 | . <u> </u> | -7. | | , , · · · | | | | | | | | * International Quiet Day. ** International Disturbed Day. | | | | ŋ | TABLE | II. | – нот | URLY ME | ANS | or Ho | RIZO | NTAL | COMP | ONENT (| OF MA | GNET | C IN | TENSI | TY A | T ABIN | GER | | | | | |---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | 0 h 1 | h 2 | 2 h 3 | 3 h 4 | h 5 | h | 6 h 7 | h 8 | 3 h 9 | h 1 | 0 h 1 | 1 h 1 | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 h 1 | 7 h | 18 h J | 9 h 2 | 0 h 2 | 1 h 2 | 2 h 2 | 3 h 24 | | January | | | | | | | | 1 | 8000 | Y + ? | rabula | ar Qua | ntities | 3 (in | Υ) | · · · · · · · · · · · · · · · · · · · | | <u>.</u> . | | | | | | | | 1
2
3 **
4 **
5 | 579
585
578
503
548 | 574
565
577
510
548 | 575
563
578
515
552 | 576
568
580
548
554 | 573
571
580
567
560 | 574
576
582
566
565 | 581
579
585
555
556 | 586
577
585
571
562 | 581
578
604
545
561 | 571
575
618
539
556 | 563
573
605
549
555 | 565
568
513
546
558 | 570
567
492
536
559 | 567
563
554
521
566 | 560
559
545
528
564 | 555
567
461
530
565 | 552
555
453
547
566 | 567
557
457
529
567 | 545
560
426
549
564 | 552
569
439
545
556 | 565
576
464
525
557 | 570
576
502
530
555 | 571
577
511
575
552 | 578
578
504
540
561 | | 6
7
8
9 *
10 | 572
570
566
574
573 | 562
571
565
574
572 | 565
571
568
575
574 | 566
570
572
576
576 | 569
574
577
579
579 | 570
579
579
584
585 | 571
579
578
585
594 | 571
580
575
585
595 | 580
581
574
585
592 | 575
576
567
576
589 | 569
569
565
571
583 | 569
569
565
574
585 | 566
565
565
576
589 | 565
565
569
581
589 | 565
566
572
581
590 | 567
564
574
581
584 | 553
561
576
581
573 | 561
569
576
581
574 | 562
582
577
578
579 | 559
566
579
572
582 | | 575
571
577
571
586 | 570
566
576
572
583 | 569
565
575
574
581 | | 11 **
12
13 *
14 * | 585
567
571
582
582 | 585
572
570
582
582 | 588
575
573
583
585 | 594
575
575
585
586 | 591
575
578
586
589 | 565
577
577
589
591 | 606
579
577
586
592 | 591
581
576
586
590 | 588
581
576
586
592 | 590
572
572
584
591 | 572
554
568
577
586 | 572
551
562
571
578 | 568
565
564
571
575 | 565
568
572
572
574 | 565
566
581
569
576 | 555
569
580
572
588 | 564
566
578
575
592 | 564
567
578
578
594 | 565
554
579
579
594 | 569
566
574
581
594 | 567
562
578
582
581 | 569
574
581
581
571 | 577
575
581
581
564 | 571
574
580
581
560 | | 16
17
18
19
20 * | 556
580
572
550
566 | 565
577
572
582
569 | 567
578
573
560
567 | 570
581
572
568
575 | 569
585
572
564
573 | 577
591
572
566
577 | 591
600
579
572
578 | 592
591
582
575
578 | 589
578
577
580
574 | 587
576
568
580
568 | 585
576
562
574
562 | 580
573
556
578
562 | 577
578
560
580
575 | 573
578
566
580
584 | 566
576
558
578
586 | 566
574
566
580
583 | 567
573
570
577
580 | 569
566
572
576
582 | 575
573
563
575
581 | 576
576
592
574
580 | 576
574
550
578
580 | 577
582
550
566
576 | 581
575
566
567
577 | 580
565
545
570
575 | | 21 *
22
23
24 **
25 | 576
566
578
571
570 | 577
566
573
575
564 | 579
578
573
581
566 | 578
572
585
580
570 | 580
579
583
579
572 | 580
583
588
583
578 | 582
596
594
590
582 | 580
581
591
584
577 | 576
578
586
582
572 | 572
589
568
574
565 | 568
582
555
553
557 | 567
570
550
556
555 | 574
563
560
552
548 | 581
572
562
511
552 | 585
579
561
552
548 | 586
577
570
530
565 | 586
577
569
551
550 |
587
581
573
574
564 | 588
582
576
556
562 | 586
578
580
545
576 | 580
579
575
552
573 | 576
576
560
572
576 | 570
575
586
596
579 | 561
574
563
586
577 | | 26 **
27
28
29
30 | 577
570
577
581
584 | 576
569
577
582
582 | 582
573
577
584
581 | 587
576
578
587
582 | 580
572
580
591
586 | 579
575
582
586
588 | 581
576
582
594
594 | 588
578
581
589
596 | 576
578
578
584
595 | 555
573
570
575
588 | 569
574
569
565
579 | 562
575
572
563
574 | 562
573
573
569
577 | 566
577
573
574
578 | 569
583
576
561
580 | 571
581
580
570
585 | 572
581
584
578
588 | 541
579
587
581
589 | 549
579
587
580
588 | 559
577
586
579
589 | 571
574
580
579
589 | 576
572
574
581
586 | 575
575
581
581
589 | 573
575
582
584
596 | | 31 | 585 | 581 | 580 | 581 | 583 | 585 | 585 | 589 | 587 | 590 | 582 | 582 | 582 | 581 | 584 | 578 | 567 | 569 | 574 | 574 | 575 | 576 | 594 | 584 | | Mean | | - | | 576 | - | 579 | 583 | 583 | 580 | 576 | - | 565 | 566 | 568 | 569 | 567 | 567 | 568 | 567 | | | - | 574 | | | Mean * Mean ** | 574
563 | 574
565 | | 578
578 | | 581
575 | 582
583 | 581
584 | 579
579 | 574
575 | 569
570 | 567
550 | 572
542 | 578
543 | 580
552 | 580
529 | 580
537 | 581
533 | 581
529 | 579
531 | 578
536 | 577
550 | - | 574
555 | | February | | | | <u></u> | | | | 1 | 8000 | γ+ 1 | abula | ar Qua | ntities | i (in | Υ) | | | | | | | | | | | 1 *
2
3
4
5 | 583
581
573
563
567 | 581
585
575
567
564 | 580
580
579
564
562 | 581
588
580
563
570 | 582
581
581
568
569 | 588
582
584
576
558 | 586
585
584
580
557 | 586
591
584
581
565 | 585
593
581
578
564 | 584
585
569
566
564 | 583
567
564
553
558 | 583
562
562
555
558 | 584
565
565
564
556 | 585
569
579
565
567 | 586
576
605
559
565 | 585
583
596
563
563 | 579
584
595
550
568 | 579
580
581
558
568 | 581
581
589
569
575 | 581
575
591
570
580 | 584
575
582
572
574 | 582
578
569
570
571 | 581
577
551
567
574 | 580
574
560
564
574 | | 6
7 **
8 **
9 | 588
578
315
538
548 | 566
570
364
539
550 | 564
570
443
535
545 | 566
570
427
537
544 | 568
571
447
538
539 | 570
574
460
540
524 | 568
574
466
544
525 | 568
570
456
543
513 | 571
574
478
528
533 | 570
536
487
519
528 | 570
463
461
542
524 | 570
500
496
549
538 | 564
539
500
550
538 | 553
554
484
543
539 | 564
498
489
544
558 | 570
504
495
538
560 | 569
533
534
544
559 | 574
522
524
544
560 | 578
494
543
553
563 | 584
501
535
565
562 | 536
572 | 580
496
540
560
554 | 580
537
547
550
554 | 584
522
543
551
556 | | 11 *
12
13
14 ** | 558
564
555
567
558 | 558
562
556
568
567 | 550
563
554
568
555 | 549
564
550
569
561 | 547
560
548
569
588 | 552
561
561
572
567 | 554
565
564
571
560 | 557
564
554
565
570 | 551
562
538
523
565 | 545
554
528
535
563 | 544
547
551
542
557 | 545
544
550
554
552 | 545
548
565
536
554 | 534
549
565
544
564 | 542
547
562
543
565 | 551
545
560
544
570 | 554
542
560
548
565 | 557
546
562
564
564 | 557
546
563
573
568 | 563
551
563
574
570 | 561
555
566
574
568 | 564
548
567
559
568 | 554 | 563
557
568
554
567 | | 16
17
18
19 ** | 567
580
575
580
560 | 568
570
573
578
558 | 568
572
577
575
559 | 568
574
577
579
558 | 570
573
578
585
564 | 576
570
579
588
572 | 577
576
581
593
574 | 583
572
581
604
576 | 578
564
577
588
574 | 568
560
567
564
569 | 560
555
558
554
559 | 554
557
552
553
563 | 556
559
551
555
564 | 561
562
558
555
568 | 570
564
566
560
564 | 571
567
579
578
569 | 573
569
588
577
572 | 574
572
585
591
578 | 574
574
592
555
564 | 572
574
587
555
548 | 564 | 574
573
575
537
574 | 539 | 568
571
578
562
525 | | 21 **
22
23
24
25 | | 523
550
578
570
564 | 549
571
571
564
564 | 574
574
554
565
579 | 569
579
545
566
581 | 565
559
560
569
581 | 557
561
565
570
573 | 544
569
564
573
579 | 535
554
536
568
578 | 526
538
552
556
571 | 517
545
532
553
552 | 535
546
535
543
534 | 514
548
545
550
544 | 504
550
561
558
541 | 514
555
555
561
548 | 520
550
542
560
554 | 515
554
544
564
565 | 514
553
548
567
570 | 534
558
548
565
569 | 542
557
571
538
570 | 574 | 554
571
566
548
572 | 564
556
564 | 551
564
564
556
564 | | 26 *
27 *
28 * | 566
574
583 | 561
571
579 | 564
574
580 | 571
574
584 | 574
576
583 | 572
578
585 | 580
583
587 | 580
584
592 | 580
580
593 | 568
570
586 | 559
564
571 | 550
554
560 | 554
552
561 | 550
555
563 | 555
559
565 | 565
566
573 | 565
567
578 | 562
569
584 | 558
574
584 | | 574
580
584 | 580
580
584 | 580
581
584 | 573
581
581 | | Mean | 556 | 558 | 561 | 563 | 564 | 565 | 566 | 567 | 562 | 555 | 547 | 548 | 551 | 553 | 555 | 558 | 561 | 563 | 564 | 565 | 566 | 564 | 564 | 563 | | Mean * | 573 | 570 | 570 | 572 | 572 | 575 | 578 | 580 | | 571 | 564 | 558 | 559 | | 561 | | 569 | 570 | 571 | | 577 | 578
527 | | | | Mean ** | 509 | 521 | 541 | 544 | 548 | 552 | 552 | 548 | 540 | 530 | 507 | 5 28 | 529 | 528 | 521 | 528 | 541 | 543 | 540 | >41 | 244 | 257 | 552 | 240 | ^{*} International Quiet Day. ** International Disturbed Day. 1140032 | | | | | 1 | PABLE | II. | - но | URLY ME | | | | | | ONENT | | | | TENS I | TY A | T ABIN | GER | ~ ···· | | | 9 | |-------------------------------------|---------------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------| | U.T. | 0 h | 1 | h 2 | h : | 3 h 4 | h : | 5 h | 6 h | 7 h | 3 h | 9 h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 ^h 1 | 7 h | 18 h 1 | 9 h 2 | 0 h 2 | 1 h | 22 h 2 | 3 h 24 | | March | | | | | | | | | · · · · · · | 18000 | Υ+ | Tabul | ar Qu | antitie | s (in | Υ) | | | | | | | | | | | 1
2
3 *
5 | 58 | 31
36
70
72
50 | 591
561
571
579
551 | 599
554
572
569
551 | 580
555
570
574
559 | 585
561
569
578
558 | | 575
570
572
580
561 | 564
571
574
570
560 | 549
564
570
555
553 | 561
557
561
549
535 | 562
567
556
538
526 | 555
560
558
526
502 | 549
560
561
545
516 | 551
556
564
560
529 | 554
559
565
567
541 | 555
564
570
553
548 | 559
560
571
551
542 | 565
561
570
559
559 | 568
564
576
576
566 | 571
566
575
567
570 | 570
567
572
561
560 | 571
568
578
535
560 | 568
576
582 | 568
571
575
540
579 | | 6
7
8
9
10 ** | 56
56
57
57
k 56 | 66
14
11 | 561
570
570
570
569 | 567
575
569
572
588 | 571
571
570
571
586 | 566
567
575
573
581 | 560
571
574
577
570 | 552
573
575
580
575 | 552
564
572
583
581 | 551
559
568
580
575 | 540
544
560
574
567 | 531
530
554
564
555 | 514
534
554
556
555 | 531
530
556
559
558 | 551
547
560
566
575 | 568
559
568
582
583 | 574
565
571
578
555 | 568
566
574
566
569 | 563
565
570
543
568 | 575
569
575
561
579 | 566
563
577
565
587 | 563
565
573
562
564 | 572
580
577
569
536 | 571
570
565 | 568
573
569
565
530 | | 11
12 *
13 *
14 *
15 | 55
57
57
58 | 15 | 526
557
570
575
578 | 539
559
569
571
576 | 537
563
572
570
576 | 533
561
570
570
576 |
538
562
574
570
578 | 529
564
570
574
579 | 530
564
570
575
579 | 533
560
564
569
578 | 524
556
557
565
554 | 511
555
549
556
545 | 527
557
554
563
544 | 533
561
556
561
547 | 545
566
560
565
557 | 555
567
566
559
554 | 566
567
567
550 | 554
564
570
570
563 | 566
565
569
572
566 | 570
569
562
570
573 | 589
570
573
571
579 | 570
570
574
577
583 | 566
572
575
580
593 | 574
577
582 | 570
572
575
582
583 | | 16 *
17
18
19
20 | 58
59
58
57
59 | 2
4
8
9 | 577
594
579
577
590 | 577
584
585
576
586 | 577
599
586
575
588 | 577
593
584
579
590 | 578
595
587
582
592 | 579
593
588
584
592 | 579
594
586
584
591 | 575
585
584
579
584 | 570
575
574
580
577 | 568
564
577
570
572 | 569
561
580
569
567 | 569
535
579
566
557 | 571
555
574
573
565 | 570
561
572
573
569 | 575
566
571
576
568 | 576
564
571
580
573 | 575
563
573
583
578 | 581
569
569
590
579 | 584
578
578
593
581 | 583
564
582
599
591 | 585
575
585
597
586 | 574
585
594
586 | 586
575
582
599
587 | | 21
22 **
23
24 **
25 ** | 57
57
54 | 2
4
1
7 | 585
580
577
432
552 | 583
581
578
489
604 | 600
584
579
401
523 | 60 1
585
580
500
555 | 599
593
584
499
555 | 595
602
588
509
500 | 589
559
581
521
487 | 579
563
576
505
437 | 570
559
565
493
409 | 564
540
563
463
393 | 548
545
565
478
402 | 537
522
573
476
414 | 555
543
578
482
493 | 565
534
577
509
580 | 578
564
581
562
674 | 578
570
579
533
561 | 577
583
585
485
560 | 583
578
614
508
473 | 584
571
588
512
463 | 585
582
578
520
417 | 585
590
588
528
488 | 548
427 | 583
608
573
553
482 | | 26
27
† 28 **
29
30 | | 1
0
2
8 | 427
533
543
449
530 | 470
552
529
453
529 | 488
546
548
453
533 | 486
530
557
463
536 | 499
543
523
467
540 | 459
545
466
544 | 489
538
-
463
546 | 487
529
-
457
543 | 465
523
465
535 | 473
512
466
532 | 499
503
-
464
533 | 497
508
-
474
536 | 498
519
-
474
539 | 513
524
-
477
543 | 514
540
500
545 | 527
546
514
543 | 537
550
-
514
549 | 543
558
522
550 | 550
564
527
557 | 562
562
530
559 | 529
559
539
537 | | 537
551
479
536
553 | | 31
Mean | · · · · · · · · · · · · · · · · · · · | | 554 | | 553
 | | | 550 | 548 | | 519 | 506 | 508 | 536 | | 533 | 564 | 560 | 553 | 564 | | 565
 | 567 | 553 | 566 | | Mean * | - | | 570 | 570 | 570 | 569 | 571 | 572 | | 568 | 562 | 557 | 560 | 562 | 565 | 565 | 569 | 570 | 570 | 572 | • • • | 575 | 578 | 580 | 578 | | Mean ** | 56 | 6 | 533 | 566 | 524 | 555 | 554 | 547 | 537 | 520 | 507 | 488 | 495 | 493 | 523 | 552 | 589 | 558 | 549 | 535 | 533 | 521 | 536 | 521 | 543 | | April | bor | | | | | | | | 1 | 8000 | Υ + 7 | abula | ır Qua | intities | (in | Υ) | | | | | | | | | | | 1 (Q)
2
3
4
5 | 55 | 0
2
8 | 545
558
552
559
564 | 559
554
553
563
565 | 548
554
555
564
564 | 548
559
558
561
563 | 555
549
559
564
565 | | 538
555
550
559
559 | 538
547
542
552
548 | 531
526
530
537
537 | 525
509
527
530
525 | 515
525
524
532
525 | 523
519
533
537
529 | 542 | 544
540
562
561
547 | 546
554
565
560
559 | 554
553
563
562
565 | 560
557
574
566
561 | 563
562
558
573
553 | 576
566
558
573
553 | 558
565
559
574
567 | 556
555
563
576
568 | 548
549
563
566
567 | 549
553
557
558
566 | | 6
7
8
9 **
10 | 56
56
57
58
56 | 2
3
6 | 570
566
573
579
565 | 567
572
575
582
555 | 563
580
576
590
556 | 562
577
576
588
557 | 565
575
582
586
562 | 565
584
568
582
557 | 564
577
567
576
576 | 558
567
566
576
542 | 536
555
545
552
533 | 524
544
538
525
526 | 516
528
537
512
512 | 525
531
536
518
529 | 542
542
528
525
531 | 547
546
539
542
542 | 566
544
556
539
553 | 567
546
565
518
558 | 572
562
570
536
563 | 570
572
570
544
564 | 569
572
583
554
566 | 574
573
586
566
567 | 565
578
586
566
570 | 558
577
588
570
577 | 563
576
596
578
573 | | 11 *
12
13
14 **
15 ** | | 0
8
2 | 567
582
605
576
568 | 566
575
602
566
569 | 565
572
569
567
575 | 567
573
572
568
572 | 571
576
586
567
558 | 572
576
578
567
545 | 567
572
580
568
501 | 558
566
572
567
496 | 550
557
551
562
492 | 540
556
545
550
485 | 545
543
551
535
498 | 542
556
550
525
502 | 546
566
557
567
498 | 558
565
554
546
486 | 567
567
564
561
523 | 576
568
572
552
527 | 572
577
572
557
536 | 572
582
570
566
552 | 575
596
614
560
565 | 573
598
586
570
548 | 575
626
569
590
553 | 580
599
587
588
555 | 582
592
576
568
556 | | 16
17
18
19 *
20 * | 55
56
57
57
57 | 4
1
9 | 553
562
571
578
572 | 554
562
571
578
573 | 552
563
573
577
576 | 555
566
576
576
580 | 556
569
576
577
581 | 552
568
573
574
579 | 548
562
566
571
575 | 540
557
554
566
569 | 530
550
527
558
558 | 525
545
515
551
545 | 521
540
527
545
536 | 526
537
531
546
538 | 540
536
547
551
548 | 551
561
555
560
562 | 560
572
563
569
574 | 562
576
571
576
568 | 566
573
576
586
574 | 569
572
584
572
582 | 585 | 576
572
578
580
584 | 586
574
581
581
583 | 562
575
578
581
580 | 556
574
579
578
578 | | 21 *
22
23 **
24 **
25 | | 5
5
1 | 577
582
601
460
541 | 577
582
606
425
526 | 578
583
611
545
514 | 582
585
607
473
517 | 582
588
590
541
532 | 581
589
597
499
518 | 575
598
582
496
509 | 564
582
544
453
494 | 558
545
498
471
488 | 551
537
477
446
491 | 551
532
465
466
491 | 554
545
466
505
497 | 561
556
498
511
508 | 556
561
531
501
521 | 571
564
552
524
531 | 582
572
569
590
538 | 587
592
591
576
545 | 587
608
524
544
552 | 584
604
460
551
551 | 588
592
432
548
551 | 588
594
433
537
551 | 587
591
420
526
550 | 585
590
281
525
548 | | 26
27
28
29
30 * | 53
56
55
56
57 | 7
7
9 | 535
571
559
565
575 | 535
543
554
562
567 | 534
530
553
564
566 | 531
532
554
564
563 | 540
532
555
562
563 | 545
537
556
557
558 | 555
537
555
544
557 | 551
530
550
523
553 | 549
522
545
539
547 | 538
521
538
545
542 | 541
526
543
542
549 | 549
531
547
555
556 | 551
536
547
557
561 | 552
543
559
563
567 | 557
548
568
571
582 | 565
556
567
574
585 | 554
561
561
583
587 | 571
564
597
567
581 | 574
562
584
575
573 | 561
561
557
577
572 | 563
562
561
564
571 | 568
558
565
562
575 | 563
560
567
567
576 | | Mean | | | | 561 | | 562 | 565 | 563 | 557 | | | | 526 | | | 547 | | | 568 | 568 | 569 | | 568 | | | | Mean * Mean ** | | | | | 572
578 | | | 573
558 | 569
545 | 562
527 | 554
515 | | 545
495 | 547
503 | | | 573
540 | | 559 | 579
546 | 580
538 | 579
533 | 580
536 | 581
532 | 580
502 | | | | - | | | | - | ^{*} International Quiet Day. ** International Disturbed Day. † March 28 has been omitted in computing the monthly mean values. | | | | | | | | TABLE | II. | - но | URLY M | EANS | of h | RIZO | NTAL | COMPO | NENT (| F MA | GNE T | C IN | TENS : | TY A | ABIN | 3ER | | | · · · · · | | |------|----------------------------|----------|-----|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------
---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | u. T | | 0 h | 1 | h 2 | h : | 3 h 4 | h 5 | h | 6 h 7 | h 8 | 3 h 9 | h 1 | 0 h 1 | 1 ^h 1 | 2 h 1 | 3 h 1. | 4 h 1: | 5 h 10 | 6 h 1 | 7 h 1 | 8 ^h 1 | 9 h 2 | 0 h 2 | 1 h 2 | 2 h 2 | 3 h 24 h | | | Maj | 7 | | | | | | | | | 1 | .8000 | γ + 1 | fabula | ar Qua | ntities | (in | Υ) | | | | | | | | | | | | 1
2
3
4
5 | | | 574
574
580
597
571 | 575
585
567
589
572 | 574
569
570
574
573 | 575
566
578
579
576 | 568
567
581
582
575 | 565
568
571
582
580 | 552
565
561
579
582 | 556
557
551
571
575 | 547
552
538
558
567 | 538
540
536
542
556 | 537
536
539
552
548 | 545
541
544
565
545 | 554
545
555
560
553 | 557
559
568
562
560 | 567
564
573
572
570 | 575
574
581
573
578 | 586
582
589
565
589 | 594
593
588
573
592 | 591
593
594
589
602 | 582
587
596
584
603 | 574
583
582
572
615 | 570
579
577
573
601 | 572
575
575
568
581 | 572
583
575
571
585 | | | 7 | ** | | 589
609
570
563
551 | 585
622
572
577
552 | 590
629
566
588
545 | 610
621
582
573
553 | 620
624
593
579
554 | 617
586
570
573
552 | 578
585
571
573
567 | 621
574
593
535
575 | 604
559
586
546
561 | 591
550
565
539
547 | 573
548
554
522
537 | 563
544
533
513
528 | 559
510
510
521
542 | 555
515
529
536
549 | 564
530
550
534
565 | 574
558
564
570
580 | 598
566
568
593
577 | 608
571
573
593
591 | 604
578
570
615
596 | 591
572
574
574
596 | 591
570
584
554
596 | 590
576
585
547
596 | 641
575
591
566
603 | 615
580
597
556
598 | | | 11
12
13
14
15 | * | | 585
571
579
581
589 | 580
570
580
588
589 | 573
570
580
584
586 | 590
570
572
575
584 | 599
576
575
576
583 | 580
573
576
576
581 | 578
578
569
571
574 | 529
572
557
570
570 | 486
563
550
567
561 | 573
548
550
563
555 | 555
543
557
568
552 | 559
553
559
574
561 | 559
551
563
584
577 | 528
546
566
586
574 | 548
558
567
590
578 | 547
566
568
585
583 | 556
570
573
589
590 | 600
580
580
586
590 | 576
578
579
585
596 | 583
584
587
587
597 | 579
576
585
591
592 | 573
579
583
585
592 | 572
578
581
586
593 | 574
576
584
585
591 | | | 16
17
18
19
20 | * | | 593
597
586
587
589 | 587
600
589
583
590 | 589
595
584
584
589 | 586
594
599
584
589 | 587
604
598
585
590 | 590
599
587
582
591 | 592
596
576
576
591 | 591
590
563
569
581 | 583
580
534
558
571 | 576
570
540
556
559 | 566
565
548
556
556 | 570
567
560
562
556 | 580
566
549
563
560 | 566
563
555
570
567 | 583
580
563
580
579 | 594
588
576
583
593 | 596
600
573
591
604 | 596
591
590
587
611 | 597
583
590
594
621 | 580
596
591
595
628 | 585
587
587
595
623 | 589
587
585
593
598 | 589
587
584
593
586 | 589
587
588
590
573 | | | 21
22
23
24
25 | | | 567
572
573
563
588 | 572
568
575
574
565 | 558
569
589
565
566 | 568
562
559
556
567 | 572
590
563
551
570 | 565
579
559
545
555 | 556
525
555
548
543 | 549
507
548
546
543 | 539
543
537
548
535 | 524
536
534
547
536 | 535
520
542
539
539 | 540
531
543
537
539 | 547
500
525
545
542 | 530
499
556
550
542 | 533
537
559
565
563 | 572
555
581
599
585 | 591
590
595
598
587 | 604
588
629
600
598 | 600
588
656
591
604 | 613
596
588
593
589 | 603
582
580
580
579 | 573
564
587
575
585 | 573
584
593
575
598 | 577
582
561
596
583 | | F | 26
27
28
29
30 | | | 574
577
586
587
578 | 574
578
582
585
592 | 591
579
583
575
582 | 589
581
579
576
583 | 576
582
579
577
584 | 568
572
588
566
581 | 558
563
582
565
575 | 555
552
574
553
565 | 552
552
566
548
553 | 550
555
562
548
545 | 552
564
557
558
553 | 565
561
556
563
567 | 562
559
558
562
573 | 568
565
552
559
581 | 577
581
567
564
588 | 583
588
581
568
601 | 588
592
583
589
598 | 585
602
597
596
596 | 581
600
592
605
593 | 587
602
598
595
601 | 589
598
598
597
595 | 591
602
586
588
586 | 582
588
582
586
577 | 577
588
582
584
578 | | _ | 31 | | | 571 | 571 | 575 | 592 | 594 | 579 | 585 | 558 | | | 557 | | 549 | | 549 | | | | 601 | 607 | 597 | 590 | | 584 | | 1 | ean
ean | * | | 580
582 | 580
586 | 579
583 | 580
581 | 582
582 | 576
578 | 570
572 | 563° | 555
558 | 551
555 | | 551
565 | 551
571 | 554
575 | 564
583 | 577
588 | 585
592 | 592
592 | 595
594 | 592
596 | 588
594 | | 585
587 | | | 1 | an | | | 576 | - | | 579 | | • | • - | | 543 | | | | • | • | 548 | • | | | 608 | 586 | 577 | 572 | 591 | 578 | | | Jun | e | | | | | | | | | 1 | 8000 | γ + 1 | abula | ır Quai | ntities | (in | Υ) | | | | | | | | | | | | 1
2
3
4
5 | | | 592
591
590
593
591 | 591
593
594
595
588 | 585
587
594
593
589 | 582
588
592
594
591 | 582
591
594
595
594 | 581
595
592
590
592 | 581
595
589
587
588 | 579
587
579
584
581 | 570
573
570
578
574 | 557
562
564
568
567 | 552
557
561
564
562 | 546
556
564
560
557 | 546
556
568
565
561 | 557
560
571
555
573 | 572
568
581
551
586 | 583
580
586
577
594 | 594
592
588
598
601 | 592
604
596
596
601 | 597
607
600
606
599 | 600
604
598
604
603 | 596
598
598
598
641 | 593
595
596
594
634 | 592
591
594
594
615 | 591
590
594
592
614 | | | | **
** | | 594
605
557
580
573 | 605
601
571
584
575 | 592
595
566
582
579 | 594
594
577
586
578 | 596
596
569
573
577 | 595
595
558
564
573 | 589
597
552
560
566 | 571
600
545
555
562 | 556
594
539
560
555 | 543
580
547
545
550 | 542
572
552
550
550 | 539
572
546
552
553 | 562
535
555
556
557 | 533
571
560
560
551 | 545
559
578
550
567 | 569
578
533
580
573 | 581
594
581
581
604 | 590
577
582
590
574 | 600
568
610
578
613 | 600
577
610
579
605 | 599
573
617
584
599 | 597
571
613
586
590 | 597
567
632
590
588 | 597
562
597
583
584 | | | 11
12
13
14
15 | ** | | 587
605
589
590
583 | 590
602
589
590
585 | 595
603
597
591
586 | 591
605
602
587
590 | 592
606
607
587
592 | 59 1
606
581
580
59 1 | 582
604
571
572
581 | 561
595
580
561
560 | 560
576
567
551
567 | 561
576
554
557
558 | 562
562
525
564
556 | 571
555
538
569
562 | 548
550
555
572
562 | 563
554
551
571
566 | 564
598
577
579
573 | 576
611
582
602
571 | 586
597
590
610
590 | 585
600
591
611
597 | 600
593
591
617
596 | 607
578
597
603
597 | 607
573
593
585
606 | 605
581
588
585
592 | 603
615
590
583
592 | 604
571
589
581
593 | | | 16
17
18
19
20 | ** | | 593
550
579
598
571 | 594
540
597
585
575 | 590
572
588
608
563 | 592
601
578
587
563 | 595
592
585
564
568 | 593
577
580
537
575 | 587
587
575
541
566 | 575
565
564
538
555 | 576
546
547
505
541 | 580
537
532
495
533 | 562
531
526
514
535 | 563
531
541
526
539 | 556
525
553
521
551 | 576
541
564
547
575 | 569
567
581
564
589 | 597
579
592
597
588 | 611
591
618
590
590 | 626
588
623
595
592 | 615
600
601
611
597 | 630
598
605
610
605 | 628
594
597
590
595 | 602
597
587
599
583 | 587
596
581
578
577 | 596
582
603
573
574 | | | 21
22
23
24
25 | | | 578
578
575
586
594 | 581
589
577
586
594 | 578
576
577
586
591 | 567
585
579
589
590 | 581
585
581
590
604 | 591
580
577
587
601 | 576
571
567
586
593 | 549
564
556
586
580 | 543
554
563
585
570 |
539
551
561
580
566 | 550
557
554
575
573 | 548
561
546
581
569 | 547
562
551
581
555 | 557
581
559
581
551 | 572
577
569
588
565 | 591
588
585
594
582 | 595
602
588
592
611 | 587
585
588
597
601 | 602
592
587
601
604 | 607
611
587
601
587 | 611
596
589
605
587 | 597
582
587
601
588 | 589 | 587
579
585
596
589 | | | 26
27
28
29
30 | | | 594
587
605
607
558 | 591
586
604
607
561 | 582
588
602
602
563 | 602 | 584
594
609
611
568 | 584
596
597
594
558 | 576
586
584
581
546 | 570
564
571
570
538 | 564
562
571
567
531 | 563
566
584
565
528 | 568
576
580
556
531 | 574
578
580
571
545 | 577
573
585
574
547 | 584
562
595
577
543 | 607
570
601
597
557 | 606
571
610
631
570 | 602
584
616
638
571 | 588
605
623
667
578 | 577
614
628
644
581 | 587
639
621
626
585 | 588
614
615
573
591 | 588
604
589
555
585 | 595
615
595
551
586 | 595
606
593
556
585 | | Me | ean | | | 586 | 587 | 587 | 588 | 589 | 584 | . 578 | 568 | 560 | 556 | | 556 | 557 | | | 586 | 596 | 598 | | 602 | 598
506 | | 592
592 | 588
590 | | | ean | | | 580 | | | 583 | | 582
578 | 577
575 | 569
570 | 564
556 | 559
553 | 556
551 | 558
554 | 561
547 | 563
562 | 573
579 | 583
590 | 586
600 | 593
604 | 595
605 | 595
600 | 596
585 | 593
584 | 592
589 | 572 | | l Me | ean | ** | | 794 | 293 | 293 | 593 |) 89
 |)/8 | <i>)/</i>) | 010 | סככ | ,,, | 771 | | ,41 | | | | | | | | | | | | ^{*} International Quiet Day. ** International Disturbed Day. | U.T.
July | 0 h | 11 | | | | | | | | | | HIAD | OULT | MENI C | or PLA | GIAT I | C IN | TENOT | TY AT | . ADING | | | | | | |-------------------------------------|----------------------|----------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | July | | | a 2 | h 3 | h 4 | h 5 | h | 6 h 7 | h 8 | h 9 | h 1 | 0 h 1 | 1 h 1 | 2 h 1 | 3 h 1 | 4 h 1 | 5 h 10 | 5 h 1 | 7 h 1 | 8 h 19 | 9 h 2 | 0 h 2: | l h 2 | 2 h 2 | 3 h 24 h | | | | | | ., | | · | | | 1 | 8000 | γ + 1 | Cabula | ır Quai | ntities | s (1n | Υ) | | | | | | | | | | | 1 *
2
3
4 *
5 * | 5:
5:
5: | 87
85
90 | 579
591
593
587
582 | 581
595
597
585
584 | 585
599
601
585
583 | 587
606
598
585
585 | 582
605
605
586
586 | 574
584
603
581
582 | 565
559
568
575
575 | 557
559
566
564
563 | 548
547
551
548
554 | 543
547
547
547
553 | 548
543
571
545
563 | 556
542
574
543
569 | 561
562
566
561
582 | 586
583
581
580
580 | 594
588
580
601
587 | 591
588
601
605
586 | 592
588
599
597
584 | 595
596
605
597
593 | 597
602
600
596
595 | 598
598
601
594
595 | 594
595
597
594
593 | 594
591
598
591
592 | 590
588
594
587
590 | | 6
7 **
8
9
10 | 5 51
5 61 | 37
24
01 | 590
592
531
600
580 | 595
594
547
597
579 | 596
614
551
608
578 | 595
635
547
601
574 | 595
584
544
591
572 | 595
612
543
584
568 | 592
595
541
575
567 | 586
599
534
570
566 | 580
584
523
570
566 | 577
567
526
550
560 | 577
550
546
550
576 | 572
552
564
552
582 | 576
568
558
556
584 | 571
570
572
567
595 | 589
581
601
589
594 | 599
580
600
577
603 | 599
633
581
576
583 | 600
620
585
589
584 | 604
589
592
574
584 | 606
571
589
582
584 | 596
548
597
581
586 | 592
542
600
580
594 | 591
537
600
582
586 | | 11
12
13 *
14
15 | 51
51 | 78
39
98 | 584
580
590
600
581 | 584
580
589
600
586 | 594
580
587
602
592 | 594
581
590
602
584 | 583
572
586
603
596 | 574
567
581
596
592 | 561
563
576
590
583 | 555
553
571
579
571 | 548
554
570
579
564 | 554
560
566
579
561 | 564
560
567
582
565 | 575
560
575
581
574 | 573
560
589
588
583 | 570
565
606
561
590 | 577
580
610
565
589 | 584
583
600
606
585 | 599
584
593
604
588 | 614
584
594
600
594 | 583
590
593
599
587 | 590
590
594
596
587 | 590
593
596
600
586 | 586
590
600
595
585 | 583
590
598
590
583 | | 16
17
18 **
19
20 * | 5!
5!
5! | 92
33
32 | 583
600
584
575
572 | 585
589
589
581
572 | 589
582
593
590
572 | 590
585
592
605
576 | 585
581
588
578
575 | 576
583
578
557
569 | 565
574
574
556
560 | 567
557
573
529
551 | 572
550
585
514
545 | 550
550
580
502
544 | 565
555
563
500
546 | 562
563
576
519
548 | 571
564
586
546
555 | 575
584
647
566
560 | 584
605
654
572
577 | 588
608
661
575
580 | 604
606
624
577
585 | 613
596
627
584
598 | 611
600
595
588
600 | 598
600
584
586
594 | 595
593
582
586
593 | 600
603
606
581
588 | 585
593
575
593
582 | | 21
22
23
24
25 | 51
51
51 | 34
99
34 | 580
583
595
581
587 | 583
586
594
578
590 | 590
584
594
583
590 | 586
580
589
582
593 | 581
596
585
576
586 | 575
587
577
576
586 | 576
572
567
568
586 | 570
562
566
564
577 | 555
561
570
569
574 | 544
554
578
565
573 | 545
553
582
565
577 | 552
560
555
561
585 | 557
562
586
554
584 | 580
576
580
565
590 | 600
604
590
574
595 | 609
617
585
578
590 | 591
604
576
586
623 | 590
594
594
590
603 | 596
604
601
595
630 | 603
605
605
602
624 | 605
593
605
599
605 | 596
603
598
600
595 | 597
623
590
596
591 | | 26 **
27 **
28
29 **
30 | 51
55
55
55 | 15
19
53 | 586
509
519
565
562 | 577
379
519
554
555 | 584
319
522
552
530 | 585
403
522
557
549 | 564
348
524
545
540 | 586
270
519
529
548 | 587
389
513
527
536 | 580
430
509
528
516 | 550
466
509
520
517 | 540
474
502
519
532 | 539
493
496
539
546 | 565
505
490
555
555 | 583
515
524
564
578 | 575
515
542
565
565 | 615
518
555
572
574 | 609
525
555
614
615 | 600
536
569
669
602 | 675
537
556
587
568 | 920
526
573
571
569 | 772
526
565
569
569 | 682
523
583
570
570 | 715
533
569
578
565 | 690
525
567
583
565 | | 31 | 5 | 71 | 572 | 561 | 563 | 565 | 566 | 563 | 559 | | | 534 | 543 | 542 | | 550 | | | 567 | | 574 | | 580 | 582 | | | Mean
Mean * | | - | 578
582 | 574
582 | 574
582 | 578
585 | 571
583 | 565
577 | 561
570 | | 551
553 | - | 552
554 | 557
558 | 566
570 | 575
582 | 586
594 | 593
592 | 594
590 | 595
595 | 60 1
596 | 595
595 | 594 | 592
593 | | | Mean ** | _ | - | - | • | - | 554 | 526 | 515 | 534 | 542 | 541 | 536 | 537 | 551 | 563 | 574 | 588 | 598 | 612 | 609 | 640 | 604 | 581 | 595 | 582 | | August | (લઇ) | 07.2 | | XX 145 | o⊁ | | | | 1 | 8000 | y + 1 | abula | r Quar | ntities | (in | Υ) | | | | | | | | | | | 1
2
3
4
5 | 51
51 | 73
79
33 | 570
573
579
585
585 | 559
574
581
585
585 | 560
576
582
585
585 | 568
578
582
587
585 | 570
578
571
587
586 | 566
575
564
581
580 | 556
573
556
572
565 | 549
566
544
566
563 | 535
554
539
565
559 | 529
547
547
566
559 | 525
543
556
568
573 | 532
544
560
570
572 | 544
560
567
569
570 | 564
566
583
569
581 | 572
580
588
583
585 | 579
585
598
590
585 | 584
587
593
593
594 | 585
589
590
597
602 | 581
587
585
593
608 | 582
586
580
594
598 | 579
584
583
592
595 | 575
583
583
592
599 | 575
583
583
586
598 | | 6
7 **
8
9
10 | 5 51
51
51 | 39
79
36 | 592
595
574
589
585 |
589
594
573
585
585 | 589
609
574
585
585 | 589
599
576
584
586 | 588
593
569
580
583 | 586
592
563
574
579\ | 583
583
559
568
569 | 573
563
555
567
563 | 565
559
553
573
559 | 563
548
552
579
556 | 573
555
552
582
563 | 588
584
559
585
575 | 582
565
563
579
584 | 576
588
568
578
589 | 580
590
574
575
582 | 575
606
584
584
589 | 578
604
586
585
593 | 595
575
593
593
595 | 595
572
599
591
595 | 599
582
595
593
595 | 599
589
587
595
593 | 599
585
583
595
592 | 596
583
589
590
585 | | 11 **
12
13
14 **
15 ** | 51
50
: 51 | 32
59
38 | 589
586
572
588
600 | 575
569
574
590
563 | 585
574
581
600
546 | 585
574
582
595
564 | 605
574
577
587
564 | 594
562
570
581
562 | 582
559
564
534
548 | 566
544
560
523
545 | 563
543
552
505
524 | 549
544
546
498
512 | 542
551
549
504
526 | 558
559
550
494
552 | 583
571
556
546
563 | 575
576
565
541
578 | 567
579
576
534
568 | 602
592
580
535
607 | 593
585
584
553
584 | 594
589
584
580
581 | 596
592
598
593
581 | 593
593
593
588
576 | 613
592
593
588
579 | 592
602
592
551
571 | 580
574
588
560
581 | | 16
17
18
19
20 | 50
50
51 | 58
58
36 | 578
568
570
573
580 | 564
572
571
572
579 | 568
575
572
573
581 | 574
573
574
573
579 | 572
568
573
568
580 | 561
553
569
568
584 | 551
541
558
564
578 | 533
527
553
554
563 | 527
537
541
550
545 | 534
550
534
548
537 | 543
534
542
544
543 | 554
555
558
554
553 | 563
552
573
559
564 | 560
542
577
565
573 | 576
551
581
569
578 | 587
574
586
578
584 | 601
582
589
583
588 | 610
581
583
587
594 | 610
588
582
585
598 | 599
583
586
592
593 | 580
592
595
588
590 | 595
585
581
588
588 | 575
571
580
582
583 | | 21 *
22 *
23 *
24
25 | 50
59
60 | 38
90
97 | 582
586
589
611
592 | 582
585
587
618
598 | 581
583
587
606
589 | 581
584
585
602
579 | 582
584
581
597
572 | 581
580
574
583
563 | 570
571
565
585
554 | 555
561
561
572
547 | 543
554
563
570
544 | 542
558
569
577
558 | 553
566
571
585
568 | 559
573
573
589
579 | 563
578
572
587
577 | 571
574
575
587
576 | 579
581
580
581
574 | 584
584
586
591
582 | 590
585
587
594
573 | 589
588
592
594
582 | 592
591
598
598
588 | 592
592
602
600
588 | 591
592
603
594
587 | 589
592
604
594
586 | 592
593
608
592
585 | | 26 *
27
28
29 *
30 | 59
51
51 | 90
34
38 | 584
591
583
589
586 | 584
591
580
588
587 | 584
591
586
591
587 | 582
587
588
590
588 | 577
585
587
587
587 | 569
581
578
582
582 | 556
561
567
572
575 | 542
543
557
559
568 | 538
533
552
546
560 | 543
534
555
544
557 | 561
551
563
552
567 | 574
554
573
562
572 | 580
573
583
569
583 | 583
582
578
576
593 | 590
583
583
583
600 | 590
587
592
593
602 | 592
588
596
597
606 | 590
586
592
596
607 | 597
593
594
594
616 | 591
597
594
592
605 | 591
597
591
589
593 | 590
588
590
590
595 | 590
582
588
588
607 | | 31 ** | 6 | 42 | 614 | 590 | 597 | 581 | 577 | 589 | 553 | 542 | 521 | 497 | 513 | 536 | 547 | 557 | 575 | | 570 | 560 | | 567 | | 562 | | | Mean | | 85 | | 582 | 583 | 582 | 580 | 575
577 | 564
567 | 554
556 | 547
549 | 546
551 | 552
561 | 561
568 | 569
572 | 573
576 | 577
583 | 586
587 | 588
590 | 589
591 | 592
594 | 591
594 | 590
593 | 587
593 | 585
594 | | Mean *
Mean ** | _ | | 586
597 | 585
582 | 585
587 | 584
585 | 582
585 | 577
584 | 567
560 | | | 521 | | - | | 568 | | - | 581 | 578 | | 581 | | | 573 | * International Quiet Day. ** International Disturbed Day. | | | | | TAE | BLE I | ı | HOUR | LY MEAN | IS OF | HOR | ZONT | AL C | OMPONE | ENT OF | MA GN | ETIC | INTE | NSITY | TAT | ABINGE | R | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|---------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------| | U. T. | • | 0 h 1 | h 2 | h 3 | h 4 | h 5 | h | 6 h 7 | h 8 | h 9 | h 10 | 0 h 1 | 1 h 1 | 12 h 1 | 3 h 1 | 4 h 1: | 5 h 10 | 5 h 1 | 7 h | 18 ^h 1 | 9 h 2 | 0 h 2 | 1 h 2: | 2 h 2 | 3 h 24 h | | Septem | ber | | | | | | | | 180 | 00 γ | + Tat | oular | Quant | ities | (in Y |) | | | | | · · · · · · | | | | | | 1
2
3
4
5 | * | 564
586
587
597
587 | 563
583
582
596
577 | 563
583
584
596
577 | 565
578
584
597
579 | 567
576
583
600
582 | 566
579
586
600
580 | 567
570
589
584
577 | 566
576
588
595
563 | 562
582
581
568
548 | 551
572
564
544
543 | 541
560
547
521
544 | 545
554
541
529
543 | 551
552
557
543
543 | 550
551
571
540
566 | 550
558
576
563
566 | 556
570
589
566
573 | 566
577
587
573
582 | 581
581
571
577
587 | 588
586
571
584
578 | 584
591
583
577
581 | 583
581
587
574
586 | 582
582
587
579
592 | 583
582
592
585
597 | 587
587
589
602
595 | | 6
7
8
9
10 | * | 597
590
583
585
580 | 581
593
583
585
581 | 582
593
577
587
582 | 581
596
577
583
582 | 591
591
577
581
582 | 599
593
575
582
580 | 590
593
581
572
573 | 585
589
563
564
569 | 577
569
557
560
543 | 558
543
557
557
530 | 549
556
557
555
557 | 552
558
570
566
565 | 563
553
555
573
577 | 573
557
560
580
567 | 581
545
567
583
563 | 582
551
570
575
568 | 583
571
576
582
577 | 585
572
580
573
578 | 587
582
582
569
581 | 591
574
575
580
582 | 593
583
573
577
583 | 592
593
576
581
591 | 592
591
593
584
611 | 591
588
587
577
589 | | 11
12
13
14
15 | * | 573
587
581
597
583 | 572
582
583
577
583 | 573
582
582
579
585 | 580
583
586
583
585 | 583
587
587
586
586 | 590
586
585
587
587 | 583
576
588
586
585 | 577
561
581
578
579 | 561
554
567
567
565 | 552
562
553
557
560 | 546
556
547
553
553 | 546
552
542
551
554 | 564
546
547
551
561 | 568
555
561
563
572 | 578
562
574
572
583 | 592
574
578
578
592 | 580
588
587
583
583 | 590
586
589
588
593 | 581
586
593
593
595 | 587
587
592
593
593 | 592
591
592
592
595 | 585
583
591
591
593 | 581
582
597
595
593 | 587
579
608
597
593 | | 16
17
18
19
20 | | 591
551
594
543
563 | 588
527
614
537
543 | 588
549
563
573
546 | 590
555
477
537
547 | 590
561
487
527
551 | 591
568
531
521
554 | 589
567
467
526
551 | 581
561
457
533
554 | 570
558
427
527
554 | 554
546
459
517
542 | 548
543
477
503
533 | 554
544
480
491
527 | 562
547
439
498
519 | 576
543
443
532
522 | 592
547
498
526
528 | 601
552
534
509
540 | 627
567
514
527
550 | 603
586
535
545
560 | 563
577
551
550
561 | 560
583
527
553
554 | 527
601
514
542
562 | 550
558
537
548
563 | 562
557
547
546
561 | 587
571
547
548
561 | | 21
22
23
24
25 | ** | 575
562
560
546
556 | 562
572
611
538
560 | 555
560
528
528
558 | 556
555
477
530
559 | 557
555
531
537
560 | 560
499
477
536
559 | 562
340
423
536
556 | 560
410
381
516
549 | 550
432
399
516
538 | 542
438
407
508
530 | 538
429
430
502
533 |
536
431
445
509
536 | 550
453
481
522
543 | 552
590
487
532
545 | 546
452
483
546
546 | 550
472
552
542
548 | 556
542
617
542
557 | 600
511
553
547
562 | 596
496
522
553
561 | 580
516
510
556
565 | 577
509
540
555
564 | 590
521
522
557
566 | 577
548
516
556
566 | 566
570
509
557
570 | | 26
27
28
29
30 | | 569
571
548
475
540 | 567
575
551
527
542 | 565
582
569
495
542 | 566
580
582
515
560 | 569
572
595
528
573 | 569
568
595
529
558 | 567
562
551
529
577 | 557
530
549
522
561 | 549
511
538
516
543 | 539
530
515
509
518 | 531
533
483
501
498 | 528
534
480
501
497 | 540
526
495
499
510 | 550
520
522
508
525 | 548
533
509
522
537 | 551
545
575
521
526 | 558
550
563
522
550 | 564
585
525
533
551 | 566
563
494
537
552 | 570
504
474
545
559 | 572
512
475
554
556 | 571
523
482
549
548 | 574
531
475
561
559 | 573
545
470
558
561 | | Mean | | 571 | 571 | 568 | 564 | 568 | 566 | 554 | 549 | 540 | 532 | 527 | 529 | 534 | 546 | 548 | 558 | 568 | 570 | 567 | 564 | 565 | 566 | 570 | 572 | | Mean | | - | | | 571
526 | | 576
525 | 573
461 | 567
466 | 558
465 | 548
467 | 541
464 | 543
465 | 552
473 | 558
515 | 562
494 | 566
528 | 569
553 | 577
534 | 579
523 | 581
516 | - | 581 | | 583
529 | | Mean Octob | |)01 | 3// | 779 |)20 | 739 | 727 | 401 | | | | | | ities (| | | | | | | | | | | | | | | 566 | 560 | 555 | 565 | 571 | 570 | 577 | 557 | 525 | 524 | 525 | 509 | 511 | 519 | 522 | 535 | 551 | 557 | 549 | 561 | 559 | 565 | 571 | 565 | | 1
2
3
4
5 | | 562
574
571
576 | 561
579
572
577 | 564
576
572
575 | 569
580
587
585 | 566
579
582
585 | 568
569
586
580 | 566
589
582
580 | 555
577
572
585 | 531
560
558
569 | 520
544
537
560 | 510
539
541
555 | 511
541
549
545 | 519
546
547
552 | 525
545
555
563 | 525
542
559
548 | 545
540
559
535 | 556
550
545
551 | 549
561
555
560 | 561
571
575
545 | 569
571
580
576 | 575
571
571
578 | 574
571
570
580 | 575
575
571
584 | 574
575
575
578 | | | *
** | 575
567
581
595
566 | 572
569
576
592
568 | 579
571
579
591
571 | 579
569
578
574
568 | 585
578
580
581
571 | 581
584
577
588
572 | 575
581
581
577
576 | 574
577
582
580
576 | 555
568
576
571
562 | 535
557
568
563
555 | 549
550
556
541
546 | 555
538
553
549
548 | 554
530
557
542
553 | 556
539
561
543
556 | 559
541
569
553
562 | 558
535
580
568
565 | 557
540
583
571
569 | 559
555
591
572
577 | 561
572
600
564
581 | 554
573
599
554
586 | 562
584
602
565
568 | 585
588
598
569
572 | 570
588
601
583
571 | 564
584
599
592
574 | | 11
12
13
14
15 | * | 581
582
595
580
585 | 583
581
578
590
584 | 580
581
580
585
586 | 576
591
582
585
586 | 572
592
584
582
587 | 574
583
584
587
587 | 576
588
582
587
586 | 576
571
573
572
580 | 573
556
560
552
565 | 566
541
546
546
546
545 | 563
539
536
540
539 | 566
540
540
536
543 | 570
548
546
546
557 | 578
554
557
556
566 | 579
562
567
563
574 | 564
570
575
567
582 | 568
574
580
580
586 | 574
576
584
589
592 | 577
576
587
593
591 | 578
579
589
590
595 | 579
580
590
586
586 | 582
582
590
582
588 | 581
580
590
580
586 | 585
589
580
581
586 | | 16
17
18
19
20 | * | 583
582
592
586
558 | 580
582
590
582
558 | 581
581
591
580
569 | 582
581
587
584
575 | 586
586
590
586
592 | 587
584
589
586
586 | 582
587
591
586
587 | 580
587
586
584
590 | 572
577
581
576
581 | 551
566
573
566
566 | 546
555
566
565
553 | 554
552
562
566
566 | 559
556
566
568
561 | 560
562
576
572
557 | 569
570
580
570
566 | 571
577
586
573
580 | 579
582
583
581
579 | 582
588
583
583
580 | 586
592
589
577
586 | 582
596
586
572
572 | 577
600
590
577
566 | 599
596
592
595
562 | 583
595
591
589
576 | 583
596
596
579
580 | | 21
22
23
24
25 | | 580
590
589
583
581 | 580
588
590
582
581 | 584
585
586
582
582 | 578
585
588
582
585 | 580
586
587
583
586 | 579
589
588
584
588 | 583
592
588
580
590 | 582
593
587
570
577 | 571
579
576
560
561 | 560
565
564
547
541 | 551
557
556
539
540 | 550
557
558
539
535 | 552
552
550
545
543 | 557
555
558
545
558 | 566
571
556
560
566 | 572
575
564
561
569 | 576
575
575
571
568 | 584
578
582
571
568 | 591
582
583
578
558 | 586
579
585
576
560 | 586
584
584
582
570 | 595
585
582
582
572 | 596
586
583
582
575 | 596
584
581
585
570 | | 26
27
28
29
30 | ** | 565
539
559
580
576 | 564
560
557
567
575 | 582
516
558
563
575 | 579
529
559
571
578 | 574
556
563
577
578 | 588
558
564
579
581 | 594
555
562
583
579 | 591
540
565
575
580 | 578
523
549
563
570 | 550
487
532
547
553 | 543
493
533
539
541 | 528
505
535
539
541 | 538
500
534
551
545 | 559
516
540
546
551 | 565
517
549
549
557 | 567
517
552
550
562 | 552
516
550
557
562 | 561
535
565
569
572 | 555
551
562
570
581 | 551
552
570
567
585 | 537
591
571
560
584 | 567
565
571
565
584 | 610
552
571
571
581 | 527
569
579
590
579 | | 31 | | 579 | 579 | 581 | 582 | 585 | 585 | 585 | 580 | 560 | 561 | 565 | 559 | 550 | 535 | 539 | 556 | 551 | 545 | 538 | 541 | 541 | 543 | 540 | 555 | | Mean | | 577 | 576 | 576 | 577 | 580 | 581 | 582 | 577 | 563 | 550 | 544 | 544 | 547 | 552 | 557 | 562 | 565 | 571 | | 575 | | 579 | 580
592 | 579
590 | | Mean | | 585 | 580 | 581 | 581 | 584 | 583 | 584
580 | 582
576 | 573
563 | | 551
539 | | 554
538 | 561
542 | 569
548 | 576
558 | 578
554 | 584
559 | 590
559 | 591
554 | 593
560 | 592
561 | 572 | | | Mean | 不不 | 567 |)/1 | 568 | סטע | 578 | 701 | 700 | <i>),</i> 0 | 707 | 7~7 | | | | | | | | | | | | | | | ^{*} International Quiet Day. ** International Disturbed Day. 1366112 | | | | | 1 | CABLE | II. | - но | URLY M | EANS | OF H | ORIZO | NTAL | COMP | ONENT (| OF MA | GNE T | IC IN | TENS | TY AT | r abin | GER | | | | | |----------------------------|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------| | U.T. | 0 | h 1 | h 2 | h 3 | h 4 | h 5 | h | 6 h 7 | h 8 | 3 h 9 | h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 h 1 | 7 ^h 1 | 8 ^h 1 | 9 h 2 | 0 h 2 | 1 h 2 | 2 h 2 | 3 h 2 | | Novemb | er | | | | | | | | 1 | 8000 | γ+ ′ | [abula | ar Qua | antities | in (in | y) | | | | | | | | | | | 1 2
2
3
4
5 | * * | 551
568
580
584
578 | 555
566
581
579
578 | 572
566
575
578
578 | 566
570
574
583
580 | 565
574
580
585
587 | 581
581
584
586
593 | 574
573
581
586
595 | 554
578
576
583
587 | 539
569
571
574
577 | 535
558
567
565
571 | 511
545
561
558
565 | 511
536
557
543
562 | 511
539
560
548
562 | 517
546
565
555
570 | 516
556
569
559
572 | 514
562
569
568
582 | 514
568
571
572
590 | 525
570
578
580
597 | 558
571
581
585
600 | 558
579
582
585
609 | 552
572
585
587
602 | 566
568
582
585
606 | 572
572
584
580
596 | 567
578
581
579
594 | | 6 2
7 8
9 | ksk . | 582
571
576
575
576 | 584
564
577
568
585 | 580
565
576
569
589 | 580
565
577
567
577 | 591
579
581
573
580 |
590
572
581
578
585 | 585
576
581
581
584 | 581
578
582
580
581 | 585
569
579
574
573 | 565
558
570
562
561 | 532
548
566
555
555 | 536
545
567
557
555 | 561
549
560
569
561 | 551
555
569
573
569 | 522
559
574
572
572 | 519
560
578
569
575 | 552
565
578
574
574 | 549
569
584
580
581 | 569
575
585
585
584 | 569
579
578
587
570 | 571
579
585
588
575 | 568
581
585
588
541 | 565
580
581
571
559 | 590
579
579
575
575 | | 11
12
13
14 | k | 576
576
576
576
581 | 576
587
577
576
580 | 606
598
576
577
581 | 586
590
576
579
581 | 564
562
578
581
584 | 566
560
580
582
586 | 576
558
579
583
587 | 570
557
576
582
582 | 560
556
570
575
590 | 561
556
562
570
582 | 552
550
553
565
587 | 557
546
556
560
586 | 565
550
556
551
582 | 569
556
562
559
595 | 571
556
566
569
585 | 576
558
573
574
580 | 581
565
577
579
591 | 581
565
590
586
589 | 586
571
573
586
580 | 586
574
581
588
590 | 582
575
584
590
572 | 596
576
575
590
566 | 575
576
577
588
576 | 577
576
580
582
575 | | 16
17
18
19
20 | | 568
576
587
566
565 | 550
572
573
563
562 | 570
574
575
570
563 | 567
572
576
572
568 | 579
581
579
573
576 | 578
576
582
580
576 | 576
575
584
600
575 | 562
572
584
595
580 | 558
562
578
566
578 | 560
551
571
556
571 | 556
547
568
550
570 | 550
551
566
555
571 | 553
556
570
563
571 | 558
562
572
561
571 | 566
569
574
568
552 | 572
573
579
559
577 | 572
580
586
577
585 | 579
580
590
583
586 | 575
586
590
581
571 | 560
586
590
568
581 | 564
583
591
550
580 | 591
575
590
552
578 | 572
576
587
581
580 | 573
570
573
565
593 | | | | 582
564
576
581
562 | 573
568
572
580
561 | 575
570
579
582
559 | 573
571
580
592
558 | 578
574
581
617
566 | 582
579
576
612
574 | 589
582
579
602
581 | 588
570
581
610
578 | 593
557
574
600
568 | 564
563
559
585
559 | 550
556
559
576
561 | 530
552
546
571
556 | 553
554
550
556
546 | 547
551
552
520
546 | 533
549
559
530
538 | 550
554
566
546
536 | 553
548
570
556
559 | 558
575
576
552
560 | 556
574
579
558
550 | 566
576
581
560
566 | 572
576
583
563
599 | 568
573
583
566
572 | 579
581
586
566
572 | 569
581
582
564
595 | | 26
27
28
29
30 | ķ | 572
582
582
586
585 | 568
581
584
586
581 | 573
580
589
588
583 | 588
582
589
590
586 | 581
584
591
594
590 | 583
583
592
596
592 | 573
582
592
596
593 | 570
580
596
593
593 | 568
576
596
588
590 | 567
567
582
574
580 | 562
566
571
563
570 | 562
566
566
562
567 | 566
572
568
569
573 | 566
576
570
576
575 | 566
580
577
576
574 | 565
578
582
581
580 | 570
583
586
586
582 | 576
588
589
589
586 | 580
589
589
591
589 | 582
589
586
590
590 | 581
587
586
589
589 | 580
586
588
586
587 | 580
585
586
589
580 | 581
586
588
587
575 | | Mean | | | 574 | 577 | - | | 582 | 583 | 580 | 574 | | 558 | | 558 | 560 | 561 | | 571 | | 578
589 | 580
589 | 580
588 | 578
587 | 578
586 | 579
584 | | Mean >
Mean > | | | 582
571 | 583
574 | 585
574 | 588
583 | 589
588 | 589
586 | 589
582 | 585
577 | 575
562 | 567
546 | 564
541 | 567
545 | 571
536 | 575
528 | 579
533 | 583
547 | 588
549 | 558 | | 571 | | 571 | | | | | 146 | 127 | - / m | | | | | 1 | 8000 | γ+ 1 | [abula | ar Qua | ntities | (in | Υ) | | | | | | | | | | | 1
2
3
4
5 | · · · · · · | 577
582
574
580
593 | 580
586
572
580
591 | 582
588
599
578
586 | 586
592
587
580
583 | 590
590
576
586
592 | 590
592
587
590
597 | 586
592
583
590
592 | 586
587
581
583
587 | 582
584
580
583
586 | 574
578
566
580
587 | 570
572
550
572
577 | 569
570
546
569
564 | 571
570
548
571
566 | 576
566
552
573
576 | 580
560
553
576
584 | 581
562
560
580
584 | 582
572
573
585
567 | 568
580
581
594
576 | 561
577
582
598
586 | 560
580
582
600
590 | 570
580
581
596
582 | 577
579
580
592
571 | 580
582
580
592
566 | 582
586
581
593
582 | | 6
7
8
9 | k
kok | 584
577
582
587
583 | 580
581
578
583
581 | 578
582
585
585
582 | 577
606
588
586
586 | 577
608
603
583
587 | 579
603
589
583
592 | 578
598
583
584
597 | 578
591
582
587
593 | 577
583
580
590
593 | 571
580
577
587
587 | 566
577
566
583
579 | 567
575
570
581
574 | 571
578
581
583
575 | 581
581
581
583
580 | 581
578
578
578
578
576 | 583
579
579
582
560 | 587
554
583
585
579 | 590
557
590
587
592 | 592
567
591
593
593 | 589
578
589
592
592 | 587
581
587
588
582 | 581
584
587
587
580 | 574
583
586
587
593 | 574
581
583
587
592 | | 11 × 12 × 13 × 14 × 15 × | k*
k | 586
570
580
583
583 | 585
587
580
580
585 | 585
574
581
581
584 | 589
571
582
582
585 | 591
571
585
583
587 | 594
577
589
587
589 | 594
580
589
584
588 | 595
582
586
581
586 | 597
582
582
577
582 | 588
577
578
573
572 | 575
568
569
568
561 | 574
545
565
567
556 | 571
536
571
573
561 | 570
554
569
582
571 | 562
554
561
582
579 | 568
547
567
582
583 | 564
567
575
584
587 | 580
570
577
588
591 | 582
574
583
590
591 | 587
577
587
593
591 | 546
575
589
593
592 | 583
577
585
592
590 | 561
577
585
589
587 | 571
589
583
587
588 | | | k
k | 587
580
583
590
563 | 587
582
579
586
563 | 588
581
582
597
567 | 588
582
587
594
564 | 588
586
585
595
563 | 592
599
584
603
561 | 592
599
585
612
563 | 589
593
587
593
557 | 593
585
592
574
553 | 591
573
589
565
547 | 583
562
584
563
543 | 584
557
586
557
541 | 585
561
590
527
543 | 588
561
590
513
548 | 588
571
583
535
553 | 592
581
590
543
560 | 594
582
593
531
565 | 599
582
599
562
571 | 599
583
598
527
572 | 599
580
597
541
572 | 595
572
592
559
573 | 585
573
590
563
573 | 584
589
589
563
574 | 583
581
589
564
574 | | 21
22
23
24
25 | | 575
569
580
572
580 | 575
574
582
563
578 | 577
578
582
565
582 | 577
577
583
566
580 | 578
577
583
571
582 | 583
581
593
579
582 | 579
590
593
577
582 | 579
579
588
577
582 | 573
570
596
581
586 | 533
555
588
574
584 | 561
559
577
573
581 | 557
553
571
571
577 | 558
548
557
577
574 | 560
543
563
577
579 | 555
557
574
569
573 | 563
569
580
573
579 | 570
569
576
577
581 | 573
579
582
582
584 | 574
577
581
586
587 | 577
573
581
584
592 | 578
574
579
586
586 | 578
577
578
582
582
582 | 583
581
587
582
551 | 579
582
579
581
567 | | 26
27
28
29
30 | k | 572
565
572
582
580 | 577
567
583
582
581 | 577
575
579
581
582 | 587
574
573
588
583 | 587
577
573
588
584 | 583
582
573
589
587 | 580
580
581
584
584 | 578
578
580
580
584 | 581
564
572
573
582 | 575
562
572
571
577 | 573
561
569
567
572 | 557
561
567
567
575 | 543
570
568
567
583 | 551
572
563
564
584 | 552
572
561
567
583 | 547
571
567
571
583 | 550
568
570
573
583 | 554
572
570
577
587 | 548
567
574
577
591 | 550
573
577
576
591 | 557
563
578
580
591 | 563
577
579
589 | 557
577
576
588
587 | 571
581
579
589 | | 31 | | 587 | 589 | 595 | 591 | 592 | 595 | 597 | 594 | 590 | 583 | 579 | 583 | 583 | 579 | 569 | 572 | | 584 | 587 | | 580 | 580 | 579 | 581 | | iean
iean : | k | 579
579 | 580
578 | 582
580 | 583
580 | 584
580 | 587
581 | 587
581 | 584
579 | 581
577 | 575
571 | 570
565 | 566
564 | 566
569 |
569
574 | 569
575 | 572
578 | 574
581 | 580
585 | 580
587 | 582
588 | 587 | 586 | 585 | 585 | | Mean | | 584 | 586 | | 584 | - | 593 | 595 | | | 581 | 572 | 563 | 555 | 559 | 562 | 560 | 562 | 576 | 572 | 577 | 569 | 575 | 572 | 580 | * International Quiet Day. ** International Disturbed Day. | | | | | T | ABLE | III. | - н | OURLY M | EANS | OF V | ERT I | CAL C | OMPO | ENT OF | MAG | NETIC | INT | ensit | TA Y | ABING | ER | | | | | |-----------------------------------|------------------------------------|---------------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | 0 h | 1 h | 2 | h 3 | h 4 | h 5 | h | 6 h 7 | h 8 | 3 h 9 | h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 10 | 5 h 1 | 7 h 1 | 8 h 1 | 9 h 2 | 0 h 2 | 1 h 2: | 2 h 2 | 3 h 24 l | | January | | | | | | | | | 4 | 3000 | γ+ 7 | Tabula | ır Qua | ntities | s (in | Υ) | | | | | | | | | | | 1
2
3 **
4 ** | | 8 2
0 2
6 1 | 15
14
19
86
29 | 216
216
218
187
228 | 216
217
217
183
224 | 216
218
216
190
225 | 218
220
219
196
229 | 216
219
216
200
227 | 216
218
216
206
226 | 211
217
212
207
227 | 210
215
208
216
222 | 209
212
201
225
221 | 214
214
207
228
224 | 217
216
234
230
225 | 218
216
236
232
228 | 225
222
240
239
229 | 226
223
271
244
230 | 228
226
336
256
230 | 229
232
319
250
230 | 232
230
316
250
229 | 234
228
279
249
229 | 232
224
250
236
230 | 228
221
211
239
229 | 226
220
194
222
227 | 225
220
199
218
224 | | 6
7
8
9 * | 21
22
22
22
22
22 | 1 2:
1 2:
1 2: | 24
23
20 | 225
225
224
220
220 | 226
225
224
221
220 | 226
226
224
220
219 | 225
227
224
224
220 | 224
224
223
223
219 | 222
224
224
224
224
220 | 219
221
220
220
220 | 215
219
216
217
219 | 215
219
219
217
220 | 216
221
219
215
218 | 221
220
220
212
214 | 226
220
224
216
214 | 230
226
226
222
216 | 229
229
226
224
219 | 231
232
228
226
222 | 237
232
227
225
223 | 234
234
229
226
225 | 233
230
228
226
225 | 231
229
226
227
224 | 226
226
224
227
221 | 224
224
223
226
220 | 221
222
222
224
219 | | 11 **
12
13 *
14 *
15 | 21
22
22
21
21 | 2 22 | 20
20
20 | 212
218
220
220
215 | 209
219
220
219
214 | 206
217
219
217
214 | 209
220
220
215
214 | 206
220
219
216
215 | 210
221
219
217
216 | 212
219
220
216
214 | 215
220
221
218
215 | 216
222
225
220
216 | 217
224
225
219
219 | 218
225
226
220
220 | 220
226
226
220
222 | 221
223
223
221
223 | 224
223
220
223
221 | 228
224
222
224
220 | 229
225
222
223
219 | 230
226
223
222
217 | 228
230
221
222
219 | 229
229
223
221
219 | 230
226
220
220
222 | 224
224
220
220
226 | 220
222
218
219
227 | | 16
17
18
19
20 * | 22:
22:
22:
22:
22: | 2 2:
4 2: | 18
21
15 | 222
217
221
214
223 | 220
215
221
216
222 | 219
214
220
216
221 | 220
215
221
220
220 | 220
215
220
220
219 | 219
215
219
220
220 | 216
214
219
216
219 | 215
217
218
213
218 | 216
220
217
211
220 | 220
220
219
212
212 | 220
220
215
212
218 | 220
220
220
212
220 | 220
221
229
216
221 | 220
221
231
219
220 | 223
224
229
220
221 | 222
226
228
222
221 | 222
227
230
223
222 | 222
227
224
224
220 | 222
224
220
226
219 | 221
223
224
226
219 | 221
222
225
226
219 | 220
222
221
226
215 | | 21 *
22
23
24 **
25 | 21
22
21
21
21 | 5 22
9 2
5 2 | 23
15
13 | 221
221
215
202
217 | 220
219
212
201
218 | 221
219
214
206
219 | 221
217
218
214
221 | 220
216
217
216
222 | 221
214
220
218
224 | 220
216
220
217
222 | 217
214
220
217
220 | 216
213
222
216
222 | 215
214
222
219
223 | 211
213
220
220
220 | 214
213
222
230
223 | 220
220
226
238
231 | 218
220
225
235
237 | 219
222
227
241
235 | 220
223
227
234
233 | 220
223
226
231
234 | 221
223
224
238
231 | 223
222
225
239
227 | 225
220
226
230
225 | 227
220
219
221
224 | 227
219
213
212
222 | | 26 **
27
28
29
30 | 22
22
21
21
21 | 3 22
9 22
9 21 | 22
21
18 | 218
220
220
217
216 | 212
217
220
216
216 | 212
218
220
215
216 | 217
219
222
216
217 | 216
219
219
215
214 | 218
219
222
218
216 | 219
221
220
216
215 | 220
215
217
216
212 | 221
211
214
216
205 | 223
208
213
216
204 | 220
209
214
214
208 | 221
212
215
215
210 | 224
216
220
221
219 | 225
219
221
224
219 | 227
220
221
223
219 | 232
221
220
223
219 | 235
223
220
223
219 | 235
223
220
223
219 | 233
223
221
223
219 | 226
223
224
222
217 | 225
223
225
222
217 | 223
220
220
219
215 | | 31 | 21 | 3 2 | 13 | 215 | 215 | 213 | 215 | 214 | 215 | 215 | 211 | 209 | 208 | 209 | 211 | 217 | 220 | 224 | 225 | 225 | 224 | 225 | 224 | 223 | 220 | | Mean | 219 | 2 | 18 | 218 | 217 | 217 | 218 | 218 | 219 | 217 | | 216 | 217 | 218 | 220 | | 226 | 230 | 230 | 230 | 228 | 226 | 224 | | 220 | | Mean ** | 22 | 1 22
2 21 | | 221
207 | 220
204 | 220
206 | 220
211 | 219
211 | 220
214 | 219
213 | 218 | 220,
216 | | 217
224 | 217
228 | 221
232 | 221
240 | 222 | 222
253 | 223
252 | 222
246 | 223
237 | 222
227 | 222
217 | 221
214 | | February | | | | | | | | | 4 | 3000 | Y + 1 | abula | ır Qua | ntities | (in | Y) | <u>.</u> | | | | | | | | | | 1 *
2
3
4 | 211
211
22
22
22
22 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 17
21
26 | 217
219
222
226
216 | 218
214
221
226
215 | 216
213
220
226
213 | 220
215
219
226
216 | 215
216
218
220
217 | 215
211
216
219
220 | 214
210
218
220
215 | 211
204
216
218
215 | 206
198
216
219
216 | 209
200
213
220
220 | 210
206
212
222
222 | 211
216
216
229
226 | 218
224
216
228
229 | 218
224
218
234
233 | 218
224
220
239
236 | 219
224
221
239
236 | 220
224
225
235
236 | 220
224
225
232
234 | 220
225
227
230
234 | 220
226
231
226
230 | 220
223
236
226
228 | 219
222
227
224
228 | | 6
7 **
8 **
9 | 22
21 | 5 22
2 21
1 8
5 23 | 21
19
34
36 | 225
220
110
237
234 | 225
221
127
239
236 | 225
223
160
238
237 | 227
226
210
241
240 | 224
223
230
239
244 | 222
220
249
236
249 | 220
215
256
235
255 | 215
207
257
237
250 | 216
210
256
242
249 | 220
230
270
239
245 | 219
234
275
239
241 | 221
236
285
241
244 | 226
255
302
247
250 | 229
289
291
251
252 | 229
314
297
248
250 | 230
334
284
244
245 | 230
339
264
244
243 | 229
324
251
242
242 | 228
291
241
240
240 | 224
243
236
235
240 | 223
241
236
235
239 | 220
146
234
234
236 | | 11 *
12
13
14 ** | 23:
23:
23:
23:
23: | 2 | 31 | 231
232
232
233
230 | 230
230
230
231
228 | 233
230
233
230
210 | 237
233
235
231
211 | 236
232
229
230
215 | 237
232
230
231
220 | 236
232
236
226
218 | 234
230
240
236
214 | 232
225
247
238
210 | 233
224
255
244
210 | 234
223
256
240
219 | 236
226
253
240
220 | 242
233
251
240
224 | 244
242
246
240
227 | 241
247
241
240
230 | 240
246
239
240
230 | 240
246
239
236
231 | 239
244
236
237
231 | 238
241
234
240
230 | 236
242
234
240
230 | 235
239
235
237
230 |
234
234
235
236
230 | | 16
17
18
19 **
20 | 23
22
22
22
23 |) 2:
9 2:
5 2: | 24
28 | 230
226
229
225
233 | 230
226
230
225
232 | 230
226
230
224
231 | 230
226
230
225
233 | 227
224
225
222
230 | 226
225
227
219
231 | 227
226
227
221
232 | 224
224
224
220
229 | 221
219
216
220
225 | 220
214
213
220
221 | 221
216
216
221
221 | 222
220
217
223
224 | 223
226
225
230
228 | 226
232
230
235
231 | 228
234
230
233
232 | 229
230
230
235
232 | 229
231
230
243
235 | 241 | 247 | 229
228
227
270
221 | 229
227
227
236
212 | 228
226
225
229
211 | | 21 **
22
23
24
25 | 20°
23°
22°
23°
23° | 2 2 2 | 33
25
30 | 203
221
218
227
231 | 200
206
221
229
225 | 194
201
221
230
218 | 190
212
225
230
220 | 190
217
222
230
221 | 201
226
224
231
227 | 211
229
226
231
231 | 213
227
230
230
228 | 219
227
230
229
224 | 226
221
231
227
227 | 230
221
232
226
226 | 240
223
235
224
225 | 260
228
239
230
230 | 285
230
246
231
235 | 285
236
247
231
241 | 275
236
246
231
236 | 270
237
246
235
234 | 256
240
245
242
234 | 236
238
246
235 | 241
232
235
241
233 | 239
230
235
232
233 | 237
230
232
231
231 | | 26 *
27 *
28 * | 23
22
22 | 3 2: | 31
29
25 | 230
230
225 | 227
229
223 | 226
230
222 | 227
228
222 | 227
226
222 | 231
229
224 | 231
230
221 | 229
226
220 | 225
217
215 | 225
215
209 | 221
216
209 | 221
219
212 | 225
221
219 | 228
225
221 | 231
230
222 | 233
229
225 | 237
230
225 | 237
230
226 | 236
230
227 | 234
230
225 | 231
230
226 | 230
229
226 | | Mean | 22 | 3 2: | 21 | 222 | 221 | 221 | 224 | 224 | 226 | 227 | 225 | 224 | 225 | 226 | 229 | 235 | 239 | 241 | 241 | 241 | | | 234
229 | 231
228 | 226
228 | | Mean * | 22 | | 27 | 227 | 225 | 225 | 227 | 225 | 227 | 226 | 224 | 219 | 218
238 | 218
240 | 220
245 | 225
257 | 227
268 | 228
274 | 274 | 230
270 | 230
265 | 230
259 | 246 | | 216 | | Mean ** | 19 | 1 19 | 92 | 198 | 20 1 | 206 | 216 | 219 | 224 | 220 | 227 | 227 | 270 | 24V | 447 | | | | | | | | | | | ^{*} International Quiet Day. ** International Disturbed Day. | 30 | | | | | TABLE | III. | . – н | OURLY 1 | ŒANS | OF ' | VERT I | CAL | COMPO | NENT O | F MAC | NETI | C INT | 'ENSI' | TY AT | r abing | ER | | | | | |--|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | The color of | . U.T. | 0 h 1 | h : | 2 h | 3 h 4 | (h. 5 | 5 h | 6 h 7 | h 8 | 3 h 9 |) h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 ^h 1 | 7 h | 18 h | 9 h 2 | 20 h 2 | 1 h | 22 h 2 | 3 h 2 | | 2 | March | *** | | | | | | | 4 | 13000 | γ+' | Tabul | ar Qua | antitie | s (in | Υ) | | | | | | | | | | | 7 227 228 226 226 226 227 228 227 228 227 228 223 228 217 218 217 218 217 218 218 218 218 218 218 218 218 218 218 | 2
3 *
4 | 233
232
228 | 226
232
227 | 222
232
231 | 226
232
232 | 226
231
231 | 226
230
229 | 222
228
227 | 221
229
230 | 222
229
227 | 221
223
216 | 221
219
212 | 221
215
215 | 216
217 | 219
219 | 226
223
227 | 230
225
237 | 229
227
242 | 229
225
241 | 228
242 | 228
243 | 231
229
248 | 229
229
246 | 228
227
223 | 230
227
219 | | 11 4 277 220 220 230 230 233 2 | 7
8
9 | 227
226
228 | 228
223
226 | 226
226
227 | 224
228
228 | 226
228
228 | 229
228 | 228 | 230
226 | 226
224 | 218
217
215 | 215
211
211 | 216
210
207 | 213
204 | 217
209 | 221
222
219 | 226
228
230 | 235
230
242 | 236
231
243 | 233
244 | 240
233
245 | 239
232
247 | 234
232
239 | 230
229
232 | 227
226
228 | | 17 | 12 *
13 *
14 *
15 | 227
229
228 | 229
229
226 | 230
229
225 | 230
229
225 | 230
228
224 | 233
229
226 | 233
228
228 | 234
231 | 232
229
229 | 225
224
218 | 222
221
212 | 224
223
213 | 222
221
216 | 223
219 | 229
223 | 232
225 | 234
228
231 | 232
231
230 | 232
235
231 | 232
233
234 | 232
232 | 232
230
228 | 231
229
228 | 229
226
226 | | 22 ** 223 223 224 224 225 225 225 225 226 223 218 215 210 212 218 226 223 218 226 223 218 226 224 244 244 244 244 241 237 232 237 248 244 244 244 247 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 248 248 248 247 244 247 247 248 248 248 247 244 247 247 248 248 248 247 244 247 247 248 248 248 247 247 248 248 248 247 247 248 248 248 247 247 248 248 248 247 247 248 248 248 247 247 248 248 248 247 248 248 248 247 248 248 247 248 248 247 248 248 247
248 248 248 247 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 247 248 248 248 248 247 248 248 248 247 248 248 248 248 247 248 248 248 248 248 248 248 248 248 248 | 17
18
19 | 225
228
226 | 224
228
227 | 222
228
228 | 215
225
228 | 215
226
228 | 228
229 | 218
224
229 | 216
225
228 | 216
218
224 | 209
212
218 | 207
207
215 | 209
206
212 | 214
205
212 | 223
210
220 | 228
222
225 | 234
226
230 | 244
230
232 | 248
233
229 | 241
233
227 | 234
232
225 | 234
230
224 | 235
227
224 | 229
226
225 | 228
225
223 | | 249 249 249 249 240 246 246 246 250 249 246 241 238 234 235 237 239 245 248 245 250 251 249 250 252 258 254 258 255 251 251 251 252 253 251 251 252 253 255 255 255 255 255 255 255 255 | 22 **
23
24 **
25 ** | 223
224
193
213 | 223
223
110 | 224
219
135 | 224
222
81 | 223
221
146 | 225
224
215
158 | 225
224
240 | 226
224
245
181 | 223
220
245 | 218
211
239 | 215
206
240 | 210
203
245 | 212
204
250 | 218
208
270
325 | 226
219
302 | 232
230
381 | 233
233
386 | 233
233
290 | 235
235
272 | 234
230
262 | 233
234
261
313 | 229
233
256 | 228
228
249
219 | 223
213
231
211 | | Fean # 225 220 220 218 220 225 227 230 229 223 221 220 222 228 239 252 253 248 244 242 241 237 232 227 246 # * * * * * * * * * * * * * * * * * * | 27
† 28 **
29
30 | 249
238
244
253 | 238
228
253
252 | 221
223
253
251 | 224
207
263
251 | 230
197
267
252 | 229
203
275
253 | 233
219
279
255 | 236
219
279 | 239
199
273
246 | 236
201
267
243 | 229
200
265
238 | 223
210
260
238 | 221
262
238 | 258
239 | 243
264
243 | 262
268
248 | 268
273
250 | 259
270
251 | 253
269 | 254
268 | 279
267
252 | 255
238
263
250 | 219
257
250 | 244
255 | | feah * 228 228 228 228 228 229 239 231 228 221 215 215 217 223 227 230 230 231 230 229 228 221 215 215 215 215 217 220 221 221 221 221 221 227 230 229 236 231 231 230 229 221 231 231 232 222 226 230 245 260 292 346 327 294 272 265 264 241 228 221 221 221 221 221 222 223 222 223 222 223 222 223 222 223 244 245 247 241 248 248 248 249 240 232 222 223 223 243 245 245 245 245 245 245 245 245< | 31 | 249 | 249 | 249 | 248 | | 246 | 250 | 249 | 246 | | | | 235 | | 239 | | | | 247 | 248 | 248 | 249 | | | | April 1946 Otto 2 244 246 249 249 249 240 232 222 226 230 240 248 254 255 255 259 250 245 240 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Mean
Meah * | | | | | | | | - | • | - | | | | | | | | | | | | _ | | | | 1 235 243 233 234 242 244 246 249 249 240 232 222 226 230 240 248 254 254 253 252 249 250 245 240 240 239 235 238 239 237 233 236 237 236 229 231 227 225 236 248 254 261 259 255 262 230 249 240 244 244 34 245 245 245 245 245 245 244 245 245 24 | Mean ** | 214 | | | | 1 | 202 | 214 | 218 | 223 | 222 | 226 | 230 | 245 | 260 | 292 | 346 | 327 | 294 | 272 | 265 | 264 | 241 | 228 | 213 | | 2 | April | - | 19 | 46 | 043 | 15 | | | 4 | 3000 | γ+1 | abula | ır Qua | ntities | (in | Υ) | | | | | | | | | | | 7 243 242 240 235 233 233 233 233 235 233 239 240 244 243 248 238 239 229 226 218 217 222 231 243 239 239 239 239 239 239 240 244 243 248 238 238 238 238 234 234 240 242 240 236 225 223 221 232 239 239 239 239 239 242 247 248 240 236 225 223 221 232 239 239 239 239 239 242 247 248 240 236 225 223 221 232 239 239 239 239 239 242 247 248 240 236 225 239 239 239 239 239 239 234 242 244 243 248 239 231 232 239 239 239 239 239 239 239 239 239 | 2
3
4 | 239
244
245 | 235
245
245 | 238
247
245 | 239
247
242 | 237
246
243 | 233
248
245 | 236
248
248 | 237
247
248 | 236
241
239 | 229
235
229 | 231
229
222 | 227
223
220 | 225
224
228 | 236
230
233 | 248
240
242 | 254
249
247 | 261
255
252 | 259
261
250 | 253
259
248 | 249
256
245 | 250
253
244 | 239
249
243 | 244
247
243 | 244
244
243 | | 13 | 7
8
9 ** | 243
239
233 | 242
239
234 | 240
239
235 | 235
239
234 | 233
240
234 | 233
244
240 | 235
243
242 | 233
243
240 | 229
238
236 | 222
229
225 | 218
226
223 | 217
223
221 | 222
228
232 | 231
234
239 | 243
239 | 251
241
283 | 249
245
280 | 250
248
279 | 249
247
267 | 246
246
260 | 245
243
256 | 242
240
251 | 239
239
246 | 237
238
239 | | 17 | 12
13
14 ** | 238
235 | 234
229
220 | 233
219
226 | 233
219
231 | 234
226
234 | 238
232
239 | 239
230
241 | 239
229
240 | 234
229
230 | 228
218
221 | 223
215
219 | 218
215
218 | 215
214
219 | 220
220
236 | 231
232
256 | 239
237 | 237
245
252 | 236
248
255 | 236
246
251 | 237
249 | 236 | 235
235
242 | 230
232
229 | 234
229
227 | | 22 231 232 232 233 234 232 233 234 232 233 231 225 222 220 218 220 225 231 235 239 242 241 240 237 236 233 233 234 *** 231 231 225 220 218 220 222 218 216 214 216 227 240 269 297 356 409 406 374 362 316 293 254 41 244 *** 98 184 130 154 164 175 224 234 240 251 259 284 279 282 297 300 330 301 287 285 255 251 251 251 251 251 251 251 251 25 | 17
18
19 * | 230
239
238 | 229
240
239 | 236
240
239 | 239
240
239 | 241
240
239 | 241
241
239 | 241
244
240 | 240
245
239 | 237
240
233 | 235
230
225 | 229
226
217 | 225
223
215 | 227
224
213 | 233
231
218 | 240
238
223 | 244
244
231 | 246
243
234 | 247
244
240 | 246
246
240 | 242
244
240 | 240
243
239 | 241
241
236 | 240
237
236 | 240
239
235 | | 27 237 226 224 234 243 247 248 247 244 239 231 227 227 233 242 247 247 250 252 252 251 251 249 251 28 250 250 250 247 247 245 245 245 240 237 231 229 228 231 238 251 255 256 262 271 264 260 253 251 251 250 249 247 249 247 246 241 239 231 221 211 216 227 234 238 242 248 247 247 247 247 246 245 245 30 * 245 240 237 240 241 241 241 237 234 226 217 211 215 222 230 237 241 243 242 241 241 239 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 239 241 241 241 239 241 241 241 239 241 241 239 241 241 241 239 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 239 241 241 241 241 239 241 241 241 241 239 241 241 241 241 241 241 241 241 241 241 | 22
23 **
24 ** | 231
231 | 232
231
184 | 232
225
130 | 233
220
154 | 234
218
164 | 232
220
175 | 233
222
224 | 231
218
234 | 225
216
240 | 222
214
251 | 220
216
259 | 218
227
284 | 220
240
279 | 225
269
282 | 231
297
297 | 235
356
300 | 239
409
330 | 242
406
301 | 241
374
287 | 240
362
285
259 | 237
316
255
257 | 236
293
251
257 | 233
254
251
256 | 233
41
251
256 | | fean * 238 238 237 238 238 239 240 238 234 227 219 214 215 221 228 234 237 240 240 240 238 237 236 235 | 27
28
29 | 237
250
251 | 226
250
250 | 224
247
249 | 234
247
247 | 243
247
249 | 247
245
247 | 248
245
246 | 247
245
241 | 244
240
239 | 239
237
231 | 231
231
221 | 227
229
211 | 227
228
216 | 233
231
227 | 242
238
234 | 247
251
238 | 247
255
242 | 250
256
248 | 252
262
247 | 252
271
247 | 251
264
247 | 251
260
246 | 249
253
245 | 251
251
245 | | Heali # 256 256 257 256 256 257 240 256 254 227 227 227 227 227 227 227 227 227 22 | Mean | 234 | 235 | 232 | 234 | 236 | 238 | 240 | 240 | 237 | | | | | | | | | | | | | | | | | | Mean *
Mean ** | _ | _ | | | 238
213 | 239
219 | 240
230 | 238
230 | 234
227 | 227
226 | 219
229 | | | | | | | | | | | | | | C.B.H. 25989 ^{*} International Quiet Day. ** International Disturbed Day. $[\]dagger$ March 28 has been omitted in computing the monthly mean values. MAGNETIC OBSERVATIONS, ABINGER 1946. | \$\frac{1}{2}\$ | | | | | TABLE | 111 | н | IOURLY | MEANS | S OF | VERT 1 | CAL | COMPO | NENT O | F MAC | NET I | C INT | ENSI | TY AT | ABIN | GER | | <u>-</u> | | | |
--|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|-------------------|--------------------------|---------------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|------| | 1 | U.T. | 0 h | 1 ^h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | 9 h 1 | .0 h | 1 h | 12 h | l3 ^h 1 | l4 h | 15 h 1 | 6 h 1 | 7 h | 18 h | 19 h | 20 h 2 | 1 h 2 | 2 h 2 | 23 h | 24 h | | 1 | May | | | | _ | | | | | 43000 | Υ+ | Tabul | ar Qua | antitie | s (in | Y) | | | · · · · · · · · · · · · · · · · · · · | 7,8 | | | | | | | | 7 288 280 281 232 232 238 230 230 232 238 238 238 238 238 238 238 238 238 | 2
3
4 | 241
234
238 | 230
237
226 | 230
240
229 | 235
239
232 | 242
237
235 | 242
236
233 | 243
237
236 | 241
238
236 | 234
231
226 | 226
217
221 | 207
219 | 20 1
216 | 20 5
20 5
216 | 215
224 | 224
234 | 234
245 | 241
250 | 252
245
253 | 251
249 | 248
249 | 245
245
254 | 242
242
250 | 240
239
246 | 240
241 | | | 12 | 7
8
9 ** | 228
238
221 | 230
237
225 | 231
238
208 | 225
232
210 | 221
228
199 | 218
222
206 | 190
217
216 | 185
208
221 | 197
212
232 | 20 5
22 1
23 1 | 207
219
225 | 210
217
219 | 210
218
224 | 223
232
247 | 232
235
265 | 239
235
293 | 241
239
308 | 245
245
307 | 247
249 | 247
254 | 245
253
263 | 245
249
252 | 243
239
234 | 224
242
230
237
239 | | | 22 ** 237 235 246 237 239 239 239 239 239 239 239 239 239 239 | 12
13 | 246
239 | 240 | 242
228
232 | 242
227
235 | 243
234 | 243
237
239
236 | 242 | 244
235
236 | 214
239
235
235
230 | 235
230
227 | 230
227
220 | 223
223
213 | 222
222
214 | 220
225
227
219
216 | 234
232
226 | 241
235 | 258
245
237
232
237 | 247
241 | 245
242 | 245
242 | 241
241 | 241
241 | 239
240 | 243
241
239
235
234 | | | 22 ** | 17
18
19 * | 234
236 | 231
237 | 226
233
236 | 227
225
238 | 225
222 | 236
223
225
237
238 | 234
230
229
235
241 | 230
230
233 | 229
225
226 | 224
218
218 | 214
215
211 | 210
216
206 | 208
220
205 | 215
231
218 | 228
243 | 240
252 | 251
257
246 | 261
256
246 | 257
250
240 | 248
244
239 | 241
240
240 | 239
237
236 | 238
236 | 234
237
235
235
223 | | | 288 237 237 232 232 232 233 239 239 239 239 239 237 231 212 212 220 210 206 206 206 216 232 235 239 245 246 242 242 241 239 232 31 239 237 232 232 232 234 239 239 239 237 231 230 231 230 231 230 231 230 230 228 225 221 216 212 213 232 232 232 242 249 245 246 242 242 241 239 239 248 248 241 242 241 239 239 248 248 241 241 241 241 241 241 241 241 241 241 | 22 **
23 **
24
25 | 237
226
228
218 | 239
207
221
223 | 241
206
222
222 | 237
213
217
221 | 200
231
226
226 | 239
228
227 | 245
231
232 | 197
243
232
232 | 20 3
232
233
232 | 208
230
226 | 211
228
222
217 | 217
224
212 | 226
222
216
215 | 239
231
226 | 251
237
244 | 262
251
265
238 | 278
265
270
253 | 285
283
275 | 279
286
267
261 | 277
266
260
252 | 262
261
253
246 | 252
254
248 | 247
237
242
234 | 243
228
228
233
228 | | | Hean 235 232 231 230 231 230 238 235 231 230 238 235 231 232 212 212 213 223 232 242 249 254 254 250 246 243 239 238 238 238 235 231 232 217 211 210 219 227 234 238 242 242 240 239 238 236 238 238 232 232 242 249 254 254 254 250 246 243 239 238 236 238 235 231 232 217 211 210 219 227 234 238 242 242 240 239 238 236 238 235 231 232 231 2 | 28
29
30- * | 236
238 | 238
237
232
236 | 238
232
232
232 | 238
229
234
234 | 242
232
239
239 | 241
229
238
239 | 224
231
239 | 216
221
237 | 232
211
216
232 | 226
210
208
220 | 228
209
206
210 | 218
202
206
206 | 216
203
209
206 | 224
216
219
216 | 228
232 | 245
238
233 | 251
242
239 | 245
253
246
245 | 253 | 250 | 244
248 | 241
238
241 | 238 | 239
238
238
241
239 | | | Mean * 237 236 234 236 239 238 235 231 223 217 211 210 219 227 234 238 242 240 239 238 236 23 217 221 222 222 </td <td></td> <td>238</td> <td></td> | 238 | | | June 1 | | | - | | | - | - | - | | - | | | | | _ | _ | | - | | | - | | | | 236
236 | ļ | | 1 | Mean ** | 232 | 229 | 224 | 223 | 215 | 216 | 219 | 221 | 221 | 222 | 219 | 217 | 220 | 232 | 244 | 258 | 270 | 279 | 275 | 263 | 255 | 249 | 240 | 232 | | | 2 * 234 235 234 232 233 233 234 232 237 239 240 240 240 240 240 239 236 233 226 214 217 217 227 235 236 239 248 243 238 244 239 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239 236 237 235 236 239
236 239 23 | June | 17.5 | 2 (X) | <u>ن</u> | | | | | 4 | 3000 | γ + 1 | abula | ır Qua | ntities | (in | Υ) | | | | | | | | | | | | 7 ** 237 227 230 233 238 237 236 234 233 228 212 208 212 233 234 234 247 247 249 245 244 237 239 248 239 231 234 234 234 247 247 249 245 244 237 239 239 234 234 234 234 234 234 234 234 234 235 239 240 240 241 241 238 233 232 227 222 233 224 230 233 243 256 252 253 247 243 239 238 231 232 232 233 234 234 234 235 236 259 254 249 245 240 239 239 239 239 239 239 239 239 239 239 | 2 *
3 *
4 | 234
235
232 | 235
236
233 | 234
237
233 | 232
237
235 | 233
239
239 | 234
240
240 | 237
240
239 | 233
238
236 | 232
240
233 | 229
229
226 | 218
219
214 | 213
212
208 | 210
214
207 | 213
223
216 | 217
232
226 | 227
233
235 | 235
238
243 | 236
243
243 | 239
244
244 | 248
241
239 | 243
236
237 | 238
234
235 | 234
233
233 | 235
235
233
233
232 | | | 13 | 7 **
8 **
9 | 237
239
234 | 227
228
236 | 230
214
234 | 219
224 | 238
229
215 | 237
238
221 | 236
242
226 | 234
237
229 | 233
230
226 | 228
225
225 | 223
222
221 | 208
217
223 | 212
218
230 | 223
243 | 259
234
251 | 277
234
263 | 301
247
267 | 317
247
266 | 306
249
259 | 284
249
254 | 273
245
249 | 257
244
245 | 249
237
240 | 237
244
230
238
239 | | | 17 | 12 **
13
14 | 236
233
240 | 236
228
239 | 234
219 | 234
215
237 | 235
213
242 | 213 | 233
220 | 233
231
227
228
233 | 231
232
229
227
227 | 222
227
222 | 217
228 | 217
223
213 | 224
217
215 | 233
217 | 254
225 | 278
234
242 | 282
247 | 287
252
253 | 288
253
255 | 250
251 | 247
243 | 242 | 239 | 235
231
240
237
238 | | | 22 | 17
18
19 ** | 202
231
213 | 212
221
198 | 198
211
195 | 202
218
192 | 211
229
206 | 206
228
212 | 202
231
212 | 215
228
208 | 216
217
206 | 215
211
206 | 213
208
209 | 209
209
203 | 208
208
212 | 216
212
228 | 222
222
244 | 228
234
263 | 232
246
265 | 237
260
258 | 245
263
258 | 246
257
256 | 243
251
247 | 239
246
239 | 237
236
232 | 222
234
222
233
238 | | | 27 | 22
23 *
24 * | 225
235
234 | 223
234
233 | 222
233
234 | 226
235
234 | 234
237
237 | 238
235
238 | 238
232
238 | 237
230
237 | 231
229
234 | 227
226
228 | 225
215
226 | 221
208
217 | 214
210
211 | 213
214
219 | 219
218
224 | 229
223
227 | 233
227
233 | 236
230
236 | 243
234
237 | 247
235
237
244 | 244
234
235
236 | 240
233
234
235 | 235
231
231
233 | 233
234
234
233
233 | | | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 27
28
29 ** | 233
237
231 | 231
236
227 | 234
236
227 | 235
236
226 | 239
234
226 | 236
232
224 | 234
228
211 | 232
227
205 | 227
222
204 | 227
217
204 | 227
214
205 | 221
211
206 | 222
211
220 | 231
216
236 | 238
220
261 | 243
226
285 | 245
227
298 | 245
231
302 | 243
235
284 | 245
235
281 | 247
236
260 | 246
235
241 | 244
233
236 | 234
240
233
244
238 | | | Treati 252 250 227 250 257 252 252 252 253 253 253 253 253 253 253 | Mean | 232 | 230 | 229 | | 233 | 232 | 232 | - | 227 | 223 | 218 | 214 | | | 231 | 241 | 247 | 251 | 252 | | 245 | 240 | 236 | | | | Mean * 236 236 236 237 239 239 238 236 234 228 220 214 213 218 225 230 236 239 242 242 239 236 233 23
Mean ** 231 223 220 221 227 229 227 223 221 217 215 210 217 231 250 267 279 282 277 270 258 247 238 23 | | - | | | | | | | | | | | | - | | | | | | | | | | | 235
236 | | * International Quiet Day. ** International Disturbed Day. 1946073/ | | | | T | ABLE | III. | - но | URLY M | EANS | OF V | ERTIC | CAL C | OMPON | ENT OF | MAGI | ETIC | INTE | NSIT | Y AT | ABINGE | R | | | | | |-------------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------| | U.T. | 0 p | 1 h | 2 h | 3 h 4 | h 5 | h | 6 h | 7 h 8 | 3 h 9 | h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 h 1 | 7 h | 18 h | 19 h 2 | 0 h 2 | 21 h 2 | 22 h 2 | 3 h 24 h | | July | | | | | | *************************************** | | 43 | 3000 | / + T | abular | Quan | tities | (in | Υ) | | | | | | | | | | | 1 *
2
3
4 *
5 * | 239
236
234
235
234 | 236
235
235 | 236 | 243
236
235
237
234 | 246
236
238
241
238 | 244
231
236
241
239 | 244
233
235
238
235 | 241
230
227
234
233 | 238
229
226
230
232 | 237
226
221
224
229 | 231
225
218
219
221 | 223
222
221
216
213 | 225
219
227
221
211 | 228
221
238
227
220 | 235
230
246
230
225 | 241
236
250
237
234 | 245
238
257
238
237 | 245
241
257
238
238 | 246
246
254
238
238 | 244
246 | 242
241
243
240
237 | 240
237
240
237
237 | 236
235
236
233
235 | 236
235
237
235
235 | | 6
7 **
8
9
10 | 233
234
240
236
239 | 234
239 | 232
233
239
226
235 | 231
230
235
223
233 | 232
219
238
234
236 | 231
214
234
235
239 | 230
213
232
235
240 | 229
212
229
233
238 | 224
207
226
229
234 | 220
207
224
221
230 | 216
200
224
220
222 | 220
199
223
222
214 | 216
206
229
224
214 | 220
216
236
234
221 | 223
226
240
248
234 | 230
236
248
261
244 | 238
246
242
266
249 | 242
265
242
261
254 | 237
270
242
253
256 | 236
274
244
246
251 | 238
27-3
242
243
245 | 237
262
242
242
242 | 241 | 235
250
240
240
235 | | 11
12
13 *
14
15 | 235
237
235
232
235 | 236
233 | 234
235
236
232
237 | 225
235
236
233
237 | 225
235
239
235
235 | 230
234
238
236
216 | 230
229
236
235
221 | 230
225
234
240
225 | 226
224
235
237
218 | 217
224
234
233
218 | 215
223
230
218
220 | 214
220
228
215
219 | 219
221
224
215
222 | 230
227
229
227
225 | 240
234
236
240
230 | 244
245
242
254
235 | 245
244
238
266
237 | 247
244
239
275
240 | 252
241
239
264
238 | 251
240
240
250
237 | 250
240
236
244
235 | 245
239
233
239
234 | 243
236
231
236
233 | 240
236
229
236
234 | | 16
17
18 **
19
20 * | 226
228 | 231
222
232 | 234
217
231
212
235 | 236
225
230
219
239 | 240
234
236
227
246 | 238
235
236
222
248 | 235
226
232
226
245 | 231
221
226
227
237 | 225
211
219
227
229 | 214
208
215
227
228 | 207
206
208
228
221 | 211
200
205
225
216 | 211
204
206
225
214 | 217
211
208
238
217 | 221
223
226
259
222 | 234
237
247
268
230 | 245
241
267
271
236 | 246
240
275
269
242 | 246
239
286
266
243 | 245
236
281
259
242 | 241
236
268
255
240 | 236
234
251
257
239 | 230
234
237
241
236 | 228
227
227
236
234 | | 21
22
23
24
25 | 232
226
219
234
234 | 222
233
234 | 226
233
232 | 231
234
230
237
230 | 232
236
234
239
230 | 236
228
232
239
231 | 233
225
228
242
230 | 235
218
222
238
229 | 230
214
218
229
225 | 228
212
212
228
222 |
218
212
209
227
221 | 213
208
205
219
217 | 209
211
211
216
214 | 216
222
214
222
214 | 227
233
217
235
222 | 245
245
228
239
232 | 255
252
231
240
233 | 246
256
235
239
239 | 244
256
241
238
239 | 242
251
242
241
248 | 238
247
242
241
247 | 236
241
237
238
240 | 232
237
235
236
237 | 229
226
235
236
236 | | 26 **
27 **
28
29 **
30 | 258
241
227 | 80
258
246
228 | 223
55
259
246
229 | 222
-92
259
246
224 | 219
48
259
243
236 | 219
37
260
230
243 | 217
5
263
227
246 | 218
85
262
235
246 | 213
217
257
237
246 | 206
267
249
234
242 | 216
276
242
228
236 | 213
279
237
226
230 | 215
267
240
234
229 | 223
264
247
242
238 | 232
273
255
252
246 | 243
279
262
252
254 | 247
283
262
262
269 | 251
282
269
286
270 | 257
278
270
272
260 | 269
272
274
268
253 | 262
267
267
258
247 | 256
260
259
249
244 | 280
262
245
246
242 | 233
260
248
241
242 | | 31 | | 236 | | | 245 | 243 | 246 | 246 | · | | | 222 | 218 | 229 | | 249 | 254 | | 254 | | | | 241 | | | Mean * | 230
234 | | 228
237 | 223
238 | 230
242 | 228
242 | 226
240 | 227
236 | 228
233 | 226 | 222
224 | 219
219 | 220
219 | 226
224 | 235
230 | 245
237 | 2 4 9
2 3 9 | 252
240 | 252
241 | 250
242 | | 243
237 | 240
234 | 236
234 | | Mean ** | 211 | 203 | 198 | 167 | 193 | 187 | 179 | 195 | 219 | 226 | 226 | 224 | 236 | 231 | 242 | 251 | 261 | 272 | 273 | 273 | 266 | 256 | 256 | 242 | | August | | 194 | 60 | 83 | اسل ا | | | 43 | 000 Y | ' + Ta | ıbular | Quan | tities | (in) | 7) | | | | | | | | | | | 1
2
3
4
5 | 237
241
241
240
240 | 241 | | 239
245
240
241
242 | 247
249
243
243
245 | 249
250
244
243
243 | 250
247
245
241
245 | 253
245
247
241
245 | 254
243
239
236
243 | 248
237
231
227
239 | 242
230
228
220
234 | 237
225
222
212
226 | 237
224
222
213
224 | 239
224
226
219
224 | 246
229
235
225
222 | | 259
250
247
239
240 | 262
257
246
241
243 | 258
257
245
242
244 | 250
251
243
241
243 | 247
249
241
241
241 | 243
247
240
240
243 | 241
243
239
239
241 | 242
243
240
239
240 | | 6
7 **
8
9 | 236
237
246
241
238 | 246 | 238
236
245
240
237 | 239
228
245
240
239 | 241
229
249
242
242 | 242
227
246
241
241 | 242
231
246
240
240 | 242
233
246
238
237 | 238
234
241
237
232 | 230
233
232
230
224 | 221
232
231
225
214 | 212
220
226
216
206 | 211
219
225
216
209 | 220
232
231
224
220 | 229
251
238
230
227 | 238
280
244
235
235 | 242
290
246
242
240 | 242
301
245
249
246 | 245
297
246
250
244 | 242
286
245
247
246 | 245
268
243
244
242 | 241
254
245
240
240 | 237
249
245
240
239 | 238
247
241
240
240 | | 11 **
12
13
14 **
15 ** | 236
227
232
236
239 | 231
220
235
236
228 | 227
221
236
236
219 | 233
226
239
236
223 | 234
235
241
237
228 | 231
237
240
237
236 | 226
238
239
236
242 | 232
240
239
235
242 | 236
235
237
231
243 | 234
233
232
224
236 | 226
229
226
219
232 | 224
220
218
217
229 | 229
219
217
219
229 | 239
223
221
236
234 | 242
230
225
237
241 | 248
239
234
243
244 | 259
245
241
252
257 | 270
243
242
257
266 | 270
241
240
258
271 | 260
240
241
261
261 | 252
240
236
262
254 | 242
242
235
237
251 | 229
234
233
238
245 | 230
233
236
242
237 | | 16
17
18
19
20 | 236
228
236
233
235 | 235
238
231 | 231
238
238
234
233 | 234
239
238
236
234 | 240
240
240
240
235 | 240
237
241
240
238 | 241
228
244
241
241 | 239
219
244
237
241 | 232
210
236
229
241 | 224
212
230
225
232 | 219
206
219
225
229 | 215
200
212
219
215 | 211
210
220
219
212 | 219
220
231
221
218 | 227
239
235
227
222 | 238
255
240
235
231 | 245
256
242
240
237 | 249
257
248
241
239 | 249
255
246
244
240 | 257
255
244
245
242 | 252
248
243
242
241 | 246
244
241
241
240 | 220
232
236
239
239 | 223
234
237
237
238 | | 21 *
22 *
23 *
24
25 | 235
234
234
232
232 | 235
231 | 235
232
235
228
230 | 235
234
236
226
230 | 238
237
238
230
230 | 239
238
238
229
230 | 241
238
239
229
228 | 240
235
240
229
222 | 239
232
237
225
214 | 234
228
227
224
210 | 224
224
221
219
204 | 218
220
220
212
202 | 219
219
221
211
208 | 227
222
225
219
218 | 233
230
231
228
228 | 237
236
232
232
234 | 241
239
231
236
237 | 241
237
229
238
235 | 239
232
229
234
229 | 236
232
229
234
230 | 235
235
231
234
230 | 237
235
232
235
231 | 238
235
233
234
231 | 236
235
234
235
232 | | 26 *
27
28
29 *
30 | 234
231
232
232
231 | 232 | 235
232
232
232
232
232 | 235
234
233
234
233 | 235
235
234
236
235 | 235
235
232
236
235 | 235
235
232
236
236 | 235
233
229
236
235 | 232
228
223
236
232 | 220
219
218
226
226 | 212
218
211
219
218 | 211
219
213
216
208 | 214
218
216
211
212 | 221
220
222
217
219 | 225
226
225
222
223 | 232
232
228
230
230 | 235
237
234
235
235 | 231
237
239
239
240 | 228
234
239
239
239 | 230
233
240
238
236 | 230
233
238
236
233 | 231
234
235
235
234 | 231
232
231
232
237 | 231
234
231
230
232 | | 31 ** | 212 | 200 | 204 | 206 | 20 1 | 168 | 165 | 196 | 216 | 222 | 225 | 230 | 235 | 244 | | 262 | 277 | 281 | | 259 | | 247 | | 245 | | Mean
Mean * | 235
234 | 234 | 234 | - | 237
237 | 236
237 | 236
238 | 237 | 234
235 | 228
227 | 223 | 217 | 218
217 | 225
222 | 231
228 | 240
233
255 | 245236267 | 248235275 | 247
233
273 | 245
233
265 | 233 | 240
234
246 | 237
234
241 | 237
233
240 | | Mean ★* | 232 | 227 | 224 | 225 | 226 | 220 | 220 | 228 | 232 | 230 | 227 | 224 | 226 | 237 | 444 | 255 | 207 | 417 | 613 | 20) | | - 10 | | | ^{*} International Quiet Day. ** International Disturbed Day. | | | | | TABLE | III | H | OURLY | MEAN | S OF | VERT: | ICAL | COMPO | NENT O | F MA | enet i | C IN | ens i | TY A | r ABINO | ER | | | | | | |------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|--|---------------------------------|----| | U.T. | 0 h | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | 9 h 1 | 10 h | 1 h | 12 h 1 | 3 h 1 | .4 h 1 | 5 h 1 | 6 ^h 1 | 17 h | 18 h | 19 h | 20 h 2 | 21 ^h 2 | 22 h 2 | 3 h | 24 | | September | | <u>-</u> | | | | | | | 43000 | Υ + | Tabul | ar Qua | antitie | s (in | Υ) | | | | | | | | | | | | 1 *
2
3
4
5 | 242
237
231
233
227 | 235
229 | 232
229 | 232
229
235 | 236
233 | 245
236
235
239
241 | 243
237
238
241
243 | 242
233
234
240
241 | 230
231
236 | 234
225
228
232
231 | 230
221
223
234
225 | 220
216
235 | 219
220
212
233
229 | 225
220
219
240
235 | 231
224
226
248
236 | 240
234
240
252
242 | 245
240
249
257
252 | 249
245
256
262
257 | 246
248
252
259
255 | 246 | 245
245
253 | 242 | 233 | 236 | | | 6 *
7
8
9
10 | 230
235
236
234
240 | 227
235
233
235
239 | 230
233
235
237
239 | 230
234
236
237
239 | 226
235
238
239
239 | 225
235
240
236
237 | 231
236
242
238
235 | 232
232
243
239
230 | | 230
227
237
228
220 | 220
221
229
224
224 | 222
225 |
217
227
223
222
225 | 225
236
235
229
225 | 226
242
239
238
234 | 228
241
242
243
236 | 232
245
243
253
239 | 236
242
243
259
239 | 233
242
245
262
239 | 235
245
250
256
240 | 247 | 236
241
245
242
238 | 232
239 | 235 | | | 11
12
13
14
15 * | 226
235
235
224
228 | 231
234
235
225
229 | 235
235
235
229
230 | 236
235
235
233
233 | 237
236
237
234
232 | 235
234
234
233
234 | 234
233
235
234
233 | 234
231
234
234
234 | 228
227
228
228
224 | 224
223
223
223
218 | 221
218
220
222
209 | 218
213
217
218
201 | 221
217
217
215
199 | 224
228
224
216
206 | 229
232
231
223
215 | 238
237
233
231
229 | 238
237
234
233
230 | 242
237
234
234
234 | 244
237
235
234
234 | 244
238
235
234
235 | 240
236
234
233
232 | 239
237
234
234
231 | 237
235
232
234
229 | 240
236
230
228
229 | | | 16
17
18 **
19 **
20 | 230
214
193
239
249 | 231
199
174
216
248 | 232
184
109
187
249 | 232
214
105
171
251 | 232
224
129
181
253 | 230
224
149
215
250 | 233
229
169
231
249 | 232
234
202
238
246 | 227
230
215
245
242 | 219
229
224
244
240 | 208
228
236
241
238 | 200
224
249
237
235 | 197
228
264
241
237 | 209
234
289
291
239 | 214
242
325
295
241 | 225
246
359
305
245 | 240
254
354
284
248 | 258
255
341
271
251 | 288
253
329
262
258 | 279
- 254
281
261
261 | 248
238
284
260
258 | 252
240
285
262
255 | 249
240
269
260
255 | 231
237
261
257
251 | | | 21
22 **
23 **
24
25 * | 245
260
223
245
255 | 241
245
203
244
255 | 244
239
150
244
255 | 245
237
174
245
255 | 247
228
158
248
256 | 245
129
165
255
255 | 249
99
164
261
255 | 250
174
175
269
255 | 250
205
225
271
253 | 245
225
238
265
249 | 235
225
254
255
245 | 225
225
269
249
239 | 220
265
292
249
235 | 229
305
321
250
241 | 236
375
346
251
247 | 245
335
387
255
249 | 248
362
424
258
252 | 256
370
349
259
255 | 258
332
308
259
258 | 255
318
295
258
258 | 254
285
287
255
255 | 253
270
268
256
255 | 254
251
251
255
255
251 | 260
239
244
256
251 | | | 26 *
27
28 **
29
30 | 250
250
256
233
249 | 249
250
256
215
246 | 250
246
250
235
246 | 251
243
229
249
240 | 252
246
223
252
240 | 251
248
230
260
239 | 252
250
233
268
240 | 249
248
232
272
247 | 247
243
234
271
250 | 244
244
242
269
253 | 240
247
243
262
253 | 234
243
252
262
256 | 232
245
275
268
258 | 241
254
309
281
261 | 245
262
316
292
270 | 252
280
376
299
280 | 252
297
368
316
290 | 255
312
383
323
282 | 255
290
332
302
278 | 255
289
310
289
276 | 251
285
310
273
266 | 250
276
252
269
265 | 249
266
255
265
262 | 250
259
257
257
260 | | | Mean | 236 | 232 | 228 | 229 | 230 | 229 | 231 | 235 | 236 | 234 | 232 | 230 | 233 | 245 | 254 | 263 | 269 | 270 | 264 | 260 | 254 | 250 | 246 | 243 | | | Mean *
Mean ** | 241
234 | 240
219 | | 243
183 | 242
184 | 243
178 | 243
179 | 242
204 | 239
225 | 235
235 | 229 | 222
246 | 220
267 | 228
303 | 233
331 | 240
352 | 242
358 | 246
343 | 245
313 | 245
293 | 243
285 | 242
267 | 241
257 | | | | October | | <u> </u> | | | | | | 4 | 3000 | y + 1 | abula | ır Qua | ntities | (in | Υ) | | | | | | | | | | | | 1
2
3
4
5 | 253
255
250
251
250 | 250
255
246
250
247 | 252
255
246
246
246 | 256
253
246
240
246 | 256
252
248
242
242 | 256
255
247
245
242 | 259
260
246
246
246
246 | 260
259
249
250
250 | 259
256
251
249
247 | 262
251
250
248
242 | 260
244
245
245
239 | 256
238
238
240
237 | 257
240
240
241
238 | 262
250
248
242
246 | 269
260
258
246
260 | 272
265
267
255
270 | 270
266
270
261
266 | 270
266
262
262
262
266 | 270
267
260
257
269 | 272
266
258
255
266 | 266
260
256
254
256 | 262
256
254
255
252 | 257
256
252
255
246 | 256
256
252
252
251 | | | 6
7
8 *
9 ** | 250
242
245
241
232 | 248
244
246
241
242 | 246
245
246
239
243 | 240
246
246
236
246 | 236
244
244
237
246 | 236
246
246
235
246 | 241
242
247
230
246 | 246
247
248
232
247 | 244
245
246
232
246 | 241
241
240
235
236 | 238
241
229
232
230 | 231
237
222
232
230 | 231
236
223
230
233 | 236
234
227
237
236 | 242
244
233
246
246 | 250
260
240
250
251 | 254
266
242
252
250 | 253
261
240
250
246 | 257
257
241
252
246 | 258
255
240
256
246 | 259
253
241
256
249 | 248
250
242
256
250 | 239
247
242
250
246 | 236
243
242
229
247 | | | 11
12
13 *
14
15 | 245
243
235
241
240 | 241
241
235
242
240 | 241
239
239
242
240 | 241
235
241
242
240 | 241
235
241
242
240 | 242
235
241
244
241 | 241
235
242
243
241 | 241
237
245
247
244 | 239
239
246
246
240 | 235
235
239
237
234 | 231
229
231
224
232 | 232
227
228
219
228 | 234
229
227
220
228 | 237
234
230
228
231 | 245
238
236
236
237 | 251
245
242
243
242 | 249
245
243
246
242 | 245
244
240
244
242 | 246
242
241
241
242 | 245
244
240
241
241 | 245
242
240
241
241 | 245
241
239
241
239 | 241
239
239
241
239 | 241
242
240
241
239 | | | 16
17 *
18 *
19
20 ** | 238
239
237
235
229 | 238
238
236
235
231 | 239
239
235
235
235 | 239
239
235
235
237 | 240
240
236
236
235 | 242
241
238
237
231 | 236
236 | 242
238
235
240
225 | 244
237
234
235
225 | 238
230
227
223
221 | 232
225
220
221
221 | 229
225
217
222
221 | 231
225
220
225
220 | 237
225
225
226
226 | 239
231
231
230
235 | 242
236
235
235
239 | 244
238
235
236
238 | 245
239
236
239
236 | 245
239
239
240
240 | 246
240
238
243
239 | 248
239
239
245
243 | 244
239
239
241
248 | 240
239
239
240
246 | 238
237
235
231
240 | | | 21
22
23
24
25 | 241
239
238
240
238 | 240
237
234
240
234 | 238
235
234
241
234 | 238
237
234
241
234 | 239
236
233
240
235 | 240
237
235
239
237 | 235
238 | 239
236
235
241
239 | 240
235
235
240
237 | 234
229
235
235
232 | 225
224
232
229
228 | 225
222
232
228
225 | 229
224
231
231
226 | 235
228
235
240
233 | 236
232
240
245
237 | 239
235
247
246
240 | 239
237
245
247
244 | 237
238
242
245
245 | 238
237
240
245
247 | 239
237
240
245
249 | 237
238
239
242
249 | 239
238
240
240
246 | 238
238
241
240
241 | 238
239
238
239
239 | | | 26 **
27 **
28
29
30 * | 235
201
229
240
235 | 235
183
239
237
238 | 232
181
245
239
240 | 230
208
245
239
241 | 245
241 | 233
225
245
242
243 | 221 | 230
231
243
241
240 | 229
234
240
240
240 | 228
228
235
235
235 | 226
238
228
233
234 | 230
240
230
237
234 | 239
252
235
239
234 | 242
271
244
242
239 | 249
273
248
248
241 | 254
272
251
250
245 | 256
285
257
250
248 | 255
275
254
250
249 | 255
264
251
249
247 | 255
259
250
250
245 | 258
248
248
250
243 | 248
239
245
249
241 | 213
239
245
246
241 | 195
239
244
237
241 | | | 31 ** | 241 | 240 | 241 | 240 | 241 | 241 | 240 | 239 | 237 | 235 | 230 | 226 | 235 | 244 | 255 | 254 | 259 | 269 | 269 | 270 | 269 | 264 | 261 | 252 | | | ean
ean * | 240
238 | 239
239 | 239
240 | 240
240 | | 241
242 | | 242
241 | 241
241 | | 232
228 | 230
225 | 232
226 | 238
229 | 244
234 | 249
240 | 251
241 | 250
241 | 249
241 | 249
241 | 248
240 | 246
240 | 243 _.
240 | 240
239 | | | ean ** | 229 | | 226 | | 233 | | | | 231 | | 229 | | | 244 | | | | | 256 | | 255 | | | | | ^{*} International Quiet Day. ** International Disturbed Day. 194611300 |
 | | | , | TABLE | III. | - н | OURLY 1 | MEANS | OF V | /ERTI | CAL (| COMPO | NENT O | F MAC | NET I | CINT | ENSIT | TA Y | ABING | ER | | | | | | |------------------------------------|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----| | U.T. | 0 | h 1 | h 2 | h : | 3 h 4 | i h 5 | h | 6 h | 7 h 8 | 3 h 9 |) h 1 | 0 h 1 | 1 h | 12 h 1 | 3 h 1 | 4 h 1 | 5 h 1 | 6 h 1 | 7 h | 18 h 1 | 9 h 2 | 20 h 2 | 1 h 2 | 2 h 2 | 3 h | 24 | | Novemb | er | | | | | | | | 4 | 3000 | γ+′ | rabul: | ar Qua | antitie | s (in | Υ) | | | | | | | | | | | | 1 ×
2
3
4
5 | * * | 245
242
239
241
242 | 241
244
235
240
241 | 236
245
237
241
241 | 230
246
240
242
240 | 233
246
242
241
240 | 235
248
242
244
239 | 236
247
242
241
238 | 237
242
246
246
237 | 239
241
248
249
238 | 234
236
241
245
235 | 235
236
238
235
228 | 240
236
237
235
227 | 250
242
236
235
229 | 237 | 261
251
241
241
232 | 271
250
243
242
238 | 289
250
244
244
238 | 287
250
245
243
237 | 279
250
241
241
235 | 268
250
242
241
235 | 241 | 256
246
242
241
238 | 243
245
242
244
236 | 242
244
241
241
236 | | | 6 ×
7
8
9 | * * | 238
236
241
242
245 | 238
238
241
240
244 | 239
240
241
239
236 | 238
240
240
238
237 | 235
238
239
240
239 | 235
235
239
241
238 | 235
235
235
238
236 | 237
238
235
240
239 | 239
240
235
240
241 | 239
240
232
234
239 | 238
235
227
230
235 | 240
234
228
230
234 | 240
235
228
231
237 | 237
237
232
231
238 | 248
239
238
239
240 | 258
241
238
239
242 | 260
244
240
241
244 | 262
241
239
241
240 | 258
242
239
239
241 | 252
243
240
236
243 | 242
241
239 | 249
241
240
239
245 | 248
240
240
241
247 | 247
241
242
246
243 | | | 11
12
13
14 × | k | 244
240
239
237
236 | 245
241
239
238
237 | 243
232
239
239
237 | 223
225
240
239
237 | 230
225
241
240
237 | 238
225
241
241
238 | 238
232
240
241
239 | 239
239
239
242
238 | 242
241
240
243
237 | 241
244
241
241
234 | 236
239
238
236
230 | 235
236
235
235
227 | 233
236
235
239
226 | 234
237
237
236
229 | 236
243
240
241
229 | 239
245
241
241
235 | 241
249
244
244
240 | 241
249
245
241
241 | 241
250
245
241
249 | 241
251
246
239
254 | 245
241 | 243
245
241
240
261 | 239
243
244
239
259 | 239
240
240
239
253 | | | 16
17
18
19
20 | | 249
241
238
237
238 | 247
240
237
241
241 | 243
241
240
236
243 | 236
239
240
236
243 | 237
235
240
236
240 | 239
238
241
238
235 | 241
239
240
236
237 | 245
241
240
236
239 | 246
244
239
235
239 | 243
242
239
236
240 | 240
242
236
240
238 | 235
239
233
240
238 | 236
238
232
241
237 | 237
236
236
240
245 | 240
235
237
244
243 | 241
239
237
243
242 | 245
242
240
248
241 | 246
241
239
246
240 | 246
241
238
246
241 | 249
240
240
249
246 | 251
240
239
256
244 | 242
244
239
260
245 | 239
245
240
252
245 | 239
241
241 | | | 21 × 22 23 24 × 25 × | k* | 235
235
239
242
246 | 237
231
239
242
247 | 237
233
237
241
247 | 237
232
239
240
246 | 237
232
239
236
246 | 238
236
241
231
246 | 237
235
240
229
240 | 236
235
239
226
238 | 236
234
238
222
240 | 234
238
236
220
237 | 236
238
236
223
236 | 237
242
236
230
236 | 242
245
242
237
233 | 245
249
247
249
242 | 259
250
250
254
246 | 260
251
251
256
257 | 256
255
250
256
260 | 253
254
249
252
253 | 252
248
244
250
256 | 253
248
242
246
256 | 246
246 | 247
246
241
244
240 | 244
243
240
245
242 | 236
239
241
242
236 | | | 26
27 *
28 *
29 *
30 * | k
k
k | | 236
238
236
235
236 | 240
240
236
235
236 | 230
240
238
236
236 | 230
240
237
236
237 | 236
242
240
238
239 | 234
238
237
236
236 | 236
236
236
235
236 | 236
240
236
235
236 | 230
237
235
234
233 | 227
233
231
232
232 | 226
231
230
230
232 | 226
230
231
230
232 | 232
236
236
236
232 | 238
236
238
238
232 | 240
239
239
239
238 | 247
242
241
240
240 | 246
241
239
238
240 | 244
240
238
240
237 | 244
240
239
238
238 | 243
240
239
238
238 | 241
239
238
236
237 | 240
237
238
236
236 | 237
236
236
235
236 | | | Mean | | 240 | | 239 | 237 | - | 239 | 238 | 238 | 239 | 237 | - | 234 | 235 | | 242 | | | 246 | 245 | | | | 242 | 240 | | | Mean *
Mean * | | 237
241 | 237
241 | 237
240 | 238
238 | 238
237 | 240
237 | 238
235 | 237
235 | 238
235 | 236
233 | 233
234 | 232
237 | 232
240 | 235
246 | 237
254 | 239
260 | 241
264 | 240
261 | 239
259 | 239
255 | 239
251 | 238
247 | 237
244 | 236
241 | | | Decembe | er | 194 | 10 | 20 | 1- | | , | | 4 | 3000 | γ + 1 | [abula | ır Qua | antities | s (in | Υ) | | | | | | | | | | | | 1
2
3
4
5 * | * | 237
236
235
238
235 | 236
234
230
237
233 | 236
235
222
236
233 | 236
234
216
236
233 | 235
235
222
236
232 | 235
236
229
238
233 | 234
235
230
236
232 | 234
236
235
235
232 | 236
237
236
235
233 | 233
236
236
236
236
232 | 232
232
235
234
231 | 232
230
236
234
228 | 231
229
236
234
231 | 231
232
237
238
234 | 233
236
240
239
236 | 233
240
242
237
237 | 238
242
243
237
241 | 239
241
241
237
243 | 244
242
240
237
243 | 246
243
240
236
243 | 247
240
240
235
243 | 244
240
240
235
248 | 240
240
240
236
251 | 235
236
238
235
249 | | | 6
7
8
9 * | | 243
241
240
237
237 | 241
240
239
239
238 | 241
238
239
238
238 | 239
232
236
238
237 | 238
226
227
237
237 | 239
222
227
236
238 | 236
222
229
234
235 | 236
224
230
232
231 | 236
226
232
231
228 | 236
223
230
228
227 | 236
225
233
227
226 | 236
227
231
226
224 | 237
231
228
228
226 | 238
232
231
232
230 | 238
236
233
236
237 | 237
237
237
237
244 | 237
240
240
237
245 | 237
245
237
237
241 | 236
242
237
239
240 | 236
241
237
238
240 | 237
240
237
240
240 | 239
238
236
238
240 | 242
238
236
237
239 | 243
240
237
237
233 | | | 11 *
12 *
13
14 *
15 * | ok
K | 233
237
239
237
236 | 232
234
238
234
236 | 231
232
239
237
236 | 231
234
239
237
236 | 232
236
239
238
236 | 234
240
240
240
236 | 233
237
238
237
235 | 232
237
238
235
235 | 227
236
237
233
237 | 227
235
236
228
236 | 225
233
233
231
234 | 228
232
230
230
230 | 231
232
228
232
230 | 233
238
231
232
231 | 237
247
237
233
232 | 240
252
243
235
234 | 243
257
243
239
238 | 245
253
243
239
238 | 245
251
244
238
237 | 247
250
243
238
237 | 244
249
241
237
237 | 237
245
239
237
237 | 232
244
237
235
236 | 235 | | | 16
17
18
19 *
20 * | * | 234
237
234
232
241 | 236
235
233
231
241 | 237
234
232
230
241 | 236
233
229
227
240 | 233
233
229
229
239 | 233
233
230
228
239 | 231
230
230
222
241 | 232
230
230
220
241 | 231
229
231
222
242 | 227
229
230
226
238 | 227
230
224
230
238 | 228
232
224
230
241 | 227
232
223
229
237 | 230
232
228
245
243 |
230
236
228
251
242 | 232
236
230
254
242 | 234
238
231
258
243 | 232
237
230
262
240 | 233
239
232
253
240 | 239 | 240 | 237
240
233
247
240 | 239
237
233
244
238 | 241
240 | | | 21
22
23
24
25 | | 237
239
238
238
238 | 239
242
239
238
238 | 238
241
239
240
238 | 239
240
238
238
238 | 237
239
238
240
237 | 237
237
236
239
235 | 235
233
232
238
234 | 235
231
231
237
234 | 231
232
231
236
234 | 230
230
229
235
233 | 233
230
224
234
232 | 235
228
223
236
231 | 239
232
227
233
228 | 228 | 241
240
238
234
233 | 246
241
240
238
238 | 247
243
241
242
240 | 245
246
239
239
239 | 243
241
240
240
238 | | | 240
238
238
238
244 | 250 | 237
237
252 | | | 26
27
28
29
30 * | • | 248
248
240
238
238 | 246
243
234
235
237 | 243
239
234
234
238 | 240
238
236
234
239 | 238
238
238
234
238 | 235
238
239
234
239 | 234
234
240
233
237 | 236
234
238
235
237 | 234
233
238
233
234 | 228
232
238
230
231 | 232
234
234
227
231 | 231
232
232
225
230 | 233
230
232
225
225 | 225 | 247
239
237
229
229 | 255
241
240
235
234 | 259
244
244
243
238 | 258
243
247
242
238 | 258
244
244
242
238 | 258
245
244
242
238 | 243
241
238 | 252
244
241
238
235 | 237
235 | 244
239
237
235 | | | 31 | | 233 | 233 | 231 | 231 | 231 | 234 | 233 | 233 | 232 | | 232 | | 223 | | 233 | | 237 | | 238 | | 238 | 239 | | 235 | | | Mean
Mean * | k | 238
238 | 237
237 | 238 | 235
238 | 238 | 235
238 | 234 | 233
236 | 233 | 232 | 231
232 | 231 | 230
230 | 234
233 | 237
234 | 239
236 | 242 | 242
238 | 241
238 | 238 | 238 | 240
237 | 239
236
242 | | | | Mean * | * | 235 | 234 | 233 | 232 | 233 | 235 | 232 | 230 | 229 | 229 | 229 | 228 | 230 | 236 | 242 | 245 | 447 | 249 | 246 | 247 | 240 | 443 | 444 | 2 40 | | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV DA | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | E MAGNETOGRA | PHS | | |---------------------------------|---|--|---|---|--|---|---|------------------------------|--|---|--|------------------------------| | | | DECLINAT | TION WEST | | | HORIZONTA | L INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Max 1 mum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | January | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h # Y + | 18000 U.T.
Y + h m | Y | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
Y + h m | Y | | 1
2
3 **
4 **
5 | 55. 7
54. 9
52. 1
53. 2
55. 0 | 13 10 61. 1
15 52 58. 9
12 6 73. 1
2 47 61. 8
2 46 58. 3 | 50.0 18 42
50.4 0 0
31.1 18 14
38.3 0 17
50.1 23 45 | 11.1
8.5
42.0
23.5
8.2 | 569
570
533
540
559 | 8 14 595
0 33 601
10 20 630
19 40 596
23 58 585 | 532 18 26
542 16 32
385 15 48
495 0 13
539 0 3 | 63
59
245
101
46 | 221
220
236
220
227 | 18 51 241
17 43 238
16 15 363
16 30 262
16 20 232 | 207 10 0
208 10 56
173 22 3
169 3 7
217 9 54 | 34
30
190
93
15 | | 6
7
8
9 * | 55.0
55.0
55.6
55.7
55.9 | 0 10 58.9
13 33 59.7
13 18 58.1
13 0 58.2
13 40 59.8 | 43. 2 20 35
44. 0 18 39
51. 7 19 22
53. 5 22 30
53. 8 23 50 | 15.7
15.7
6.4
4.7
6.0 | 568
571
573
577
583 | 21 5 591
18 50 607
5 49 586
7 58 589
8 12 597 | 530 16 50
552 19 33
559 11 13
565 21 32
568 16 30 | 61
55
27
24
29 | 225
225
224
222
220 | 17 30 238
18 40 240
18 30 232
20 40 229
18 28 228 | 212 11 10
216 9 40
212 9 25
210 12 5
212 12 50 | 26
24
20
19
16 | | 11 **
12
13 *
14 * | 55. 7
55. 3
55. 2
55. 4
55. 5 | 6 0 67.7
12 59 59.4
12 22 58.5
13 5 57.5
15 40 58.2 | 42.7 21 3
51.6 21 42
51.0 19 31
53.8 21 12
50.1 24 0 | 25.0
7.8
7.5
3.7
8.1 | 576
569
575
580
584 | 6 32 618
7 45 585
21 4 589
5 2 591
19 46 597 | 542 5 43
543 10 56
559 11 48
566 12 18
554 23 26 | 76
42
30
25
43 | 219
223
221
220
218 | 18 30 234
13 38 236
13 25 227
16 15 225
24 0 228 | 200 6 40
216 8 32
215 23 55
213 6 20
216 8 20 | 34
20
12
12
12 | | 16
17
18
19
20 * | 54.9
54.9
54.6
54.7
54.1 | 15 10 58.2
13 0 57.5
13 4 61.2
13 32 59.5
12 30 57.4 | 49. 1 0 5
47. 3 21 50
46. 9 23 35
48. 0 1 53
50. 2 0 10 | 9. 1
10. 2
14. 3
11. 5
7. 2 | 575
578
567
573
575 | 6 43 600
6 40 604
19 30 611
1 7 590
14 10 587 | 552 0 38
556 17 38
533 23 48
543 0 22
557 10 43 | 48
48
78
47
30 | 221
220
222
219
220 | 0 21 229
19 18 232
14 57 236
20 40 228
0 15 227 | 214 9 35
212 7 50
213 13 1
208 1 50
213 24 0 | 15
20
23
20
14 | | 21 *
22
23
24 **
25 | 55. 2
54. 2
54. 3
55. 1
54. 9 | 13 3 58.6
12 59 60.0
12 32 60.6
12 52 63.1
13 4 58.7 | 49. 1 22 50
45. 6 2 23
30. 6 22 23
43. 4 19 50
49. 5 15 1 | 9.5
14.4
30.0
19.7
9.2 | 578
577
573
566
567 | 18 43 591
6 34 607
22 30 642
22 14 607
6 41 584 | 552 23 12
557 12 5
542 11 33
473 13 21
533 14 48 | 39
50
100
134
51 | 220
219
221
222
224 | 23 52 230
0 1 228
17 30 230
13 55 248
15 9 241 | 210 12 44
211 11 15
204 22 56
197 3 3
211 0 0 | 20
17
26
51
30 | | 26 **
27
28
29 | 55. 2
54. 9
55. 3
55. 1 | 12 17 59.3
13 21 59.0
13 18 59.8
13 14 59.8
13 28 59.3 | 42.5 17 36
50.4 3 12
49.5 22 3
51.9 9 2
51.3 22 3 | 16. 8
8. 6
10. 3
7. 9
8. 0 | 571
576
579
579
579
586 | 3 18 593
3 18 588
18 10 592
4 275 597
23 18 608 | 513 17 14
564 1 29
564 9 32
555 14 21
568 11 11 | 80
24
28
42
40 | 223
219
220
219
215 | 17 45 241
22 20 227
22 6 227
21 2 225
0 20 220 | 210 4 0
205 11 40
208 11 0
212 11 57
200 10 58 | 31
22
19
13
20 | | 31 | 55. 2 | 12 51 60.2 | 51. 2 22 10 | 9.0 | 581 | 22 20 606 | 561 {19 18 | 45 | 217 | 16 40 226 | 206 10 58 | 20 | | Mean
Mean *
Mean ** | 54.9
55.1
54.3 | - 60.0
- 58.0
- 65.0 | 47.5 -
51.5 -
39.6 - | 12.6
6.5
25.4 | 572
577
557 | - 599
- 589
- 609 | 540 -
560 -
482 - | 58. 5
29. 6
127. 2 | 221
221
224 | - 237
- 228
- 270 | 207 -
212 -
190 - | 29. 6
15. 4
79. 8 | | February | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T. | Y | 43000
Y + | U.T. 43000 | 43000 U.T.
Y + h m | Y | | 1
2
3
4
5 | 55. 4
55. 6
55. 4
55. 6
53. 6 | h w ' 13 20 59.9 12 52 62.1 13 57 62.8 12 32 61.3 13 30 60.6 | 53. 5 22 20
50. 8 6 12
50. 3 23 3
48. 5 23 38
45. 5 3 25 | 6. 4
11. 3
12. 5
12. 8
15. 1 | 583
579
578
566
566 | 14 10 591
7 3 599
14 7 615
7 50 588
20 54 592 | 573 16 21
554 11 42
545 22 24
537 17 0
549 15 58 | 18
45
70
51
43 | 216
217
221
227
224 | 19 26 222
21 12 228
22 34 242
17 43 244
16 47 238 | 204 10 54
193 11 0
211 10 50
214 10 6
212 4 20 | 18
35
31
30
26 | | 6
7 **
8 **
9 | 54.9
53.0
50.9
53.6
53.1 | 13 33 61.4
15 24 86.9
13 41 65.7
11 50 58.2
5 0 62.3 | 49.4 0 20
9.3 21 34
9.6 0 20
49.5 15 19
44.5 8 6 | 12. 0
77. 6
56. 1
8. 7
17. 8 | 572
536
482
544
545 | 0 29 622
15 6 750
18 0 578
21 14 580
15 1 574 | 538 13 16
334 10 52
224 0 32
502 9 10
502 7 20 | 84
416
354
78
72 | 224
245
228
240
243 | 17 43 235
18 32 355
14 47 323
15 20 254
8 20 258 | 214 0 55
127 23 29
-20 0 35
230 8 50
232 1 18 | 21
228
343
24
26 | | 11 *
12
13
14 ** | 54. 1
54. 5
53. 7
54. 3
55. 8 | 13 14 59.0
13 18 59.8
6 51 58.5
7 46 65.7
4 26 67.5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9. 4
12. 5
12. 9
15. 5
15. 8 | 553
554
557
557
565 | 21 3 568
23 0 576
13 56 579
17 39 647
4 25 601 | 529 13 22
533 16 3
518 9 30
510 8 57
538 11 33 | 39
43
61
137
63 | 236
235
239
236
224 | 15 10 246
16 16 251
11 42 261
17 39 265
0 45 238 | 228 1 30
221 10 50
224 6 55
220 8 19
201 4 46 | 18
30
37
45
37 | | 16
17
18
19 ** | 54. 3
54. 4
54. 9
55. 2
53. 4 | 14 55 58.3
13 0 59.1
13 55 60.2
18 2 62.7
21 10 61.2 | 50. 2 23 4
50. 8 8 26
51. 7 9 45
38. 1 22 7
29. 0 21 38 | 8. 1
8.
3
8. 5
24. 6
32. 2 | 570
569
575
570
563 | 23 0 585
0 45 603
18 50 602
22 12 629
21 10 621 | 548 12 32
552 10 22
545 12 0
513 21 3
478 22 41 | 37
51
57
116
143 | 227
226
226
232
229 | 17 40 232
0 40 233
15 40 233
20 42 287
20 19 252 | 217 10 53
211 12 0
212 11 1
214 12 1
201 22 40 | 15
22
21
73
51 | | 21 **
22
23
24
25 | 53. 5
53. 3
53. 6
53. 3
54. 0 | 14 59 65.3
14 30 59.9
9 11 60.4
14 38 58.3
14 2 59.3 | 32.1 0 26
46.5 4 32
40.4 18 45
46.7 23 25
46.4 23 42 | 33. 2
13. 4
20. 0
11. 6
12. 9 | 536
557
555
560
565 | 6 14 590
3 50 594
1 40 585
22 8 589
4 50 590 | 485 0 59
532 9 35
521 10 54
525 19 30
526 11 16 | 10 5
62
64
64
64 | 230
226
232
232
232
229 | 15 15 294
19 30 242
16 0 251
20 30 249
16 20 243 | 182 6 20
199 4 20
215 2 44
222 13 23
217 4 53 | 112
43
36
27
26 | | 26 *
27 *
28 * | 53. 9
54. 1
54. 6 | 13 0 58.8
13 10 57.4
13 15 59.4 | 48.1 0 0
50.8 9 13
50.9 9 15 | 10.7
6.6
8.5 | 567
572
580 | 22 0 595
7 10 585
8 2 598 | 546 11 30
547 11 50
553 11 33 | 49
38
45 | 229
227
222 | 18 50 239
16 20 232
0 5 228 | 217 13 0
208 12 3
203 11 56 | 22
24
25 | | Mean
Mean * | 54. 1
54. 4
53. 4 | - 61.9
- 58.9
- 69.3 | 44. 2 -
50. 6 -
27. 9 - | 17.7
8.3
41.4 | 560
571
536 | - 601
- 687
- 639 | 513 -
550 -
413 - | 88. 2
37. 8
225. 6 | 229
226
234 | - 253
- 233
- 305 | 201 -
212 -
145 - | 51. 6
21. 4
160. 2 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV DA | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | IE MAGNETOGRA | PHS | | |-------------------------------|---|--|--|--|---------------------------------|---|--|--|---------------------------------|---|---|------------------------------| | | | DECLINAT | TION WEST | · · · · · · · · · · · · · · · · · · · | | HORIZONTA | L INTENSITY | ······································ | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Max i mum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | March | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T.
Y + h = | Y | 43000
Y + | U.T. 43000 | 43000 U.T.
Y + h = | Y | | 1 | 52. 8 | 1 41 58. 2 | 42.9 3 23 | 15.3 | 568 | 1 40 638 | 522 8 35 | 116 | 224 | 1 40 240 | 196 4 31 | 44 | | 2 | 52. 9 | 14 35 59. 1 | 45.7 0 19 | 13.4 | 564 | 0 30 642 | 539 9 56 | 103 | 226 | 0 25 246 | 213 9 54 | 33 | | 3 * | 53. 7 | 13 36 58. 3 | 50.5 21 13 | 7.8 | 569 | 21 31 582 | 552 10 23 | 30 | 226 | 2 30 233 | 213 11 52 | 20 | | 4 | 53. 1 | 14 18 64. 1 | 42.1 22 6 | 22.0 | 561 | 22 15 630 | 509 21 27 | 121 | 230 | 20 41 254 | 209 10 50 | 45 | | 5 | 53. 5 | 13 58 64. 9 | 40.9 0 47 | 24.0 | 551 | 22 56 583 | 441 11 30 | 142 | 235 | 16 40 269 | 200 11 30 | 69 | | 6 | 53. 6 | 13 32 64. 1 | 46.7 7 45 | 17.4 | 559 | 22 30 598 | 499 11 40 | 99 | 231 | 16 20 253 | 210 11 30 | 43 | | 7 | 53. 3 | 12 52 62. 0 | 48.1 8 0 | 13.9 | 562 | 21 40 586 | 519 12 19 | 67 | 227 | 18 20 241 | 211 12 0 | 30 | | 8 | 54. 0 | 13 43 60. 0 | 49.0 21 7 | 11.0 | 569 | 21 10 590 | 549 10 36 | 41 | 225 | 18 25 237 | 206 11 31 | 31 | | 9 | 54. 2 | 16 30 66. 3 | 44.3 19 51 | 22.0 | 569 | 20 3 591 | 521 17 40 | 70 | 227 | 19 59 256 | 202 12 30 | 54 | | 10 ** | 53. 2 | 2 11 70. 5 | 29.0 20 17 | 41.5 | 566 | 1 55 640 | 493 23 24 | 147 | 221 | 20 23 257 | 170 23 25 | 87 | | 11 | 52. 7 | 12 10 61.5 | 30.4 0 18 | 31. 1 | 548 | 0 29 611 | 501 { 10 41 | 110 | 226 | 17 36 247 | 162 1 26 | 85 | | 12 * | 53. 6 | 12 31 57.2 | 50.1 8 46 | 7. 1 | 564 | 22 15 575 | 547 0 51 | 28 | 230 | 16 45 236 | 220 10 20 | 16 | | 13 * | 53. 5 | 13 10 60.0 | 49.1 8 38 | 10. 9 | 567 | 22 9 582 | 543 10 55 | 39 | 228 | 18 35 237 | 213 12 46 | 24 | | 14 * | 53. 6 | 12 22 59.8 | 47.6 18 50 | 12. 2 | 570 | 22 50 586 | 547 10 30 | 39 | 226 | 19 30 237 | 210 10 30 | 27 | | 15 | 54. 0 | 12 42 63.0 | 47.9 8 15 | 15. 1 | 570 | 21 29 599 | 538 9 57 | 61 | 225 | 16 20 242 | 206 10 45 | 36 | | 16 * | 54.0 | 13 32 60.8 | 48.3 8 35 | 12.5 | 577 | 22 45 599 | 563 14 45 | 36 | 221 | 7 40 232 | 193 11 52 | 39 | | 17 | 54.0 | 13 33 61.4 | 42.0 20 54 | 19.4 | 575 | 3 54 614 | 516 12 39 | 98 | 224 | 17 40 250 | 204 10 12 | 46 | | 18 | 54.5 | 13 15 61.1 | 50.2 8 21 | 10.9 | 580 | 7 40 591 | 562 13 48 | 29 | 223 | 18 42 237 | 203 11 57 | 34 | | 19 | 53.9 | 13 46 58.3 | 50.5 23 57 | 7.8 | 582 | 23 10 608 | 559 12 30 | 49 | 225 | 16 20 236 | 207 12 0 | 29 | | 20 | 54.2 | 13 22 63.9 | 50.1 { 0 10 | 13.8 | 581 | 0 22 609 | 538 12 0 | 71 | 221 | 16 18 235 | 196 12 3 | 39 | | 21 | 54. 3 | 13 21 64.1 | 47.3 9 22 | 16. 8 | 579 | 3 6 623 | 528 12 25 | 95 | 218 | 16 40 231 | 197 12 23 | 34 | | 22 ** | 54. 7 | 13 30 66.2 | 48.2 9 7 | 18. 0 | 571 | 23 6 645 | 508 13 57 | 137 | 225 | 18 25 237 | 203 12 2 | 34 | | 23 | 52. 2 | 13 30 61.3 | 30.7 23 51 | 30. 6 | 580 | 23 59 663 | 551 {23 38 | 112 | 222 | 18 36 237 | 196 12 0 | 41 | | 24 ** | 50. 9 | 16 52 73.2 | 10.3 2 7 | 62. 9 | 503 | 0 3 664 | 359 3 49 | 305 | 239 | 15 58 510 | 65 3 22 | 445 | | 25 ** | 52. 6 | 17 10 96.6 | 8.9 21 10 | 87. 7 | 500 | 17 10 778 | 359 11 45 | 419 | 260 | 15 45 678 | 96 3 48 | 582 | | 26
27
28 **
29
30 | 49.9
53.6
52.6
52.6 | 14 22 62.8
14 36 67.4
14 35 136.8
13 0 64.7
13 32 59.3 | 32.3 0 0
43.6 0 3
-24.9 19 48
42.2 8 42
46.7 7 52 | 30. 5
23. 8
161. 7
21. 5
12. 6 | 501
539
486
543 | 19 54 622
22 6 589
13 31 1733
22 30 554
22 14 574 | 410 1 40
497 11 3
072 8 30
409 8 40
523 2 3 | 212
92
1661
145
51 | 248
240

265
248 | 18 20 300
15 52 274
15 24 626
6 20 281
6 10 257 | 191 (0 21
218 (12 22
-292 13 16
238 0 10
234 12 0 | 109
56
918
43
23 | | 31 | 52. 1 | 13 4 61.0 | 42.1 22 57 | 18.9 | 544 | 21 15 580 | 497 10 36 | 83 | 245 | 21 37 251 | 228 23 44 | | | Mean | 53. 3 | - 66.0 | 39.8 - | 26. 3 | 557 | - 648 | 493 - | 155. 1 | 231 | - 282 | 181 - | 101. 3 | | Mean * | 53. 7 | - 59.2 | 49.1 - | 10. 1 | 569 | - 585 | 550 - | 34. 4 | 226 | - 235 | 210 - | 25. 2 | | Mean ** | - | - 88.7 | 14.3 - | 74. 4 | - | - 892 | 358 - | 533. 8 | - | - 462 | 48 | 413. 2 | | Apr11 | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T. | Y | 43000
Y | U.T. 43000 | 43000 U.T. | Y | | 1 | 51. 2 | 12 50 62.5 | 43. 4 21 30 | 19. 1 | 546 | 19 25 583 | 509 11 42 | 74 | 242 | 16 20 257 | 218 11 40 | 39 | | 2 | 52. 0 | 13 12 63.9 | 43. 3 21 50 | 20. 6 | 548 | 21 4 606 | 502 10 28 | 104 | 241 | 16 42 263 | 218 11 59 | 45 | | 3 | 52. 9 | 12 44 61.4 | 46. 6 8 29 | 14. 8 | 553 | 17 48 581 | 515 11 40 | 66 | 244 | 17 42 264 | 220 11 50 | 44 | | 4 | 52. 4 | 12 46 60.3 | 45. 2 8 17 | 15. 1 | 558 | 21 36 580 | 527 11 46 | 53 | 241 | 16 20 252 | 216 11 0 | 36 | | 5 | 52. 9 | 14 48 64.3 | 44. 4 8 45 | 19. 9 | 555 | 23 0 576 | 516 10 41 | 60 | 243 | 18 45 272 | 213 11 31 | 59 | | 6
7
8
9 ** | 52. 9
52. 7
53. 8
53. 3
51. 8 | 13 32 64.3
14 40 65.7
13 12 62.4
15 11 64.5
13 0 58.2 | 46. 3 8 18
44. 5 3 36
48. 4 8 2
39. 5 22 48
45. 3 8 30 | 18.0
21.2
14.0
25.0
12.9 | 557
563
566
558
553 | 19 46 579
2 50} 591
6 55 616
0 0 611
22 45 589 | 511 11 20
522 11 31
522 13 30
496 12 6
503 11 20 | 68
69
94
115
86 | 239
237
239
245
237 | 19 27 257
15 36 257
19 9 252
15 36 292
7 25 252 | 207 11 12
214 11 10
220 11 0
220 11 20
220 12 50 | 50
43
32
72
32 | | 11 * | 52.9 | 12 30 59.9 | 46.7 7 51 | 13. 2 | 565 | 23 28 588 | 535 10 46 | 53 | 237 | 7 40 249 | 224 10 50 | 25 | | 12 | 53.0 | 13 54 63.5 | 46.0 8 3 | 17. 5 | 576 | 22 0 659 | 536 11 35 | 123 | 232 | 6 40 241 | 213 12 32 | 28 | | 13 | 51.5 | 13 25 60.9 | 39.0 19 17 | 21. 9 | 574 | 19 30 639 | 533 9 42 | 106 | 230 | 19 21 257 | 210 10 52 | 47 | | 14 ** | 53.2 | 13 33 67.5 | 45.9 7 28 | 21. 6 | 564 | 22 17 608 | 500 11 59 | 108 | 236 | 14 10 258 | 214 11 57 | 44 | | 15 ** | 54.6 | 8 13 65.3 | 36.8 19 25 | 28. 5 | 535 | 19 0 608 | 456 14 12 | 152 | 246 | 15 37 321 | 204 2 42 | 117 | | 16 | 51. 8 | 13 4 59.5 | 44. 3 22 20 | 15. 2 | 553 | 21 49 589 | 518 11 23 | 71 | 242 | 16 27 251 | 224 12 2 | 27 | | 17 | 52. 5 | 13 23 59.5 | 46. 4 8 22 | 13. 1 | 563 | 16 45 580 | 529 13 17 | 51 | 238 | 17 29 254 | 222 11 40 | 32 | | 18 | 53. 4 | 12 55 61.4 | 46. 6 8 18 | 14. 8 | 563 | 18 10 592 | 507 10 22 | 85 | 238 | 18 38 251 | 219 11 50 | 32 | | 19 * | 52. 4 | 13 41 57.3 | 47. 2 8 55 | 10. 1 | 570 | 17 31 595 | 542 11 25 | 53 | 233 | 17 28 244 | 211 12 40 | 33 | | 20 * | 52. 7 | 14 13 58.3 | 47. 8 8 36 | 10. 5 | 570 | 19 30 589 | 530 11 30 | 59 | 233 | 17 38 247 | 211 11 57 | 36 | | 21 * | 52. 8 | 13 50 60. 1 | 47.1 7 53 | 13.0 | 574 | 21 37 591 | 548 10 33 | 43 | 229 | 19 35 241 | 204 12 2 | 37 | | 22 | 53. 7 | 13 32 60. 1 | 44.9 7 5 | 15.2 | 577 | 18 18 634 | 521 11 30 | 113 | 231 | 18 20 248 | 216 11 5 | 32 | | 23 ** | 52. 0 | 15 50 75. 0 | -15.8 23 42 | 90.8 | 522 | 16 50 655 | 147 23 40 | 508 | 261 | 16 59 457 | -114 23 35 | 571 | | 24 ** | 47. 3 | 13 53 60. 1 | 14.0 0 28 | 46.1 | 560 | 16 49 729 | 354
2 41 | 375 | 240 | 16 46 362 | 43 0 0 | 319 | | 25 | 50. 3 | 13 27 55. 6 | 40.6 1 37 | 15.0 | 525 | 0 50 563 | 483 9 40 | 80 | 251 | 7 42 268 | 216 1 30 | 52 | | 26 | 51. 2 | 14 22 58.2 | 45. 2 24 0 | 13.0 | 551 | 18 42 582 | 529 4 5 | 53 | 250 | 19 32 262 | 233 12 0 | 29 | | 27 | 50. 9 | 13 57 57.1 | 40. 6 0 51 | 16.5 | 545 | 1 3 574 | 520 9 36 | 54 | 242 | 19 10 255 | 221 2 22 | 34 | | 28 | 50. 9 | 14 25 59.0 | 44. 5 20 40 | 14.5 | 558 | 18 50 616 | 534 10 40 | 82 | 247 | 19 35 275 | 226 11 43 | 49 | | 29 | 51. 3 | 12 34 59.8 | 42. 4 7 35 | 17.4 | 560 | 17 35 594 | 514 8 21 | 80 | 240 | 17 30 252 | 209 11 26 | 43 | | 30 * | 52. 0 | 13 0 60.8 | 43. 5 7 43 | 17.3 | 567 | 16 50 591 | 538 10 15 | 53 | 235 | 0 40 246 | 208 11 2 | 38 | | Mean | 52. 2 | - 61.5 | 41. 4 - | 20. 2 | 556 | - 603 | 500 - | 10 3. 0 | 240 | - 269 | 199 - | 69. 2 | | Mean * | 52. 6 | - 59.3 | 46. 5 - | 12. 8 | 569 | - 591 | 539 - | 52. 2 | 235 | - 245 | 212 - | 33. 8 | | Mean ** | 52. 1 | - 66.5 | 24. 1 - | 42. 4 | 537 | - 642 | 391 - | 251. 6 | 246 | - 338 | 113 - | 224. 6 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV D. | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TI | HE MAGNETOGRA | PHS | | |------------------------------|---|--|--|---|---------------------------------|---|---|---------------------------------|---------------------------------|---|---|-----------------------------| | | | DECLINAT | rion west | | | HORIZONTA | L INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Max 1 mum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | May | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T.
Y + h m | Y | 43000
Y + | U.T. 43000 | 43000 U.T. | Y | | 1 | 52. 4 | 13 5 62. 2 | 44.7 8 32 | 17. 5 | 567 | 18 23 642 | 533 9 59 | 109 | 239 | 18 55 265 | 207 11 5 | 58 | | 2 | 52. 0 | 13 18 61. 9 | 44.7 6 50 | 17. 2 | 568 | 17 40 597 | 533 10 20 | 64 | 235 | 17 22 256 | 199 12 0 | 57 | | 3 | 52. 0 | 13 30 60. 8 | 44.2 7 24 | 16. 6 | 570 | 19 2 613 | 534 9 40 | 79 | 233 | 18 52 251 | 197 11 47 | 54 | | 4 | 52. 4 | 14 3 62. 3 | 46.3 7 50 | 16. 0 | 572 | 0 40 612 | 534 9 30 | 78 | 237 | 18 36 259 | 213 12 14 | 46 | | 5 | 52. 1 | 13 19 60. 0 | 44.6 7 50 | 15. 4 | 577 | 20 14 626 | 543 11 46 | 83 | 232 | 6 25 243 | 205 11 43 | 38 | | 6 **
7
8
9 **
10 | 53. 1
53. 1
53. 5
51. 0
52. 6 | 22 30 61.4
5 47 66.2
6 19 68.6
16 22 61.5
14 28 62.1 | 32.5 22 52
43.5 8 33
46.5 23 24
40.5 18 15
45.7 4 45 | 28. 9
22. 7
22. 1
21. 0
16. 4 | 593
573
569
560
567 | 22 30 739
4 14 648
6 52 642
18 22 660
22 48 634 | 543 13 48
487 12 35
492 12 57
499 11 37
519 11 18 | 196
161
150
161
115 | 231
225
232
242
231 | 22 30 268
19 32 249
19 19 262
16 34 315
4 50
17 26 | 203 10 41
178 7 10
196 6 55
195 4 38
198 11 4 | 65
71
66
120
51 | | 11 ** | 52. 9 | 12 51 63.8 | 42. 4 8 29 | 21. 4 | 566 | 17 20 626 | 448 8 30 | 178 | 234 | 17 20 280 | 205 12 52 | 75 | | 12 | 51. 3 | 12 56 57.3 | 44. 8 6 15 | 12. 5 | 568 | 19 20 602 | 533 10 14 | 69 | 239 | 17 33 249 | 219 11 56 | 30 | | 13 | 50. 7 | 13 42 57.0 | 44. 4 7 23 | 12. 6 | 572 | 20 6 593 | 546 9 30 | 47 | 234 | 17 25 245 | 220 12 0 | 25 | | 14 * | 52. 3 | 14 3 59.0 | 46. 3 6 10 | 12. 7 | 581 | 14 52 601 | 559 9 16 | 42 | 232 | 5 7 244 | 208 11 46 | 36 | | 15 * | 52. 4 | 12 32 60.9 | 46. 1 7 45 | 14. 8 | 581 | 16 49 603 | 546 10 24 | 57 | 231 | 4 30 240 | 208 11 3 | 32 | | 16 | 51. 6 | 13 18 57.0 | 47.2 8 40 | 9.8 | 586 | 16 44 603 | 549 13 40 | 54 | 233 | 18 33 249 | 212 11 40 | 37 | | 17 | 53. 0 | 13 1 61.7 | 44.2 6 57 | 17.5 | 586 | 17 10 626 | 546 14 0 | 80 | 232 | 17 23 268 | 207 12 27 | 61 | | 18 | 51. 2 | 13 33 57.3 | 43.3 7 10 | 14.0 | 575 | 3 50 611 | 526 8 28 | 85 | 234 | 16 35 260 | 211 12 8 | 49 | | 19 * | 52. 5 | 12 47 61.4 | 45.2 7 22 | 16.2 | 580 | 20 6 600 | 550 9 46 | 50 | 232 | 17 10 248 | 202 12 20 | 46 | | 20 | 51. 8 | 13 23 60.0 | 41.7 22 16 | 18.3 | 587 | 19 22 643 | 552 11 32 | 91 | 231 | 19 15 248 | 202 11 31 | 46 | | 21 | 52. 5 | 14 15 62.3 | 41.9 1 44 | 20.4 | \$65 | 18 50 630 | 513 13 30 | 117 | 237 | 18 47 279 | 208 11 47 | 71 | | 22 ** | 52. 1 | 11 55 61.8 | 39.8 19 27 | 22.0 | 557 | 19 32 625 | 479 12 24 | 146 | 235 | 17 19 290 | 182 6 0 | 108 | | 23 ** | 49. 5 | 15 6 58.3 | 40.7 6 50 | 17.6 | 570 | 18 19 673 | 499 12 23 | 174 | 239 | 17 58 296 | 194 1 47 | 102 | | 24 | 52. 0 | 14 21 63.3 | 44.2 0 0 | 19.1 | 566 | 15 26 614 | 525 12 54 | 89 | 237 | 17 16 278 | 208 11 31 | 70 | | 25 | 50. 7 | 13 50 58.6 | 43.9 8 15 | 14.7 | 567 | 17 50 611 | 529 8 49 | 82 | 232 | 17 36 267 | 211 11 12 | 56 | | 26 | 51. 4 | 12 31 59.1 | 43.6 6 42 | 15. 5 | 574 | 2 44 610 | 542 10 15 | 68 | 230 | 17 29 250 | 20 3 12 1 | 47 | | 27 * | 51. 7 | 13 31 60.1 | 44.2 6 24 | 15. 9 | 578 | 21 41 610 | 548 8 36 | 62 | 236 | 18 42 250 | 211 12 4 | 39 | | 28 | 50. 7 | 14 3 59.7 | 42.4 8 10 | 17. 3 | 578 | 20 37 609 | 546 13 18 | 63 | 230 | 17 43 257 | 198 12 4 | 59 | | 29 | 52. 0 | 14 2 60.6 | 44.7 7 46 | 15. 9 | 575 | 18 37 611 | 543 8 57 | 68 | 231 | 19 20 255 | 20 3 11 2 | 52 | | 30 * | 51. 4 | 13 53 60.5 | 44.6 8 38 | 15. 9 | 580 | 16 53 608 | 539 9 23 | 69 | 232 | 17 27 251 | 20 3 12 9 | 48 | | 31 | 50.9 | 12 19 59.4 | 42.7 3 37 | 16. 7 | 574 | 19 10 616 | 542 11 48 | 74 | 228 | 18 28 259 | 196 9 53 | 63 | | Mean | 51. 9 | - 60.8 | 43.6 - | 17. 2 | 574 | - 624 | 528 - | 95. 5 | 233 | - 261 | 203 - | 57. 4 | | Mean * | 52. 1 | - 60.4 | 45.3 - | 15. 1 | 580 | - 604 | 548 - | 56. 0 | 233 | - 247 | 206 - | 40. 2 | | Mean ** | 51. 7 | - 61.4 | 39.2 - | 22. 2 | 569 | - 665 | 494 - | 171. 0 | 236 | - 290 | 196 - | 94. 0 | | June | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T. | Y | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
Y + h m | Y | | 1 | 51. 7 | 14 14 61.9 | 42.8 8 9 | 19. 1 | 580 | 19 21 610 | 539 12 4 | 71 | 235 | 19 18 253 | 215 13 1 | 38 | | 2 * | 51. 8 | 14 31 60.2 | 42.6 9 6 | 17. 6 | 584 | 18 4 613 | 548 12 16 | 65 | 231 | 18 36 254 | 205 12 47 | 49 | | 3 * | 51. 8 | 14 29 60.6 | 43.2 7 45 | 17. 4 | 586 | 17 50 605 | 556 10 18 | 49 | 234 | 17 27 247 | 209 11 32 | 38 | | 4 | 52. 3 | 13 20 61.0 | 42.3 7 3 | 18. 7 | 585 | 19 8 611 | 535 13 58 | 76 | 232 | 17 47 249 | 202 11 48 | 47 | | 5 | 51. 6 | 14 23 58.1 | 45.1 7 49 | 13. 0 | 592 | 20 14 682 | 553 11 16 | 129 | 232 | 20 13 254 | 209 11 50 | 45 | | 6 | 51. 9 | 13 0 60.7 | 44.2 7 56 | 16.5 | 579 | 1 26 615 | 522 13 38 | 93 | 234 | 17 26 248 | 210 11 0 | 38 | | 7 ** | 53. 0 | 14 37 67.0 | 44.1 7 43 | 22.9 | 581 | 14 3 637 | 475 14 49 | 162 | 249 | 17 2 326 | 197 12 0 | 129 | | 8 ** | 52. 7 | 14 40 68.0 | 42.1 7 2 | 25.9 | 573 | 22 21 658 | 493 15 21 | 165 | 233 | 16 45 263 | 208 2 53 | 55 | | 9 | 52. 7 | 15 3 59.2 | 47.6 3 34 | 11.6 | 571 | 1 51 614 | 533 14 20 | 81 | 238 | 15 34 272 | 213 4 22 | 59 | | 10 | 51. 3 | 15 1 58.0 | 44.1 6 19 | 13.9 | 575 | 18 37 625 | 538 13 40 | 87 | 238 | 16 25 261 | 217 11 3 | 44 | | 11 | 52. 0 | 12 5 56.5 | 45. 2 8 3 | 11. 3 | 583 | 20 59 616 | 542 12 20 | 74 | 235 | 18 28 251 | 214 12 4 | 37 | | 12 ** | 51. 8 | 14 31 61.6 | 41. 7 22 11 | 19. 9 | 588 | 22 18 639 | 539 13 18 | 100 | 245 | 17 43 297 | 212 10 27 | 85 | | 13 | 50. 4 | 12 41 57.6 | 43. 2 7 42 | 14. 4 | 579 | 3 53 620 | 518 10 40 | 102 | 231 | 18 27 257 | 209 12 58 | 48 | | 14 | 52. 0 | 13 4 58.8 | 46. 4 4 37 | 12. 4 | 583 | 18 41 625 | 533 8 23 | 92 | 236 | 18 23 257 | 210 11 48 | 47 | | 15 | 52. 2 | 13 14 60.6 | 46. 4 8 38 | 14. 2 | 581 | 20 20 613 | 548 10 17 | 65 | 234 | 18 27 251 | 207 11 0 | 44 | | 16 | 50. 7 | 13 48 59.4 | 39.4 23 43 | 20.0 | 591 | 20 15 643 | 539 10 51 | 104 | 230 | 20 12 260 | 201 12 32 | 59 | | 17 | 50. 0 | 14 41 59.9 | 34.6 1 3 | 25.3 | 570 | 3 4 625 | 515 1 18 | 110 | 220 | 18 46 251 | 192 0 53 | 59 | | 18 | 50. 1 | 15 30 60.1 | 41.7 7 15 | 18.4 | 579 | 16 57 656 | 518 10 20 | 138 | 229 | 18 17 268 | 203 10 32 | 65 | | 19 ** | 51. 5 | 12 23 61.8 | 40.7 5 18 | 21.1 | 566 | 19 49 629 | 484 9 22 | 145 | 225 | 15 29 272 | 187 2 45 | 85 | | 20 | 50. 8 | 14 22 57.6 | 44.2 7 12 | 13.4 | 571 | 15 57 612 | 524 9 40 | 88 | 232 | 19 29 253 | 212 11 22 | 41 | | 21 | 50. 7 | 15 53 56.5 | 42.8 7 39 | 13.7 | 576 | 19 3 632 | 532 8 50 | 100 | 228 | 19 36 252 | 207 12 0 | 45 | | 22 | 50. 9 | 13 46 59.3 | 43.8 6 11 | 15.5 | 579 | 19 27 619 | 547 9 4 | 72 | 231 | 19 30 249 | 208 13 6 | 41 | | 23 * | 51. 1 | 13 52 57.9 | 43.9 6 40 | 14.0 | 574 | 15 52 595 | 542 11 17 | 53 | 228 | 18 38 238 | 205 11 48 | 33 | | 24 * | 51. 2 | 14 22 58.5 | 45.3 9 3 | 13.2 | 590 | 18 25 616 | 571 10 18 | 45 | 231 | 18 23 242 | 208 12 18 | 34 | | 25 | 51. 4 | 12 58 57.9 | 44.2 6 53 | 13.7 | 585 | 16 43 623 | 545 13 30 | 78 | 229 | 18 27 258 | 212 13 23 | 46 | | 26 | 52. 2 | 14 23 61.7 | 45.6 7 24 | 16. 1 | 584 | 16 10 634 | 555 9 40 | 79 | 234 | 17 53 269 | 205 12 5 | 64 | | 27 | 51. 9 | 14 30 58.2 | 47.5 6 4 | 10. 7 | 589 | 19 34 665 | 552 7 56 | 113 | 236 | 21 31 257 | 218 12 0 | 39 | | 28 | 51. 5 | 14 6 59.9 | 42.2 4 49 | 17. 7 | 599 | 18 36 645 | 559 8 1 | 86 | 228 | 18 21 244 | 205 12 7 | 39 | | 29 ** | 51. 1 | 13 56 67.2 | 38.1 4 51 | 29. 1 | 593 | 17 58 728 | 542 22 28 | 186 | 239 | 17 43 311 | 198 7 32 | 113 | | 30 * | 51. 9 | 14 22 59.7 | 45.7 7 56 | 14. 0 | 561 | 20 42 601 | 523 9 58 | 78 | 239 | 18 12 260 | 216 12 22 | 44 | | Mean | 51. 5 | - 60.2 | 43.4
- | 16. 8 | 581 | - 630 | 534 - | 96. 2 | 233 | - 261 | 207 - | 53. 7 | | Mean * | 51. 6 | - 59.4 | 44.1 - | 15. 2 | 579 | - 606 | 548 - | 58. 0 | 233 | - 248 | 209 - | 39. 6 | | Mean ** | 52. 0 | - 65.1 | 41.3 - | 23. 8 | 580 | - 658 | 507 - | 151. 6 | 238 | - 294 | 200 - | 93. 4 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV D. | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | E MAGNETOGRA | PHS | | |-----------------------|----------------------------------|--|---|---|---------------------------------|--|--|----------------------------|---------------------------------|--|--|----------------------------| | | | DECLINAT | TION WEST | | | HORIZONTA | L INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | | July | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T. | Υ | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T. | Υ | | 1 * | 51.0 | 14 31 57.9 | 43.8 8 18 | 14. 1 | 578 | 20 10 604 | 540 10 20 | 64 | 239 | 18 14 252 | 219 11 29 | 33 | | 2 | 51.4 | 14 56 57.2 | 45.3 7 14 | 11. 9 | 581 | 4 50 612 | 533 12 2 | 79 | 233 | 18 28 250 | 215 12 34 | 35 | | 3 | 52.9 | 5 4 57.1 | 46.9 6 25 | 10. 2 | 587 | 18 31 612 | 515 10 16 | 97 | 237 | 16 30 265 | 211 10 18 | 54 | | 4 * | 51.7 | 13 30 59.8 | 44.9 6 54 | 14. 9 | 580 | 16 7 612 | 538 12 20 | 74 | 233 | 4 51 245 | 213 10 58 | 32 | | 5 * | 51.6 | 14 51 58.3 | 45.6 5 37 | 12. 7 | 581 | 20 6 600 | 546 10 3 | 54 | 232 | 17 28 244 | 207 12 3 | 37 | | 6 | 51. 9 | 14 0 58.3 | 47.0 5 28 | 11.3 | 590 | 19 57 612 | 567 14 20 | 45 | 230 | 17 23 246 | 212 10 16 | 34 | | 7 ** | 51. 6 | 14 20 59.6 | 41.2 8 4 | 18.4 | 584 | 17 46 644 | 529 24 0 | 115 | 233 | 19 52 278 | 194 11 18 | 84 | | 8 | 50. 3 | 13 9 61.7 | 39.9 3 15 | 21.8 | 562 | 15 21 626 | 514 0 20 | 112 | 236 | 15 22 258 | 220 11 22 | 38 | | 9 | 50. 9 | 2 17 58.9 | 40.0 5 46 | 18.9 | 579 | 1 47 640 | 533 10 23 | 107 | 238 | 16 36 270 | 214 10 8 | 56 | | 10 | 52. 3 | 12 33 58.3 | 46.0 5 47 | 12.3 | 580 | 16 46 615 | 553 10 10 | 62 | 237 | 17 46 261 | 209 12 17 | 52 | | 11 | 50. 5 | 2 44 56.6 | 44.6 7 20 | 12.0 | 579 | 18 38 624 | 543 9 21 | 81 | 234 | 18 38 257 | 211 11 39 | 46 | | 12 | 51. 1 | 13 39 56.0 | 45.5 6 0 | 10.5 | 575 | 21 7 594 | 548 8 19 | 46 | 234 | 15 25 249 | 217 11 32 | 32 | | 13 * | 52. 1 | 13 52 59.6 | 46.9 6 9 | 12.7 | 588 | 15 7 621 | 558 11 13 | 63 | 235 | 15 12 245 | 222 12 0 | 23 | | 14 | 52. 2 | 14 41 60.0 | 45.6 5 34 | 14.4 | 591 | 17 13 640 | 544 15 31 | 96 | 239 | 17 13 283 | 210 12 22 | 73 | | 15 | 50. 6 | 13 36 59.2 | 42.6 6 42 | 16.6 | 583 | 5 8 609 | 555 11 17 | 54 | 230 | 17 26 243 | 210 5 34 | 33 | | 16 | 50. 5 | 15 30 58.2 | 44.0 6 26 | 14. 2 | 583 | 17 33 623 | 521 10 46 | 102 | 231 | 17 35 251 | 202 10 11 | 49 | | 17 | 51. 1 | 13 25 60.6 | 43.4 7 29 | 17. 2 | 584 | 16 49 619 | 541 9 11 | 78 | 225 | 16 28 246 | 198 11 9 | 48 | | 18 ** | 51. 3 | 15 46 69.2 | 40.5 22 8 | 28. 7 | 596 | 16 35 712 | 544 11 20 | 168 | 237 | 18 25 295 | 199 11 23 | 96 | | 19 | 51. 3 | 1 59 60.6 | 46.0 23 47 | 14. 6 | 564 | 4 32 614 | 491 10 57 | 123 | 239 | 16 28 275 | 204 2 26 | 71 | | 20 * | 50. 3 | 14 6 60.1 | 42.5 6 56 | 17. 6 | 572 | 19 30 604 | 541 10 13 | 63 | 233 | 5 20 252 | 210 12 56 | 42 | | 21 | 50.4 | 14 20 59.9 | 42.9 7 53 | 17.0 | 581 | 15 53 624 | 538 10 48 | 86 | 232 | 16 23 260 | 206 12 22 | 54 | | 22 | 50.5 | 15 20 59.1 | 41.6 6 27 | 17.5 | 585 | 23 21 635 | 548 11 39 | 87 | 231 | 18 11 261 | 205 11 28 | 56 | | 23 | 50.1 | 15 25 59.3 | 41.5 7 17 | 17.8 | 586 | 20 57 622 | 533 11 59 | 89 | 226 | 19 57 247 | 197 11 51 | 50 | | 24 | 50.8 | 13 22 57.1 | 46.0 6 9 | 11.1 | 579 | 20 53 607 | 547 13 29 | 60 | 234 | 6 40 247 | 213 12 32 | 34 | | 25 | 51.5 | 12 34 60.0 | 43.6 5 32 | 16.4 | 593 | 17 5 654 | 566 10 37 | 88 | 231 | 20 0 253 | 209 13 0 | 44 | | 26 ** | 51.8 | 20 40 81.5 | 33.6 22 37 | 47.9 | 619 | 19 33 1006 | 525 9 53 | 481 | 233 | 18 49 339 | 202 9 30 | 137 | | 27 ** | 45.2 | 6 25 79.6 | 5.1 1 3 | 74.5 | 471 | 0 12 641 | 82 3 23 | 559 | 193 | 16 43 291 | 278 3 17 | 569 | | 28 | 48.7 | 14 6 58.5 | 41.1 7 58 | 17.4 | 534 | 21 50 615 | 472 12 23 | 143 | 257 | 18 52 284 | 233 11 41 | 51 | | 29 ** | 52.0 | 12 18 62.8 | 42.8 6 50 | 20.0 | 562 | 16 40 735 | 487 9 52 | 248 | 246 | 17 29 301 | 214 11 27 | 87 | | 30 | 49.7 | 13 13 60.5 | 38.8 7 27 | 21.7 | 558 | 16 59 655 | 498 9 0 | 157 | 243 | 17 0 282 | 217 1 12 | 65 | | 31 | 50.7 | 13 43 61.0 | 45.3 6 58 | 15.7 | 562 | 16 3 597 | 529 10 0 | 68 | 241 | 18 23 258 | 215 12 32 | 43 | | Mean | 50.9 | - 60.9 | 42. 1 - | 18.8 | 576 | - 640 | 519 - | 120.9 | 234 | - 264 | 195 - | 69. 6 | | Mean * | 51.3 | - 59.1 | 44. 7 - | 14.4 | 580 | - 608 | 545 - | 63.6 | 234 | - 248 | 214 - | 33. 4 | | Mean ** | 50.4 | - 70.5 | 32. 6 - | 37.9 | 566 | - 748 | 433 - | 314.2 | 228 | - 301 | 106 - | 194. 6 | | August | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T. | Y | 43000
Y + | U.T. 43000
h w Y + | 43000 U.T. | Y | | 1
2
3
4
5 | 50. 6
49. 8
50. 5
50. 7 | 13 56 60.0
13 47 56.8
13 8 58.2
13 20 59.7
13 0 59.8 | 43. 1 8 41
43. 1 8 5
43. 2 7 54
43. 0 7 26
45. 1 6 47 | 16. 9
13. 7
15. 0
16. 7
14. 7 | 563
573
574
582
583 | 18 18 594
20 9 595
16 35 606
18 56 603
19 43 614 | 522 11 46
538 11 12
531 9 19
559 9 15
555 9 15 | 72
57
75
44
59 | 246
242
239
235
238 | 17 28 266
17 47 265
16 35 252
5 27 246
17 25 249 | 233 1 53
219 12 58
217 11 32
209 12 0
219 14 9 | 33
46
35
37
30 | | 6 | 50.9 | 13 20 59. 1 | 45.0 7 4 | 14. 1 | 585 | 13 18 609 | 558 10 1 | 51 | 235 | 18 50 249 | 206 12 4 | 43 | | 7 ** | 52.2 | 14 22 66. 5 | 39.9 19 43 | 26. 6 | 583 | 16 52 627 | 537 10 37 | 90 | 248 | 17 37 306 | 212 11 50 | 94 | | 8 | 49.8 | 13 34 55. 7 | 44.9 8 38 | 10. 8 | 573 | 19 51 613 | 548 11 0 | 65 | 241 | 16 46 252 | 221 12 4 | 31 | | 9 | 50.6 | 12 35 58. 9 | 45.1 7 23 | 13. 8 | 583 | 18 57 606 | 563 8 33 | 43 | 237 | 17 47 254 | 211 11 48 | 43 | | 10 | 50.4 | 12 32 61. 1 | 42.2 7 45 | 18. 9 | 582 | 18 10 611 | 550 10 52 | 61 | 234 | 17 27 250 | 201 11 5 | 49 | | 11 ** | 50. 7 | 13 7 61.7 | 42.4 17 53 | 19. 3 | 582 | 13 5 634 | 532 11 12 | 102 | 239 | 17 47 278 | 220 11 17 | 58 | | 12 | 49. 2 | 14 3 59.4 | 40.3 1 58 | 19. 1 | 574 | 22 8 640 | 538 9 14 | 102 | 233 | 16 41 250 | 215 1 18 | 35 | | 13 | 49. 7 | 13 29 59.7 | 42.4 7 48 | 17. 3 | 573 | 19 7 611 | 541 12 1 | 70 | 234 | 19 7 247 | 212 12 1 | 35 | | 14 ** | 50. 3 | 12 59 61.9 | 31.4 20 37 | 30. 5 | 557 | 21 1 681 | 465 12 10 | 216 | 238 | 21 0 276 | 207 11 57 | 69 | | 15 ** | 48. 9 | 14 28 59.8 | 40.5 2 27 | 19. 3 | 565 | 16 55 636 | 497 10 20 | 139 | 241 | 18 10 277 | 216 2 35 | 61 | | 16 | 49.0 | 13 42 59.3 | 38.8 22 33 | 20.5 | 570 | 22 4 630 | 522 9 21 | 108 | 234 | 19 40 266 | 208 12 20 | 58 | | 17 | 50.9 | 14 0 62.1 | 42.7 21 40 | 19.4 | 563 | 21 43 636 | 508 14 43 | 128 | 233 | 18 53 260 | 197 11 32 | 63 | | 18 | 50.3 | 13 23 59.1 | 45.4 6 32 | 13.7 | 571 | 21 43 603 | 528 10 30 | 75 | 237 | 17 46 254 | 207 11 30 | 47 | | 19 | 49.6 | 13 12 60.0 | 40.7 0 56 | 19.3 | 571 | 20 52 599 | 541 11 16 | 58 | 234 | 19 27 252 | 215 12 0 | 37 | | 20 | 49.9 | 12 49 58.7 | 44.2 7 57 | 14.5 | 576 | 18 58 603 | 532 10 27 | 71 | 234 | 19 36 248 | 207 11 53 | 41 | | 21 * | 50.6 | 13 23 59.5 | 43.3 8 12 | 16. 2 | 576 | 23 13 601 | 534 9 56 | 67 | 235 | 17 29 246 | 211 11 3 | 35 | | 22 * | 49.7 | 13 30 56.9 | 43.1 8 10 | 13. 8 | 580 | 18 56 598 | 551 9 30 | 47 | 232 | 16 28 242 | 214 12 31 | 28 | | 23 * | 50.0 | 13 30 58.2 | 43.1 8 4 | 15. 1 | 583 | 23 42 613 | 552 9 34 | 61 | 232 | 7 7 244 | 217 9 58 | 27 | | 24 | 50.3 | 14 4 58.3 | 42.7 6 58 | 15. 6 | 592 | 2 46 622 | 563 9 23 | 59 | 229 | 17 23 246 | 206 12 10 | 40 | | 25 | 48.8 | 12 55 58.5 | 40.5 7 20 | 18. 0 | 577 | 2 14 603 | 539 9 16 | 64 | 225 | 16 23 241 | 199 10 59 | 42 | | 26 * | 50.0 | 13 3 58.5 | 42.9 7 50 | 15.6 | 578 | 19 29 603 | 533 9 30 | 70 | 229 | 7 43 241 | 208 11 4 | 33 | | 27 | 49.5 | 12 4 58.4 | 42.3 7 50 | 16.1 | 577 | 21 11 601 | 526 9 38 | 75 | 230 | 17 27 243 | 214 9 47 | 29 | | 28 | 50.8 | 13 30 62.8 | 44.8 7 1 | 18.0 | 581 | 17 56 604 | 548 9 37 | 56 | 229 | 17 46 245 | 209 10 9 | 36 | | 29 * | 50.5 | 13 29 59.3 | 44.4 8 42 | 14.9 | 580 | 17 7 606 | 539 10 32 | 67 | 231 | 17 26 246 | 209 12 30 | 37 | | 30 | 50.0 | 14 32 57.1 | 45.0 7 35 | 12.1 | 588 | 22 43 655 | 555 10 20 | 100 | 230 | 22 43 252 | 203 11 22 | 49 | | 31 ** | 50.7 | 5 24 72.7 | 37.3 2 10 | 35.4 | 566 | 0 41 664 | 488 10 40 | 176 | 230 | 17 39 286 | 145 5 46 | 141 | | Mean | 50. 2 | - 59.9 | 42. 3 - | 17.6 | 576 | - 617 | 535 - | 81. 5 | 235 | - 256 | 209 – | 46. 5 | | Mean * | 50. 2 | - 58.5 | 43. 4 - | 15.1 | 579 | - 604 | 542 - | 62. 4 | 232 | - 244 | 212 – | 32. 0 | | Mean ** | 50. 6 | - 64.5 | 38. 3 - | 26.2 | 571 | - 648 | 504 - | 144. 6 | 239 | \(285 | 200 – | 84. 6 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TABLE IV D | AILY MEAN AND | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TI | HE MAGNETOGRA | PHS | | |-------------------------|--------------------------------------|---|--|--------------------------------------|---------------------------------
---|--|-----------------------------|--|---|---|----------------------------| | | | DECLINAT | TION WEST | | | HORIZONTA | L INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Max imum | Minimum | Range | | September | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000 | 18000 U.T. | Y | 43000
Y + | U.T. 43000 | 43000 U.T. | Y | | 1 *
2
3
4
5 | 49.0
49.9
50.6
49.8
50.4 | 13 33 55.9
14 30 58.2
13 45 61.2
14 51 58.5
14 0 60.2 | 44. 4 9 24
44. 2 5 58
43. 1 21 58
43. 7 24 0
42. 7 0 6 | 11.5
14.0
18.1
14.8
17.5 | 566
575
578
575
575 | 18 4 593
18 47 597
21 52 614
23 5 628
22 50 617 | 535 10 28
547 13 22
537 11 0
508 10 39
529 11 52 | 58
50
77
120
88 | 238
234
234
243
243
239 | 17 18 253
18 38 253
17 25 261
17 44 270
17 22 261 | 214 12 48
217 11 5
210 12 4
230 10 3
217 11 2 | 39
36
51
40
44 | | 6 * | 49.9 | 12 39 57. 2 | 43.1 7 43 | 14. 1 | 581 | 5 8 607 | 544 10 29 | 63 | 229 | 17 42 240 | 210 11 30 | 30 | | 7 | 51.0 | 13 27 62. 5 | 44.4 8 10 | 18. 1 | 576 | 21 23 606 | 520 9 10 | 86 | 235 | 20 7 252 | 216 10 36 | 36 | | 8 | 49.2 | 12 20 57. 9 | 42.0 23 19 | 15. 9 | 573 | 22 37 602 | 548 12 46 | 54 | 238 | 19 45 255 | 219 12 20 | 36 | | 9 | 49.7 | 15 49 58. 1 | 43.7 7 47 | 14. 4 | 575 | 19 42 600 | 545 18 23 | 55 | 239 | 18 36 269 | 219 12 0 | 50 | | 10 | 50.0 | 12 55 59. 4 | 42.8 7 41 | 16. 6 | 575 | 22 42 640 | 513 9 13 | 127 | 233 | 18 38 245 | 212 23 45 | 33 | | 11 | 49.7 | 15 32 57.5 | 43. 2 0 0 | 14. 3 | 576 | 15 35 607 | 532 10 17 | 75 | 233 | 18 28 249 | 212 11 6 | 37 | | 12 | 49.8 | 13 30 58.3 | 42. 4 22 26 | 15. 9 | 574 | 20 36 597 | 537 11 40 | 60 | 232 | 21 21 243 | 207 11 41 | 36 | | 13 | 49.9 | 13 46 59.3 | 43. 8 8 49 | 15. 5 | 579 | 23 26 612 | 536 11 22 | 76 | 231 | 4 2 240 | 212 12 18 | 28 | | 14 | 48.9 | 13 59 58.2 | 42. 9 0 29 | 15. 3 | 579 | 0 0 610 | 544 11 30 | 66 | 229 | 17 24 240 | 210 13 11 | 30 | | 15 * | 50.0 | 13 19 59.7 | 42. 6 7 55 | 17. 1 | 581 | 15 16 600 | 549 10 46 | 51 | 225 | 7 21 239 | 196 12 48 | 43 | | 16 | 49.3 | 13 54 60.2 | 25. 0 19 39 | 35. 2 | 577 | 16 40 646 | 486 19 34 | 160 | 233 | 19 7 317 | 193 12 16 | 124 | | 17 | 47.9 | 23 59 64.0 | 34. 6 1 13 | 29. 4 | 559 | 23 56 671 | 506 1 38 | 165 | 231 | 16 29 260 | 170 2 23 | 90 | | 18 ** | 50.5 | 0 8 65.3 | 24. 0 4 6 | 41. 3 | 509 | 0 0 644 | 390 8 31 | 254 | 241 | 15 58 379 | 82 3 13 | 297 | | 19 ** | 48.6 | 14 48 67.7 | 38. 1 2 47 | 29. 6 | 532 | 2 23 588 | 482 11 55 | 106 | 246 | 15 19 316 | 148 3 48 | 168 | | 20 | 48.2 | 15 2 53.8 | 43. 9 0 22 | 9. 9 | 548 | 18 6 582 | 516 12 30 | 66 | 248 | 20 2 266 | 231 11 26 | 35 | | 21 | 49.3 | 13 50 59.8 | 40.9 17 50 | 18. 9 | 562 | 17 16 670 | 525 11 19 | 145 | 245 | 17 16 282 | 216 12 30 | 66 | | 22 ** | 50.2 | 14 26 129.4 | -6.2 11 32 | 135. 6 | 498 | 13 30 1050 | 125 11 31 | 925 | 258 | 14 27 523 | 73 6 22 | 450 | | 23 ** | 51.3 | 3 53 73.7 | 28.5 21 14 | 45. 2 | 498 | 16 22 698 | 360 6 20 | 338 | 257 | 16 22 510 | 141 2 33 | 369 | | 24 | 46.8 | 13 17 55.7 | 33.6 0 22 | 22. 1 | 536 | 0 59 561 | 484 11 29 | 77 | 255 | 8 8 276 | 240 1 9 | 36 | | 25 * | 49.0 | 13 0 56.1 | 43.7 8 46 | 12. 4 | 554 | 23 3 574 | 527 9 42 | 47 | 251 | 19 29 262 | 233 12 33 | 29 | | 26 * | 49.5 | 13 44 58.3 | 44. 0 8 41 | 14. 3 | 559 | 23 3 580 | 522 11 30 | 58 | 248 | 17 26 261 | 229 11 48 | 32 | | 27 | 47.2 | 13 1 57.3 | 27. 3 17 40 | 30. 0 | 545 | 17 47 650 | 479 19 18 | 171 | 261 | 17 22 328 | 239 8 34 | 89 | | 28 ** | 49.1 | 7 9 66.9 | 25. 6 20 55 | 41. 3 | 526 | 15 50 716 | 421 21 13 | 295 | 276 | 15 50 434 | 218 4 18 | 216 | | 29 | 46.4 | 15 31 58.1 | 36. 2 2 34 | 21. 9 | 523 | 1 11 612 | 405 0 6 | 207 | 270 | 17 41 333 | 202 1 20 | 131 | | 30 | 48.8 | 5 54 61.5 | 30. 9 19 22 | 30. 6 | 543 | 19 35 585 | 486 10 28 | 99 | 259 | 16 10 293 | 235 3 39 | 58 | | Mean | 49.3 | - 62.3 | 37.3 - | 25. 0 | 557 | - 632 | 491 - | 140.6 | 243 | - 294 | 202 - | 92.0 | | Mean * | 49.5 | - 57.4 | 43.6 - | 13. 9 | 568 | - 591 | 535 - | 55.4 | 238 | - 251 | 216 - | 34.6 | | Mean ** | 49.9 | - 80.6 | 22.0 - | 58. 6 | 513 | - 739 | 356 - | 383.6 | 256 | - 432 | 132 - | 300.0 | | October | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h w Y + | 18000 U.T.
Y + h ≡ | Y | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T.
Y + h m | Y | | 1 | 48.8 | 14 11 57.1 | 37. 5 19 11 | 19. 6 | 549 | 19 22 584 | 503 11 35 | 81 | 261 | 19 24 278 | 247 1 31 | 31 | | 2 | 49.3 | 12 23 57.2 | 42. 9 8 59 | 14. 3 | 551 | 24 0 596 | 503 11 20 | 93 | 256 | 18 24 271 | 233 11 6 | 38 | | 3 | 49.8 | 13 35 57.6 | 43. 7 8 47 | 13. 9 | 564 | 0 5 596 | 532 15 43 | 64 | 252 | 16 19 275 | 234 11 48 | 41 | | 4 | 49.4 | 12 24 57.2 | 45. 5 7 30 | 11. 7 | 565 | 3 16 595 | 531 16 22 | 64 | 249 | 16 46 270 | 235 3 38 | 35 | | 5 | 50.1 | 14 53 60.3 | 39. 2 18 47 | 21. 1 | 568 | 4 5 594 | 519 15 50 | 75 | 251 | 18 57 277 | 234 10 58 | 43 | | 6 | 48. 4 | 13 48 56.7 | 34. 6 20 45 | 22. 1 | 565 | 21 5 605 | 526 9 4 | 79 | 244 | 19 40 264 | 227 11 22 | 37 | | 7 | 49. 8 | 13 40 57.4 | 43. 0 0 1 | 14. 4 | 564 | 5 48 597 | 521 12 16 | 76 | 247 | 16 20 273 | 230 13 15 | 43 | | 8 * | 49. 3 | 14 20 54.5 | 43. 5 8 37 | 11. 0 | 580 | 20 7 610 | 549 11 43 | 61 | 240 | 7 37 251 | 219 11 57 | · 32 | | 9 ** | 47. 8 | 13 11 56.4 | 39. 8 3 32 | 16. 6 | 570 | 23 32 610 | 530 13 30 | 80 | 241 | 20 22 259 | 224 6 28 | 35 | | 10 | 48. 7 | 12 12 58.4 | 39. 4 20 57 | 19. 0 | 567 | 19 39 594 | 529 10 52 | 65 | 243 | 21 6 256 | 223 10 51 | 33 | | 11 | 49.3 | 13 39 57. 2 | 44. 1 19 56 | 13. 1 | 575 | 1 1 592 | 557 15 58 | 35 | 241 | 15 11 254 | 228 10 59 | 26 | | 12 | 48.6 | 12 57 54. 4 | 42. 0 8 56 | 12. 4 | 571 | 24 0 607 | 534 11 13 | 73 | 238 | 16 24 247 | 223 11 15 | 24 | | 13 * | 49.3 | 13 19 55. 4 | 43. 6 8 29 | 11. 8 | 574 | 0 7 610 | 533 10 40 | 77 | 238 | 7 56 249 | 225 12 10 | 24 | | 14 | 49.4 | 12 44 58. 7 | 42. 2 9 8 | 16. 5 | 573 | 18 45 602 | 534 11 20 | 68 | 239 | 7 41 251 | 216 12 7 | 35 | | 15 | 48.8 | 13 23 57. 6 | 42. 2 8 50 | 15. 4 | 578 | 19 4 601 | 531 9 43 | 70 | 238 | 7 40 247 | 224 12 57 | 23 | | 16 | 49.0 | 12 43 56.6 | 42. 5 21 4 | 14. 1 | 576 | 21 12 613 | 540 9 59 | 73 | 240 | 20 38 251 | 225 11 16 | 26 | | 17 * | 49.1 | 13 41 55.4 | 42. 4 9 12 | 13. 0 | 580 | 20 42 603 | 549 12 21 | 54 | 236 | 19 28 243 | 222 10 56 | 21 | | 18 * | 49.5 | 12 36 55.6 | 45. 4 8 35 | 10. 2 | 584 | 23 2 611 | 556 11 28 | 55 | 233 | 22 52 242 | 216 10 59 | 26 | | 19 | 48.7 | 13 15 55.8 | 39. 8 23 58 | 16. 0 | 578 | 22 2 606 | 559 9 40 | 47 | 234 | 20 35 247 | 216 10 58 | 31 | | 20 ** | 48.1 | 13 57 56.1 | 38. 8 0 11 | 17. 3 | 573 | 4 16 606 | 545 10 40 | 61 | 233 | 21 37 252 | 216 9 57 | 36 | | 21 | 48.9 | 12 23 53.7 | 43. 4 9 17 | 10.3 | 576 | 21 21 610 | 546 11 32 | 64 | 237 | 8 5 244 | 222 11 6 | 22 | | 22 | 49.1 | 11 56 55.1 | 43. 6 8 52 | 11.5 | 578 | 7 19 601 | 547 12 55 | 54 | 234 | 17 27 244 | 217 11 5 | 27 | | 23 | 49.2 | 11 58 55.4 | 45. 6 2 40 | 9.8 | 577 | 1 11 596 | 542 12 23 | 54 | 237 | 15 44 249 | 227 12 5 | 22 | | 24 | 49.0 | 12 46 57.5 | 43. 2 8 28 | 14.3 | 570 | 23 59 592 | 530 10 58 | 62 | 240 | 16 21 250 | 224 10 57 | 26 | | 25 | 48.4 | 12 50 56.4 | 41. 9 24 0 | 14.5 | 568 | 6 12 594 | 531 11 17 | 63 | 238 | 19 29 253 | 221 12 4 | 32 | | 26 ** | 47.8 | 11 58 58.3 | 28. 9 23 26 | 29. 4 | 564 | 22 8 670 | 489 23 58 | 181 | 237 | 20 36 263 | 188 23 54 | 75 | | 27 ** | 46.7 | 14 19 61.2 | 22. 4 2 18 | 38. 8 | 535 | 1 7 644 | 468 9 20 | 176 | 239 | 16 33 295 | 168 2 16 | 127 | | 28 | 48.9 | 13 16 55.6 | 43. 4 9 18 | 12. 2 | 556 | 23 49 589 | 520 9 32 | 69 | 243 | 16 22 261 | 222 10 33 | 39 | | 29 | 49.0 | 12 53 56.0 | 43. 5 20 33 | 12. 5 | 564 | 23 6 603 | 524 11 1 | 79 | 243 | 20 27 254 | 228 10 56 | 26 | | 30 * | 49.0 | 12 50 54.6 | 45. 1 7 57 | 9. 5 | 570 | 19 55 587 | 536 10 23 | 51 | 241 | 18 29 251 | 224 11 59 | 27 | | 31 ** | 48.8 | 13 32 58.4 | 41.0 22 20 | 17.4 | 560 | 4 18 588 | 509 13 42 | 79 | 248 | 17 38 278 | 222 11 23 | 56 | | Mean | 48.9 | - 56.7 | 41. 1 - | 15. 6 | 568 | - 603 | 530 - | 73.6 | 242 | - 258 | 222 - | 36. 1 | | Mean * | 49.2 | - 55.1 | 44. 0 - | 11. 1 | 578 | - 604 | 545 - | 59.6 | 238 | - 247 | 221 - | 26. 0 | | Mean ** | 47.8 | - 58.1 | 34. 2 - | 23. 9 | 560 | - 624 | 508 - | 115.4 | 240 | - 269 | 204 - | 65. 8 | ^{*} International Quiet Day. ** International Disturbed Day. | | ı | TABLE IV DA | AILY MEAN AND I | EXTREME | VALUES | OF MAGNETIC | ELEMENTS AS | RECORDE | D BY TH | E MAGNETOGRA | PHS | | |-------------------------------------|---|---|--|--|---------------------------------|--|---|------------------------------|--|--|--|----------------------------| | | | DECLINAT | TION WEST | | | HORIZONTA | L INTENSITY | | | VERTICAL | INTENSITY | | | Date | Mean
Daily
Value | Max 1 mum | Minimum | Range | Mean
Daily
Value | Maximum | Minimum | Range | Mean
Daily
Value | Max 1 mum | Minimum | Range | | November | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h w Y + | 18000 U.T.
Y + h m | Y | 43000
Y + | U.T. 43000 | 43000 U.T. | Y
| | 1 ** | 48.5 | 16 20 57. 1 | 33. 1 22 3 | 24. 0 | 545 | 21 33 590 | 497 11 49 | 93 | 250 | 16 39 294 | 229 2 54 | 65 | | 2 | 48.5 | 7 2 55. 3 | 42. 5 19 59 | 12. 8 | 565 | 19 12 584 | 529 11 31 | 55 | 245 | 14 44 255 | 230 10 4 | 25 | | 3 | 48.1 | 13 20 51. 0 | 44. 3 8 50 | 6. 7 | 575 | 22 2 589 | 553 11 28 | 36 | 241 | 8 36 250 | 233 13 21 | 17 | | 4 | 48.8 | 13 25 54. 9 | 43. 9 8 42 | 11. 0 | 574 | 20 41 592 | 538 11 17 | 54 | 241 | 8 43 255 | 228 10 59 | 27 | | 5 | 49.1 | 12 13 56. 7 | 40. 3 9 28 | 16. 4 | 585 | 19 0 623 | 544 9 24 | 79 | 236 | 0 12 245 | 222 10 53 | 23 | | 6 ** | 48.9 | 14 49 59. 2 | 39.7 23 45 | 19. 5 | 566 | 23 52 623 | 506 15 10 | 117 | 244 | 17 42 269 | 230 6 32 | 39 | | 7 | 47.7 | 14 47 52. 7 | 43.1 0 36 | 9. 6 | 568 | 0 0 609 | 540 11 28 | 69 | 239 | 16 30 249 | 229 12 4 | 20 | | 8 | 48.5 | 13 32 54. 4 | 41.2 23 58 | 13. 2 | 577 | 18 33 590 | 553 12 19 | 37 | 237 | 17 26 248 | 219 11 18 | 29 | | 9 | 48.3 | 12 47 56. 9 | 40.4 0 13 | 16. 5 | 574 | 21 24 594 | 546 11 21 | 48 | 238 | 23 37 252 | 223 11 21 | 29 | | 10 | 47.8 | 13 53 54. 3 | 38.2 21 37 | 16. 1 | 572 | 20 4 609 | 536 21 20 | 73 | 240 | 22 21 253 | 231 11 6 | 22 | | 11
12
13
14 * | 47.9
47.2
48.4
48.8
49.5 | 14 0 53.0
13 59 54.4
13 27 53.2
12 21 53.4
17 30 57.4 | 40.3 21 10
39.8 2 59
44.0 22 4
45.5 9 19
38.8 23 59 | 12.7
14.6
9.2
7.9
18.6 | 575
566
573
577
583 | 2 52 628
1 42 610
17 43 596
20 7 597
7 54 620 | 542 11 16
542 4 36
550 12 15
543 12 28
556 22 0 | 86
68
46
54
64 | 238
240
241
240
240 | 2 23 249
18 48 257
19 24 249
16 30 248
21 12 266 | 219 3 36
219 3 51
230 12 3
230 11 11
222 12 30 | 30
38
19
18
44 | | 16 | 47.1 | 13 15 54.7 | 36. 2 0 43 | 18. 5 | 567 | 21 10 610 | 540 1 17 | 70 | 242 | 19 39 256 | 232 11 33 | 24 | | 17 | 47.9 | 13 33 52.7 | 42. 1 22 2 | 10. 6 | 571 | 19 55 595 | 542 10 38 | 53 | 240 | 21 48 249 | 231 13 58 | 18 | | 18 | 48.0 | 13 58 52.8 | 42. 5 23 56 | 10. 3 | 580 | 17 57 596 | 561 10 30 | 35 | 238 | 0 2 247 | 228 12 7 | 19 | | 19 | 46.6 | 14 29 54.2 | 33. 5 22 30 | 20. 7 | 569 | 22 32 620 | 537 20 40 | 83 | 242 | 22 11 264 | 229 8 20 | 35 | | 20 | 48.2 | 13 43 54.2 | 40. 3 0 12 | 13. 9 | 574 | 17 51 608 | 543 14 13 | 65 | 241 | 13 42 251 | 231 12 41 | 20 | | 21 **
22
23
24 **
25 ** | 47.6
48.0
48.7
49.1
47.4 | 13 41 57.3
13 6 52.3
13 59 54.7
13 13 67.4
14 5 53.6 | 33. 7 22 36
39. 1 16 50
45. 7 8 59
45. 3 22 11
37. 0 20 17 | 23. 6
13. 2
9. 0
22. 1
16. 6 | 566
567
572
573
563 | 8 53 607
5 52 591
20 57 590
4 20 627
20 22 638 | 517 11 20
530 16 26
538 11 23
480 13 42
511 15 20 | 90
61
52
147
127 | 243
242
242
242
240
245 | 14 52 267
16 49 263
13 45 257
13 14 269
16 6 267 | 227 11 2
228 1 2
231 9 50
213 9 22
225 23 41 | 40
35
26
56
42 | | 26 | 47.9 | 12 44 54.0 | 43.0 0 0 | 11.0 | 573 | 3 18 594 | 557 11 39 | 37 | 236 | 16 38 254 | 220 12 4 | 34 | | 27 * | 48.3 | 12 47 52.3 | 45.4 9 29 | 6.9 | 580 | 19 55 594 | 559 11 38 | 35 | 238 | 16 36 247 | 224 12 3 | 23 | | 28 * | 48.5 | 12 54 52.4 | 45.6 9 7 | 6.8 | 584 | 7 10 603 | 559 11 20 | 44 | 237 | 5 23 245 | 224 10 48 | 21 | | 29 * | 48.2 | 12 46 52.6 | 44.7 9 40 | 7.9 | 584 | 6 40 603 | 557 11 18 | 46 | 236 | 16 19 244 | 220 12 5 | 24 | | 30 * | 47.7 | 12 38 53.2 | 43.5 22 46 | 9.7 | 583 | 7 58 597 | 560 10 16 | 37 | 236 | 5 24 244 | 225 14 3 | 19 | | Mean | 48. 2 | - 54.7 | 41. 1 - | 13. 7 | 573 | - 604 | 539 - | 65. 4 | 240 | - 255 | 226 - | 29. 4 | | Mean * | 48. 3 | - 52.8 | 44. 9 - | 7. 8 | 582 | - 599 | 556 - | 43. 2 | 237 | - 246 | 225 - | 21. 0 | | Mean ** | 48. 3 | - 58.9 | 37. 8 - | 21. 2 | 563 | - 617 | 502 - | 114. 8 | 244 | - 273 | 225 - | 48. 4 | | December | 9°+ | U.T. 9°+ | 9°+ U.T. | , | 18000
Y + | U.T. 18000
h m Y + | 18000 U.T. | Y | 43000
Y + | U.T. 43000
h m Y + | 43000 U.T. | Y | | 1 | 47. 2 | 13 30 51.2 | 38.9 23 42 | 12. 3 | 578 | 5 16 591 | 553 19 10 | 38 | 237 | 19 40 250 | 228 11 21 | 22 | | 2 | 47. 7 | 15 21 52.7 | 38.0 23 18 | 14. 7 | 579 | 23 20 595 | 550 14 58 | 45 | 237 | 19 28 247 | 224 12 5 | 23 | | 3 | 47. 1 | 13 21 51.4 | 37.8 0 5 | 13. 6 | 573 | 2 26 611 | 537 11 17 | 74 | 235 | 16 20 250 | 213 3 21 | 37 | | 4 | 47. 8 | 12 16 51.6 | 45.2 9 8 | 6. 4 | 584 | 19 58 603 | 564 11 39 | 39 | 236 | 13 38 241 | 230 20 6 | 11 | | 5 ** | 48. 2 | 17 16 54.4 | 43.4 22 30 | 11. 0 | 582 | 5 20 600 | 551 11 48 | 49 | 237 | 22 36 255 | 223 11 3 | 32 | | 6
7
8
9 *
10 ** | 47. 1
47. 1
47. 5
47. 4
47. 3 | 13 55 52.8
12 32 52.4
4 7 52.2
12 15 51.4
13 11 53.2 | 43.0 22 20
42.6 3 44
44.3 0 39
44.3 20 34
38.8 22 50 | 9.8
9.8
7.9
7.1 | 579
582
583
585
584 | 18 40 598
3 27 615
4 24 616
20 45 604
23 3 607 | 559 10 56
548 16 20
559 10 33
575 14 18
550 15 16 | 39
67
57
29
57 | 238
234
234
235
235 | 23 14 246
17 28 248
0 0 244
20 43 245
15 40 250 | 229 10 53
217 6 51
221 4 41
218 11 1
220 12 3 | 17
31
23
27
30 | | 11 ** | 47. 1 | 15.33 53.5 | 36. 2 19 26 | 17. 3 | 579 | 19 30 612 | 528 20 26 | 84 | 235 | 19 13 253 | 222 10 26 | 31 | | 12 ** | 47. 4 | 14 4 54.5 | 39. 7 23 28 | 14. 8 | 570 | 23 38 604 | 524 12 12 | 80 | 241 | 16 17 266 | 226 12 2 | 40 | | 13 | 47. 8 | 13 28 53.7 | 43. 0 0 36 | 10. 7 | 579 | 5 44 595 | 555 14 39 | 40 | 238 | 17 50 249 | 223 12 25 | 26 | | 14 * | 47. 8 | 13 23 52.0 | 45. 5 8 55 | 6. 5 | 582 | 20 10 598 | 562 11 24 | 36 | 235 | 4 29 244 | 224 9 44 | 20 | | 15 * | 48. 1 | 13 17 53.8 | 45. 0 9 56 | 8. 8 | 582 | 19 36 594 | 552 11 28 | 42 | 235 | 16 20 243 | 227 11 20 | 16 | | 16 | 47. 7 | 12 18 52.0 | 41. 4 23 19 | 10.6 | 590 | 20 6 605 | 579 10 46 | 26 | 233 | 23 19 243 | 224 12 26 | 19 | | 17 | 47. 1 | 13 55 52.2 | 41. 9 22 11 | 10.3 | 579 | 6 1 607 | 551 11 28 | 56 | 234 | 17 43 245 | 225 8 16 | 20 | | 18 | 47. 5 | 13 33 53.8 | 43. 7 4 11 | 10.1 | 588 | 18 20 604 | 575 2 32 | 29 | 230 | 0 19 238 | 221 11 2 | 17 | | 19 ** | 49. 4 | 15 5 58.3 | 36. 2 17 8 | 22.1 | 565 | 6 9 620 | 494 13 1 | 126 | 238 | 17 12 275 | 216 8 18 | 59 | | 20 * | 46. 7 | 3 40 50.8 | 42. 7 9 54 | 8.1 | 561 | 23 23 580 | 538 11 0 | 42 | 240 | 8 7 248 | 235 22 54 | 13 | | 21 | 47.8 | 12 16 54.6 | 43. 3 22 42 | 11. 3 | 571 | 22 41 593 | 518 9 33 | 75 | 239 | 15 23 251 | 227 11 8 | 24 | | 22 | 47.2 | 13 34 55.3 | 41. 6 1 41 | 13. 7 | 570 | 6 30 595 | 538 13 16 | 57 | 237 | 16 22 251 | 227 10 48 | 24 | | 23 | 47.7 | 12 48 53.1 | 43. 3 9 58 | 9. 8 | 581 | 8 34 606 | 544 12 53 | 62 | 236 | 18 31 246 | 219 11 18 | 27 | | 24 | 46.9 | 13 59 53.0 | 41. 7 1 27 | 11. 3 | 576 | 19 56 591 | 558 1 57 | 33 | 238 | 16 36 248 | 229 14 5 | 19 | | 25 | 46.9 | 14 19 52.1 | 39. 6 22 34 | 12. 5 | 580 | 19 15 617 | 537 22 23 | 80 | 237 | 23 26 258 | 225 13 21 | 33 | | 26 | 48. 2 | 14 32 53.0 | 43.7 23 46 | 9. 3 | 565 | 3 59 593 | 534 15 48 | 59 | 244 | 16 34 264 | 225 9 22 | 39 | | 27 | 46. 6 | 12 52 52.4 | 39.9 18 53 | 12. 5 | 569 | 5 43 591 | 549 22 47 | 42 | 239 | 0 20 250 | 227 13 0 | 23 | | 28 | 47. 1 | 14 3 52.4 | 42.4 0 32 | 10. 0 | 573 | 1 19 597 | 552 13 44 | 45 | 238 | 17 40 251 | 227 12 0 | 24 | | 29 | 47. 3 | 13 42 52.5 | 44.5 9 25 | 8. 0 | 577 | 4 52 593 | 561 13 23 | 32 | 235 | 16 34 248 | 222 11 47 | 26 | | 30 * | 47. 4 | 13 55 50.1 | 45.5 8 50 | 4. 6 | 584 | 20 3 598 | 569 11 29 | 29 | 235 | 5 47 243 | 222 13 21 | 21 | | 31 | 47.4 | 15 40 51.5 | 43.5 21 26 | 8.0 | 586 | 6 2 601 | 565 14 59 | 36 | 233 | 21 39 242 | 219 13 0 | 23 | | Mean * Mean ** | 47.5 | - 52.8 | 42.0 - | 10. 9 | 578 | - 601 | 549 - | 51. 8 | 236 | - 249 | 224 - | 25. 7 | | | 47.5 | - 51.6 | 44.6 - | 7. 0 | 579 | - 595 | 559 - | 35. 6 | 236 | - 245 | 225 - | 19. 4 | | | 47.9 | - 54.8 | 38.9 - | 15. 9 | 576 | - 609 | 529 - | 79. 2 | 237 | - 260 | 221 - | 38. 4 | ^{*} International Quiet Day. ** International Disturbed Day. | | | TAB | LE IV(| A) 1 | HREE-HO | UR-RAN | GE IND | ICES "K" | FOR T | НЕ УЕАН | 1946.* | SEE (SEE | INTROI | OUCTION | PAGE X | 11). | | | |------|------|---------|--------|------|---------|--------|--------|----------|----------|---------|--------|----------|--------|---------|--------|------|------|------| | Date |
 | January | | F | ebruary | , | | March | • | | April | • | | May | | | June | | | Date | Ind | ices | Sum | 1 | 2232 | 3333 | 21 | 0101 | 1211 | - 7 | 4443 | 2213 | 23 | 5233 | 3233 | 24 | 1333 | 2333 | 21 | 2232 | 3332 | 20 | | 2 | 4111 | 2331 | 16 | 3233 | 3122 | 19 | 5334 | 3212 | 23 | 4323 | 4345 | 28 | 4123 | 2323 | 20 | 3222 | 3321 | 18 | | 3 | 0146 | 6665 | 34 | 1011 | | 16 | 1121 | 1122 | 11 | 2123 | 3332 | 19 | 1 | 2232 | 18 | 1221 | 2210 | 11 | | 4 | 5543 | 3555 | 35 | 2323 | 4313 | 21 | 3333 | 3346 | 28 | 2223 | 3113 | 17 | l | 3331 | 21 | l | 4321 | 18 | | 5 | 3222 | 2124 | 18 | 3321 | 3333 | 21 | 4225 | 4433 | 27 | 2123 | 3332 | 19 | 1221 | 2334 | 18 | 0112 | 3254 | 18 | | 6 | 3131 | 1442 | 20 | 5122 | 2122 | 20 | 2333 | 3333 | 23 | 3223 | 3233 | 21 | 3453 | 3446 | 32 | 3233 | 4323 | 23 | | 7 | 0111 | | 14 | 4148 | 7867 | 45 | 3123 | 3233 | 20 | 3333 | 4322 | 23 | | 4332 | 30 | 3135 | 6533 | 29 | | 8 | | 1121 | 11 | 7667 | 5653 | 45 | ĺ | 1233 | 13 | 1133 | 3233 | 19 | 3564 | | 34 | 4334 | 5645 | 34 | | 9 | 0011 | 2121 | 8 | 1134 | 3233 | 20 | 0122 | | 21 | 3235 | 5535 | 31 | 4443 | 5554 | 34 | 4432 | 4433 | 27 | | 10 | 0112 | | 11 | 2353 | | 23 | 6555 | 5466 | 42 | 4123 | 2213 | 18 | 2333 | 4434 | 26 | 1212 | 3432 | 18 | 11 | 3443 | 3244 | 27 | 2211 | 3131 | 14 | 6334 | 3444 | 31 | 1132 | 2222 | 15 | 4464 | 5521 | 31 | 2333 | 3332 | 22 | | 12 | 2213 | 2233 | 18 | 1211 | | 18 | 1121 | | 9 | 3113 | 3335 | 22 | 2223 | 3231 | 18 | 1333 | 5445 | 28 | | 13 | 1100 | 2132 | 10 |
3334 | | 21 | 1112 | 2331 | 14 | 4443 | 3354 | 30 | 3321 | 2223 | 18 | 3434 | 4331 | 25 | | 14 | 0211 | 2111 | 9 | 0154 | 3554 | 27 | 1112 | 2231 | 13 | 3124 | 5434 | 26 | 3111 | 1210 | 10 | 1232 | 2341 | 18 | | 15 | 1011 | 1233 | 12 | 3433 | 3321 | 22 | 2123 | 2333 | 19 | 4454 | 5452 | 33 | 1122 | 3311 | 14 | 0132 | 3331 | 16 | 16 | 3321 | 3213 | 18 | 1222 | 3223 | 17 | 1021 | 2112 | 10 | 1211 | 3234 | 17 | 1222 | 4233 | 19 | 1234 | 4445 | 27 | | 17 | 1232 | | 18 | 4222 | 0110 | 12 | 3333 | | 29 | 3212 | 3211 | 15 | 3422 | 4531 | 24 | 5542 | 4223 | 27 | | 18 | 1112 | 3354 | 20 | 2111 | 3331 | 15 | 2123 | 3121 | 15 | 1133 | 3331 | 18 | 3343 | 3421 | 23 | 3233 | 3534 | 26 | | 19 | 4322 | 1133 | 19 | 2343 | 2556 | 30 | 0122 | 2123 | 13 | 1112 | 2323 | 15 | 0211 | 2211 | 10 | 4543 | 5444 | 33 | | 20 | 2201 | 2100 | 8 | 1322 | 2246 | 22 | 3124 | 3232 | 20 | 3113 | 3311 | 16 | 0121 | 2334 | 16 | 3332 | 4331 | 22 | 21 | 0000 | 1123 | 7 | 5544 | 4541 | 32 | 2323 | 3211 | 17 | 0111 | 2321 | 11 | 4333 | 4543 | 29 | 2333 | 3343 | · 24 | | 22 | 4331 | | 18 | 3433 | | 24 | 0355 | 4335 | 28 | 1133 | 3452 | 22 | 3554 | 5554 | 36 | 3223 | 4441 | 23 | | 23 | 3322 | 2235 | 22 | 3333 | 3341 | 23 | 3222 | 2346 | 24 | 4355 | 5667 | 41 | 4333 | 5554 | 32 | ļ. | 2211 | 13 | | 24 | 3333 | 5544 | 30 | 3122 | 2144 | 19 | 7644 | 5735 | 41 | 6654 | 4743 | 39 | 1 | 4433 | 27 | l | 2133 | 11 | | 25 | 3221 | 3331 | 18 | 3334 | 2323 | 23 | 7755 | 8867 | 53 | 4331 | 3311 | 19 | 4322 | 4333 | 24 | 2333 | 2431 | 21 | 26 | 2333 | 2441 | 22 | 3122 | 1233 | 17 | 6454 | 3354 | 34 | 2132 | 1333 | 18 | 4323 | 3322 | 22 | 1 | 4433 | 22 | | 27 | | 1122 | 14 | 1112 | | 7 | 4413 | 3435 | 27 | 4111 | 1221 | 13 | | 3213 | 16 | | 3444 | 24 | | 28 | 1002 | 1123 | 10 | 1123 | 1211 | 12 | 4498 | 9987 | 58 | | 2353 | 20 | ı | 3332 | 19 | | 4343 | 26 | | 29 | 1222 | 3222 | 16 | | | | i | 4334 | 33 | ľ | 2323 | 19 | | 2332 | 19 | ł | 4564 | 32 | | 30 | 1112 | 2213 | 13 | | | | 2222 | 1223 | 16 | 3222 | 3231 | 18 | 3123 | 3222 | 18 | 1113 | 3331 | 16 | 31 | 1021 | 3313 | 14 | | | | 1133 | 3224 | 19 | | | | 3442 | 3332 | 24 | l | L | | <u> </u> | L | | <u> </u> | | | L | L | | | ^{*} Corresponding figures for the years 1929-1939 are given in an Appendix to the Magnetic and Meteorological Results for 1940. | | | TAB | LE IV(| V(A) THREE-HOUR-RAN | | | GE IND | ICES "K" | FOR T | не челі | R 1946.* | SEE (SEE | INTRO | OUCTION | PAGE X | 11). | | | |------|------|------|--------|---------------------|--------|-----|--------|----------|-------|---------|----------|----------|-------|----------|--------|------|---------|-----| | Date | | July | | | August | | s | eptembe: | r | | October | | 1 | November | | Γ | ecember | | | Date | Ind | ices | Sum | 1 | 1211 | 3211 | 12 | 2332 | 3321 | 19 | 1012 | 3311 | 12 | 3343 | 2442 | 25 | 4333 | 3445 | 29 | 1111 | 1333 | 14 | | 2 | 2332 | 4222 | 20 | 1212 | 3221 | 14 | 1233 | 2232 | 18 | 1243 | 3323 | 21 | 1243 | 2133 | 19 | 3111 | 3324 | 18 | | 3 | 3444 | 3321 | 24 | 1223 | 3321 | 17 | 1112 | 3334 | 18 | 3443 | 3311 | 22 | 2221 | 1112 | 12 | 4323 | 1311 | 18 | | 4 | 0011 | 4310 | 10 | 1212 | 2222 | 14 | 2243 | 3334 | 24 | 3332 | 3321 | 20 | | 2212 | 15 | 1112 | 1232 | 13 | | 5 | 1111 | 2210 | 9 | 1122 | 2232 | 15 | 3133 | 4323 | 22 | 1333 | 3441 | 22 | 1234 | 3433 | 23 | 2213 | 3333 | 20 | 6 | 2211 | 2311 | 13 | 1113 | 4231 | 16 | 3323 | 2111 | 16 | 2343 | 2344 | 25 | 2224 | 4424 | 24 | 2212 | 2123 | 15 | | 7 | 1544 | | 30 | | 4442 | 26 | | 4333 | 23 | 3333 | 3332 | 23 | 4322 | 2211 | 17 | 3331 | 2322 | 19 | | 8 | 4333 | 4521 | 25 | 2111 | 1432 | 15 | 2133 | 3333 | 21 | 1121 | 1222 | 12 | 1112 | 3123 | 14 | 2313 | 1111 | 13 | | 9 | 4334 | 3342 | 26 | 3112 | | 16 | 1222 | 3342 | 19 | | 3234 | 26 | 3223 | 3213 | 19 | 1111 | 1131 | 10 | | 10 | 2323 | | 22 | 0113 | | 17 | 2244 | 3315 | 24 | 3133 | 3244 | 23 | 3122 | 2244 | 20 | 2113 | 2433 | 19 | 11 | 3322 | | 24 | 3443 | • | 31 | 3233 | 3333 | 23 | 3222 | | 20 | ł | 1144 | 25 | 1113 | 2354 | 20 | | 12 | 1222 | | 13 | 4232 | | 23 | 2134 | 3323 | 21 | 3342 | | 19 | ł | 2341 | 22 | 3213 | 3433 | 22 | | 13 | 0111 | | 12 | 2322 | | 18 | 1333 | 3223 | 20 | 3032 | | 14 | 1122 | | 17 | 2122 | 3311 | 15 | | 14 | 1232 | 4543 | 24 | 2354 | | 35 | 3123 | 3223 | 19 | 2133 | 3322 | 19 | ľ | 3222 | 14 | | 2101 | 7 | | 15 | 2432 | 2331 | 20 | 5434 | 4534 | 32 | 2132 | 3312 | 17 | 0033 | 2123 | 14 | 1043 | 3344 | 22 | 0012 | 2101 | 7 | 16 | 1124 | 3433 | 21 | 3333 | 3454 | 28 | 1123 | 4564 | 26 | 1123 | 2233 | 17 | 4332 | 3234 | 24 | 1111 | 1123 | 11 | | 17 | 3332 | | 22 | 3334 | | 30 | 5432 | 2456 | 31 | 1122 | 2111 | 11 | 1222 | 2123 | 15 | 2232 | 2123 | 17 | | 18 | 2224 | 5655 | 31 | 1112 | 3223 | 15 | 6655 | | 43 | 2111 | 1103 | 10 | | 1213 | 13 | 3221 | 2221 | 15 | | 19 | 4443 | | 27 | | 2322 | 17 | | 5533 | 33 | 1122 | 1334 | 17 | 3243 | 2345 | 26 | 3243 | 4541 | 26 | | 20 | 3221 | | 16 | 1333 | | 19 | | 2332 | 21 | 4433 | 3343 | 27 | 3323 | 4343 | 25 | 1311 | 2201 | 11 | | | 3 | | | | _ | 21 | 2322 | | 22 | 1232 | | 14 | | 3644 | 26 | 3122 | | 18 | | 4234 | 26 | 1134 | | 18 | | 22 | 3332 | | 25 | 1111 | | 7 | | 9865 | 54 | 1132 | | 13 | l | 2422 | 23 | 3332 | | 19 | | 23 | 3235 | | 27 | 0112 | | 10 | | 5656 | 46 | 3222 | | 18 | İ | 2211 | 15 | 0123 | | 16 | | 24 | 1122 | | 15 | 2332 | | 18 | | 3320 | 22 | 1023 | | 14 | 1 | 6321 | 23 | 2211 | | 11 | | 25 | 2333 | 2543 | 25 | 3332 | 3321 | 20 | 1122 | 1211 | 11 | 3132 | 3223 | 19 | 1333 | 3454 | 26 | 2211 | 2144 | 17 | | | | | | | : | | | | | | | | | | | | | | | 26 | 3434 | 3487 | 36 | 1233 | 1221 | 15 | 1122 | 2213 | 14 | 3433 | 3346 | 29 | 3321 | 2311 | 16 | 2123 | 2332 | 18 | | 27 | 8876 | | 45 | 1333 | | 19 | | 3664 | 32 | 6544 | 4454 | 36 | 1011 | 1110 | 6 | 2332 | 2143 | 20 | | 28 | 1333 | 1 | 27 | 2222 | | 16 | | 4766 | 40 | 2233 | 2322 | 19 | 1122 | 2111 | 11 | 3211 | 2111 | 12 | | 29 | 5555 | | 40 | 1132 | | 14 | 7323 | 4544 | 32 | 3333 | 3334 | 25 | 1021 | 1112 | 9 | 1121 | 1311 | 11 | | 30 | 5444 | | 31 | 0112 | | 17 | | 4453 | 31 | 1132 | 1211 | 12 | 1011 | 2112 | 9 | 0102 | 1110 | 6 | | | • | | | | ! | | | | | | | | | | | | | | | | | | _ | | | | | | | 0122 | 4442 | 33 | | | | 2111 | 2212 | 12 | | 31 | 3112 | 2422 | 17 | 5654 | 4422 | 32 | | | | 0133 | 4445 | 22 | | | | 2111 | 4414 | ** | ^{*} Corresponding figures for the years 1929-1939 are given in an Appendix to the Magnetic and Meteorological Results for 1940. + 55 + 45 + 73 + 71 + 90 + 119 45 + 76 + 115 August October November December Year Winter Equinox Summer September +138 + 83 + 26 +143 + 76 + 09 + 19 + 42 - 11 + 94 - 30 + 92 + 90 + 95 + 99 -118 -218 -286 - 173 + 11 + 60 + 34 - 84 + 73 +124 +131 + 82 - 52 -189 - 294 -03 -01 +24 +39 +60 +78 +92 +77 +38 -31 -97 -120 -104 -82 -72 -51 -25 +11 +17 +30 +29 -242 - 242 -151 -179 - 83 - 117 - 250 - 76 - 34 -282 + 47 + 44 + 43 + 49 + 70 + 62 + 33 - 13 - 85 - 159 - 209 - 205 - 176 - 117 - 66 + 03 + 54 + 85 + 96 + 108 + 92 + 85 + 88 + 86 + 71 + 69 + 62 + 86 + 95 + 53 + 09 - 89 - 194 - 258 - 260 - 225 - 131 - 76 + 08 + 48 + 80 + 88 + 92 + 83 + 104 + 108 + 94 + 58 + 61 + 37 + 45 + 64 + 13 - 46 - 124 - 203 - 252 - 273 - 235 - 200 - 138 - 50 + 51 + 135 + 164 + 185 + 203 + 165 + 126 + 123 + 93 ### TABLE V. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION, INCLINATION AND HORIZONTAL INTENSITY ``` All Davs DECLINATION WEST (Unit 0.01) Month and Universal Time. Hour commencing Season. 1946 3 0 1 2 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 January - 149 -091 -058 -060 -051 -012 -007 +011 -011 +017 +092 + 179 + 306 + 305 + 238 + 167 +058 +071 -043 -121 -168 -221 - 247 - 204 -239 -055 -030 -023 -056 -130 -098 -013 +139 +318 + 375 +312 + 235 +151 +117 +071 -039 -078 - 234 -149 - 241 -135 -116 -077 February -243 -223 - 328 +170 +030 -013 - 120 -207 - 197 - 279 -204 -216 - 166 -205 -282 - 207 -014 +311 +562 +701 +631 +525 +276 March - 290 - 199 +012 + 382 + 769 + 546 - 246 - 446 - 30 1 +672 +310 + 132 +045 -053 -089 - 144 -209 283 - 207 -212 ~ 207 - 204 +648 April -303 -409 -038 -062 -125 - 163 ~ 376 - 398 -456 - 283 + 676 + 492 + 159 +027 -063 -217 + 385 +347 May -137 ~ 151 - 310 - 459 +021 +624 +646 144 ~154 -408 - 537 - 544 -474 - 330 -094 + 220 +516 +644 + 702 + 560 +438 + 265 +138 +050 +010 - 024 -057 112 June -123 - 130 - 238 -318 + 10 1 + 176 +086 +069 +033 -041 -074 + 654 +343 July - 134 -252 -234 - 289 -332 -426 -430 -511 -429 - 295 -027 + 303 +548 +631 +534 +468 + 296 -048 August - 102 - 178 ~ 209 -202 - 260 ~338 -439 - 531 - 506 -318 +012 +399 +674 +760 +675 +095 +006 -017 -031 -074 - 123 - 155 -222 - 146 -236 ~222 -156 -171 -083 - 100 -358 - 408 -252 -017 + 304 +606 +719 + 754 + 583 + 349 +095 -031 -253 September -244 -253 -121 -172 -162 -200 + 334 -186 -155 ~ 196 - 148 - 108 - 143 - 258 - 373 - 310 - 020 +552 +609 +526 + 354 + 178 + 130 +070 -039 October - 163 - 255 - 073 - 192 - 223 - 167 -102 -075 - 105 - 087 -096 - 176 - 170 -017 + 207 +363 +423 +366 + 282 + 196 + 169 + 103 - 004 November -238 -133 -126 -084 -108 -026 - 210 - 208 - 151 + 178 + 105 +076 -057 -086 -065 - 136 -026 +161 +307 + 357 + 326 + 262 -097 -071 December -187 -178 -167 -170 -182 -200 -236 -298 -320 -224 -008 +277 +502 +583 +540 +417 +260 +140 +048 -038 -071 -128 -164 -195 Year -205 -136 -108 -079 -069 -058 -046 -056 -106 -097 +009 +172 +324 +365 +311 +237 +146 +116 +052 -048 Winter -201 -254 -232 -216 -207 -195 -172 -153 -213 -327 -389 -268 -010 +333 +592 +700 +646 +502 +278 +132 +029 -082 -119
-170 Equinox -124 -181 -187 -237 -305 -387 -451 -511 -466 -307 -022 +327 +591 +684 +664 +514 +356 +174 +064 +016 000 -021 -074 -113 Sammer INCLINATION (Unit 0.01) -040 -001 +034 +034 +025 +030 +048 +061 +050 +057 +043 +041 +022 -013 +006 -056 -086 -081 -069 +001 -002 -013 -038 -049 January -025 +016 +007 -003 -019 -016 -029 -020 +024 + 073 +065 +050 +046 +048 +041 +025 -040 -054 -049 - 059 -056 +007 -008 -026 February + 114 +060 +036 +012 +037 +019 -013 -031 -018 -051 -059 - 073 -063 -040 -063 -058 -039 -019 +025 +070 +112 +112 -019 March -056 + 106 -032 -037 -050 -046 -062 -056 -040 +151 + 154 +125 +084 +069 +024 +001 -008 +046 April -060 - 073 ~059 -071 -053 -072 -044 -076 -058 -040 -058 -052 +112 +085 +092 + 10 1 +003 -033 -069 - 085 +056 + 113 -039 -049 -043 -050 -066 -026 +013 +103 May -081 -056 -066 -044 -052 + 138 +136 +109 +109 +088 +041 -013 -062 -061 -081 - 093 -037 -053 +076 +118 -056 -054 -021 +015 June - 123 - 094 -073 -089 -073 + 155 +013 -040 -069 -070 -074 + 143 +117 +087 +046 July -029 -027 -004 -018 -027 +015 +050 +079 +118 +010 +006 -039 -039 -055 -079 -078 - 081 -072 -053 +022 -046 -036 -025 +010 +083 +142 + 172 + 165 + 110 +051 August -063 -063 -041 +078 +094 +054 +001 -009 -004 -020 -041 -078 - 100 +143 +151 +126 -102 -014 +033 +094 + 165 September -113 -- 128 -116 -090 -114 +007 -012 -020 -032 -059 -075 -075 +068 +082 +049 -059 -056 -066 -085 -086 -093 -054 +033 +112 + 136 +130 +119 +097 -062 October -032 -034 -029 -032 -042 - 075 -055 -011 +041 +084 + 102 +084 +077 +084 +062 +028 -009 -023 -008 -034 -038 -059 -069 -019 November +048 +040 +060 +002 -001 -012 -000 +002 -016 +054 -036 - 068 -049 -033 +009 +040 +061 +059 -005 -012 -027 -049 -066 December -040 -042 -045 -049 -059 -051 -033 +000 +046 +086 +111 +103 +088 +065 +052 +026 +003 -016 -027 -040 -037 -041 -052 -049 Year -008 -025 -038 -053 -060 -072 -060 -033 +009 +049 +066 +057 +051 +056 +050 +039 +015 +010 -001 -003 -007 -017 :-020 Winter -067 -072 -080 -048 -012 +050 +108 +141 +137 +121 +080 +070 +040 +022 -004 -017 -025 -029 -053 -074 -067 -079 -073 - 070 Equinox -042 -048 -035 -043 -046 -014 +022 +074 +120 +142 +105 +085 +064 +030 -011 -051 -060 -074 -093 -078 -063 -071 -056 Summer HORIZONTAL INTENSITY (Unit 0.17) 21 + 22 15 39 38 71 + 113 + 108 + 86 + 39 - 19 - 67 - 64 - 42 - 32 - 50 54 January - 133 - 115 - 90 - 70 - 49 + 28 + 47 + 65 + 42 + 44 20 + 14 + 26 + 37 68 + 19 - 53 52 + 65 -22 + 08 + 26 + 44 February 39 + 77 + 44 + 72 + 93 92 - 19 + 72 + 39 95 - 137 + 47 63 + 43 - 48 -211 - 215 -207 -103 23 05 March 59 20 44 + 106 +117 + 1.36 - 83 -245 -149 84 + 19 + 74 + 124 + 124 + + 14 - 198 - 286 - 300 + 81 + 63 + 67 + 86 97 April + 62 55 - 90 + 186 +142 + 99 +110 91 - 188 - 35 -106 - 222 - 220 - 198 + 33 +114 + 190 + 214 - 242 - 224 + 25 + 68 53 + 61 + 89 + 62 May +172 +113 +110 72 + 51 - 203 - 252 - 268 - 239 - 178 68 + 154 + 168 + 20 2 + 212 - 244 - 29 + 69 + 79 + 29 -126 June +159 + 120 +106 +169 +184 +188 + 254 + 197 +148 - 281 - 237 -189 - 100 -248 + 20 21 - 19 + 24 - 46 -107 -147 -202 July +114 + 87 +142 +103 +115 +134 + 161 + 149 - 299 - 239 - 148 - 76 30 + 12 ``` - 91 -111 - 117 88 + 08 - 68 - 75 - 58 + 110 - 33 12 36 + 19 _ +128 + 97 + 25 + 37 - 109 -161 - 122 - 93 -229 -217 -146 -115 + 78 + 76 + 70 + 73 + 68 38 + 19 + 52 + 62 + 55 23 + 92 + 107 + 56 19 + 147 + 106 + 63 + 31 + 27 +129 **£118** + 57 + 11 ### TABLE V. - MEAN DIURNAL INEQUALITIES OF GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY All Days NORTH COMPONENT (Unit 0.17) Month and Universal Time. Hour commencing Season 1946 1 2 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 + 03 - 02 + 08 + 42 + 58 + 71 + 112 + 106 + 86 - 27 - 83 January + 37 - 91 - 70 - 54 - 65 59 - 45 - 43 - 20 - 22 - 00 + 04 + 66 + 72 - 77 February 19 + 31 - 43 - 130 - 126 -118 -104 41 54 + 30 + 71 + 63 00 + 15 50 + 57 March + 03 + 62 + 61 - 17 -116 -207 -241 - **256** -166 - 77 62 25 83 + 95 49 + 23 + 13 + 28 + 73 + 82 + 118 + 110 - 41 - 167 + 104 +103 + 81 + 114 + 94 -283 -331 -301 April 73 + 52 + 44 -218 -145 32 +110 +118 + 139 +113 + 129 58 + 74 + 82 + 66 + 80 + 116 - 148 + 59 + 02 - 62 - 143 - 193 + 80 + 173 Mav - 241 - 252 - 279 - 258 + 187 + 146 + 103 + 120 + 103 + 76 - 74 .hme + 61 + 72 + 90 + 107 + 66 + 21 -156 -218 -255 -261 - 283 -235 - 01 - 132 +111 +141 + 187 + 204 + 114 + 169 + 114 + 81 - 98 -160 -217 - **275** -262 -237 + 43 - 159 - 70 + 01 + 08 - 06 -July + 40 + 54 66 +135 +165 +143 + 244 + 185 +161 +125 - 67 - 92 August +100+105 + 74 + 85 + 86 + 73 + 30 -168 -253 - 296 -273 -208 - 145 - 31 + 105 +132 + 160 +151 +143 +119 74 + 97 - 11 - 50 September + 159 +164 +125 + 86 + 129 + 100 -133 -223 -288 -*306* -282 - 174 - 159 +117 + 93 + 105 +149 + 168 - 17 - 158 October + 99 + 89 +104 +131 +132 +142 +105 + 88 -237 -269 -265 -215 -158 - 100 + 13 + 45 + 65 + 86 49 +121 +131 +123 - 30 + 57 + 54 + 82 + 103 + 106 + 81 + 27 - 59 - 147 - 196 - 178 - 159 - 149 - 100 November + 21 + 45 + 76 + 67 + 73 + 80 + 83 + 57 + 71 + 99 + 95 + 67 + 44 - 21 - 79 - 130 - 142 - 125 - 117 - 81 - 52 + 09 December + 31 + 33 + 50 + 16 + 40 + 24 + 30 + 30 Year + 64 + 59 + 58 + 64 + 86 + 79 + 54 + 15 - 54 - 136 - 205 - 228 - 220 - 169 - 115 - 36 + 29 + 71 + 91 + 110 + 98 + 95 + 102 + 88 Winter + 17 + 12 + 34 + 46 + 66 + 82 + 95 + 82 + 47 - 22 - 96 - 133 - 132 - 115 - 99 - 72 - 35 00 + 12 + 34 + 37 + 42 + 53 + 47 +106 + 90 + 87 + 80 + 101 + 107 + 72 + 39 - 52 - 166 - 254 - 287 - 276 - 193 - 135 - 39 + 21 + 67 + 84 + 98 + 93 + 118 + 125 + 117Equinox + 69 + 77 + 53 + 66 + 91 + 48 - 03 - 75 - 157 - 220 - 267 - 262 - 252 - 199 - 111 + 03 + 100 + 146 + 177 + 199 + 163 + 126 + 129 + 102 Summer WEST COMPONENT (Unit 0.14) - 30 - 60 50 18 + 06 + 16 + 24 + 09 + 16 + 46 + 84 + 152 + 155 + 121 + 81 + 22 + 31 - 31 - 70 - 96 - 121 - 128 - 111 January 26 -- 76 - 25 - 34 - 07 - 01 - 18 - 66 - 61 - 30 + 54 + 154 + 188 + 158 - 13 - 134 - 31 +122 + 83 February + 67 + 44 -118 - 72 -124 -133 -101 -114 - 80 -108 -102 -146 -183 -134 - 43 +129 - 89 + 09 March - 145 + 264 - 93 - 133 +356 +333 +292 +154 + 98 + 29 52 - 98 - 90 - 29 - 10 1 - 216 - 145 Apr11 - 98 -117- 150 - 252 - 104 42 +153 + 304 + 384 + 344 +294 +178 + 91 + 45 - 05 57 96 - 75 - 16 - 71 - 105 - 150 -196 -218 -263 - **275** - 189 - 30 + 168 + 51 + 11 - 61 - 63 +294 - 09 Mav +326 + 329 +268 +204 +117 - 12 - 58 - 72 - 47 - 57 - 96 -115 - 156 + 35 + 06 June -212 -291 - 311 -287 -219 + 76 +234 +313 + 362 +307 +259 + 108 + 170 + 63 -131 -128 -157 -173 -235 -247 - 297 - 62 +121 - 19 +260 +125 July - 67 -263 -199 +331 +334 +303 +211 + 80 + 87 + 78 August - 39 - 80 - 102 - 96 - 128 - 173 - 236 -303 - 307 -218 - 44 +172 + 334 + 392 + 355 +251 + 175 + 70 + 18 - 20 51 - 72 -107 -111 -100 -111 -205 **- 247** - 177 +312 +205 September +114 +285 +365 + 386 - 54 - 30 - 70 - 72 - 59 - 36 - 124 + 46 - 10 - 52 - 73 - 92 - 208 - 89 October - 85 - 197 52 + 137 + 257 + 297 + 261 + 177 + 89 + 74 - 27 - 40 - 47 - 63 - 27 - 93 - **126** - 39 - 92 - 104 - 35 + 80 + 96 + 10 November + 169 + 205 + 175 +137 +102 - 108 64 - 78 - 35 ---+ 66 - 106 December 19 28 +144 + 174 +159 +130 + 89 -92 -87 -82 -82 -85 -96 -120 -161 -185 -146 -40 +113 +238 +291 +276 +223 +148 +89 +42 -02 -22 -54 -72 -92Year Winter -109 -73 -53 -35 -27 -18 -09 -17 -50 -57 -12 +72 +155 +181 +153 +118 +74 +63 +30 -20 -45 -99 -109-109 -103 - 99 - 94 - 77 - 66 -104 -173 -223 -176 - 49 133 +278 + **351** +331 +269 +157 + 84 + 30 - 28 - 50 - 73 - 89 -119 Equinox Summer -57 -86 -93 -118 -152 -204 -248 -294 -283 -206 -58 +134 +281 +341 +345 +282 +212 +121 +66 +43 +28 +10 -19 -45VERTICAL COMPONENT (Unit 0.1 y) - 26 - 38 - 49 - 49 - 39 - 31 - 11 + 28 + 48 + 87 + 84 + 87 + 72 + 53 + 28 07 January 31 -- 46 -46 - 27 -35 25 -- 33 - 05 + - 81 -40 - 55 - 43 53 + 97 + 119 + 113 + 112 + 102 - 67 + 88 February 79 74 82 48 53 33 42 18 -114 - 128 - 108 - 54 - 35 - 13 - 24 - 77 - 57 -103 -111 - 88 - 31 + 80 +206 + 219 +169 +135 +115 March + 104 57 39 - 24 - 34 - 94 - 57 - 77 - 60 - 39 + 04 + 02 - 139 44 + 178 + 158 + 88 59 21 62 April - 52 - 141 - 166 + 129 + 175 + 141 - 79 - 22 - 31 - 30 + 30 - 37 -126 -177 - **219** - 203 - 109 - 09 + 152 + 204 + 203 + 168 +127 + 93 May + 86 - 36 - 05 - 07 - 15 - 29 31 - 61 - 107 - 152 - 189 17 + 73 +142 + 179 + 190 +121 + 68 29 15 June - 180 - 110 + 168 - 49 - 38 - 56 - 76 - 62 + 16 - 62 - 108 + 157 - 82 -116 - 146 - 139 + 107 + 187 + 179 + 165 +131 + 90 + 61 27 July - 11 - 03 + 12 + 11 - 13 -123 50 + 18 + 16 August 22 69 - 175 -165 + 48 + 105 + 132 + 120 + 102 + 76 - 75 -142 -127 - 136 - 135 - 97 +113 - 70 - 155 + 16 +111 September -110 - 119 79 87 -114 + 204 + 260 + 265 + 211 05 - 53 - 95 - 33 - 58 - 09 - 17 + - 17 - 27 -- 26 - 21 - 18 - 07 - 113 - 92 + 79 - 13 October 0 - 20 - 28 02 - 39 + 25 + 75 + 94 + 82 + 77 + 66 + 45 - 20 - 13 - 33 - 48 - 17 - 07 - 08 - 13 - 29 - 28 - 17 - 62 + 48 + 42 + + 47 17 69 57 44 November + 15 + 04 - 03 - 12 - 17 - 13 - 29 - 30 - 34 - 49 - 55 -61 - 61 - 28 + 03 + 30+ 48 + 49 56 December -27 -43 -54 -58 -42 -34 -36 -28 -39 -72 -103 -122 -106 -47 +27 +95 +136 +142 +131 +115 +88 +56 +26- 05 Year Winter - 29 - 32 - 42 - 43 - 26 - 36 - 27 - 28 - 43 - 51 - 51 - 43 - 15 + 25 + 54 + 83 + 74 + 74 + 68 + 58 + 34 + 19 - 07 -52 -75 -93 -88 -73 -56 -42 -22 -35 -78 -113 -131 -104 -28 +66 +154 +187 +174 +146 +125 +92 +58 +19Equinox -09 -25 -37 -45 -11 -20 -29 -34 -54 -96 -142 -182 -172 -98 -11 +79 +139 +176 +173 +151 +114 +75 +41 +22 Summer Summer # TABLE VI. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION, INCLINATION AND HORIZONTAL INTENSITY ``` International Quiet Days DECLINATION WEST (Unit 0.01) Month and Universal Time. Hour commencing Season, 1946 1 3 4 5 6 R 9 10 11 12 13 14 15 17 18 19 20 21 22 23 -106 January -060 -052 -042 -036 -060 -052 -070 -074 -040 +018 +106 +212 + 228 +132 +098 +086 +086 +056 -032 -040 -094 - 146 -114 -025 February -137 -119 ~009 -063 -093 -125 - 169 - 247 +133 +317 -239 + 369 -083 063 +281 + 207 + 103 +081 +045 +029 -059 -065 -073 -028 March -024 - 360 -058 ~082 -094 -150 - 186 - 288 -228 -008 +252 +420 -018 + 462 +314 + 186 +066 +032 +052 -002 -034
-046 -062 April -073 -043 -065 - 109 - 143 -211 - 349 -517 - 537 -411 -151 + 161 + 469 +601 +511 +381 +255 +065 +149 +041 +049 +029 -001 -099 - 173 - 307 - 595 -113 -083 - 129 May - 257 473 605 - 513 + 121 +457 +721 + 761 +685 +473 + 285 + 123 +017 -021 -071 -099 - 105 107 June -071 -075 -083 - 161 -257 -417 -523 - 583 -559 -475 - 195 +147 +463 +633 + 689 +559 +359 +217 +109 +065 +075 +045 +043 003 -039 - 119 -211 -351 -513 - 587 July - 131 - 559 - 519 - 131 +647 -351 + 213 + 521 + 673 +533 + 347 + 225 + 149 +093 +079 +047 +021 039 -116 - 114 - 258 August -084 -150 - 356 - 500 - 600 - 586 - 328 +054 +458 +690 + 710 +596 + 376 +022 +040 +012 -026 038 - 191 - 207 September -173 - 117 -113 -217 -335 -459 - 499 -421 - 155 +253 +555 + 673 +627 +489 +315 + 161 +059 +009 -015 -067 -065 097 - 446 -056 -104 -114 -154 October - 136 - 200 - 184 - 324 -384 -112 +430 -014 +212 + 500 +428 +272 +138 + 160 +112 +070 +046 -044 -098 November -152 - 114 -084 ~050 -052 -078 -086 - 112 - 148 - 198 -082 +112 + 306 +138 + 120 +042 - 120 - 158 + 300 +272 + 230 +092 -004 - 164 - 161 - 189 - 107 - 207 - 115 + 227 December -145 - 115 -071 -017 -033 -081 + 195 -011 +069 + 283 +239 +131 +115 +081 +039 -005 -045 069 Year -101 -097 -092 -105 -155 -237 -303 -370 -390 -295 -068 +214 +444 +516 +452 +333 +198 +124 +062 +030 +008 -032 -056 -078 Winter -135 -102 -059 -030 -046 -078 -093 -128 -165 -171 -061 +105 +266 +295 +231 +183 +115 +101 +068 +020 -027 105 Equinox -090 -092 -103 -111 -126 -195 -264 -397 -461 -361 -107 +220 +469 +559 +470 +332 +194 +126 +046 +026 +020 -025 -082 Summer -077 -098 -114 -174 -293 -440 -554 - 584 -544 -355 -038 +319 +599 +694 +654 +486 +285 +147 +071 +046 +031 +001 -017 -047 INCLINATION (Unit 0.01) +023 +018 +012 -006 -017 -031 -033 -027 -020 Jamiary +011 +050 +061 +025 -010 -020 -021 -014 -023 -020 -006 +001 +006 +011 +010 February -008 +008 +010 -009 -013 -026 -050 ~ 057 -046 -005 +024 +060 +055 +072 +060 +022 +022 +013 +013 -015 -027 -039 -040 -027 +006 +003 +004 +007 +002 -048 March 000 -007 -005 +020 +037 + 0.56 +030 +022 +005 +020 +008 +007 +004 000 -020 -027 - 061 -054 +095 -044 -061 Apr11 -0.20 -019 -010 -010 -016 -022 -006 +015 +050 +083 + 115 + 106 +069 +043 ~021 -046 -051 -055 -060 - 071 -066 -005 -031 -015 000 +006 +070 + 107 May +027 + 142 + 141 +097 +037 -006 -008 -038 ~051 -064 -055 -063 - 088 -076 -063 -039 -033 -021 +002 -012 +031 -068 June -005 -014 -001 +076 + 102 + 122 +086 +067 +068 +020 ~033 -038 -071 -083 -080 - 098 -083 -082 July -029 -012 -010 -007 -010 -002 +031 +069 +120 + 168 + 167 +131 + 100 +040 -031 -087 -072 -053 -087 089 087 089 - 090 067 August -042 -036 -033 -030 -019 -003 +033 +101 + 170 + 193 + 156 +084 +032 +020 +014 -041 -062 -073 - 097 -094 -092 -086 -085 September -031 -012 -007 -008 -032 -042 -020 +018 +068 +128 + 152 +121 +060 +037 +028 +019 +003 -038 -056 -064 -077 -074 -084 - 091 -049 -014 -017 -016 -031 -024 -033 -016 +041 +100 + 152 + 152 +085 +051 +017 +008 -030 -071 -081 - 097 -090 -087 October +125 -079 + 102 + 088 -001 -040 -040 - 049 -020 +045 +025 +003 -004 -011 -021 -048 +086 +065 +043 -031 -041 -041 November -037 -036 -026 -014 +008 +004 -002 -003 -011 -009 -000 +013 +041 +080 +087 +054 +008 -032 -049 - 054 -040 December 000 +026 +022 -004 -049 -044 -040 -013 -008 -007 -010 -016 -015 -004 +019 +053 +089 +105 +088 +060 +039 +018 -011 -020 -037 -048 -057 -060 -059 Year -058 -051 -035 -033 -018 +023 +060 +078 +056 +009 -018 Winter +008 +003 -010 -018 -027 +038 +026 +002 -024 -029 -028 -028 -024 -016 -008 -018 -022 -017 +033 +045 +087 +118 +102 +076 +049 +036 +006 -007 -032 -043 -054 Equinox -024 -010 -007 -064 -068 - 076 -073 -013 -011 +005 +041 +088 +134 +156 +136 +085 +049 +030 -009 -047 -054 -060 -077 -089 -089 -080 -074 -066 Summer HORIZONTAL INTENSITY (Unit 0.17) January 27 + 07 + 21 + 43 45 + 39 + 23 - 27 - 79 -99-51+09+33+33 29 + 41 + 39 + 15 + 07 01 72 + 90 + 70 - 02 - 66 - 124 - 116 - 134 - 94 + 20 - 12 + 10 + 16 - 06 + 42 + 58 + 72 + 70 + 42 + ~ 28 ÓO + 48 February 22 - 78 - 94 - 80 - 44 + 06 March 08 02 + 12 22 + 28 - 20 - 128 42 06 06 20 50 + 56 + 100 + 84 - 72 -234 - 240 + 34 + - 02 -220 - 158 + 82 + 120 + 96 +104 +102 +104 + 114 + 106 April - 47 61 31 15 21 15 81 -147 -217 - 251 -213 - 149 - 87 35 + 81 + 121 + 123 +137 + 165 +143 +117 + 75 + 65 May - 146 + 32 - 200 - 234 - 184 - 162 10 -206 40 + 72 + 136 + 162 + 172 + 138 June 24 38 58 28 24 98 64 - 186 - 292 - 102 +140 + 126 + 104 +156 + 164 +152 +132 + 96 26 48 + 32 96 -268 260 -216 26 42 22 24 July 24 - 112 - 70 - 238 - 306 - 188 + 32 + 80 + 108 22 - 126 +116 + 150 + 144 + 138 + 136 +148 - 282 36 August + 72 66 58 58 50 28 + 12 + 88 +112 + 24 + 30 - 10 - 100 - 102 +124 +132 + 126 +134 + 146 + 78 - 268 -252 - 166 24 September + 56 + 26 64 48 - 206 66 - 280 - 16 +122 + 156 + 144 +140 + 124 - 48 -164 -162 + 04 +134 - 268 - 236 60 October + 76 + 26 36 + 36 60 + 54 64 40 90 + 32 ~ 28 + 64 + 56 + 38 + 18 + 04 + 14 + 70 + 68 - 02 + 16 + 34 62 + 72 + 74 + 70 - 72 -148 - 176 -152 -106 66 58 November - 78 - 40 + 60 + 60 + 08 + 88 + 72 + 10 + 16 00 - 22 - 136 - 150 - 104 - 54 - 10 + 18 + 58 + 84 + 84 December + 02 - 06 10 + 24 + 28 + 20 + 19 + 25 + 38 + 38 + 19 - 18 - 77 - 150 - 196 - 185 - 144 - 94 - 41 + 21 + 45 + 75 + 93 + 105 + 106 + 99 + 93 + 81 Year -11 -01 +15 +27 +45 +52 +50 +26 -45 -107 -137 -106 -71 -42 -08 +10 +38 +48 +53 +53 +50 + 24 Winter + 26 + 23 + 27 + 42 + 50 + 43 + 14 - 60 - 149 - 224 - 217 - 176 - 117 - 72 - 03 + 26 + 69 + 88 + 103 + 112 + 115 + 122 + 115 Equinox ``` + 37 + 45 + 34 + 34 + 34 + 44 + 18 - 38 -117 -197 -256 -255 -201 -150 - 95 - 10 + 73 +100 +118 +143 +160 +153 +134 +117 +105 # TABLE VI. - MEAN DIURNAL INEQUALITIES OF THE GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY International Quiet Days # NORTH COMPONENT (Unit 0.17) ``` Month and Universal Time. Hour commencing Season. 1946 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - 23 - 21 + 11 + 24 January + 45 - 23 + 48 49 + 30 - 80 - 107 - 70 - 12 + 20 + 24 + 33 + 33 + 18 + 11 + 08 + 05 18 - 10 22 - 59 February 03 + 104 + 20 - 166 11 -135 -144 50 83 92 -119 47 63 54 March + 07 07 16 26 39 + 54 + 14 - 126 - 86 - 70 56 -116 -118 + 03 + 25 23 00 55 87 + 104 86 April 56 + 49 - 217 -252 - 260 -211 + 36 + 42 57 - 21 -110 68 46 -132 02 75 + 105 57 + 100 + 113 + 114 + 31 May 35 68 43 49 29 24 90 -167 - 224 -221 - 189 - 152 - 117 - 29 36 +110 + 134 + 165 + 148 + 125 + 84 74 + 39 + 31 + 81 + 25 - 43 -153 - 224 June 17 52 + 66 - 92 -213 -217 - 218 + 12 38 +114 +150 +152 + 163 + 132 +120 +109 - 43 + 45 July 33 36 80 + 79 31 - 136 - 232 - 276 - 276 - 261 - 163 - 34 + + 82 + 143 + 140 + 153 +136 +128 98 - 69 + 76 - 91 August + 79 68 + 71 73 + 61 + 25 -181 -271 - 283 -228 - 174 -135 +114 +144 + 105 + 138 65 + 135 +137 + 149 + 97 - 53 - 163 + 121 +132 September 74 43 40 ΔO + 74 + 33 -123 78 - 164 - 250 - 272 -215 69 17 + 72 + 105 +130 +138 + 153 - 06 -126 - 41 -254 - 09 October + 80 + 35 + 46 + 48 + 73 + 72 + 80 + 69 - 296 - 272 -206 -128 + 44 +110 +126 + 150 +143 +142 +131 - 49 - 28 - 178 - 124 - 53 - 58 -132 - 90 - 79 - 62 + 09 + + 38 + + 78 + + 79 + 45 -- 184 + 01 + 46 November + 18 24 66 81 - 138 + 61 + 63 + 64 + 66 + 52 + 33 - 04 -124 - 154 + 26 + 15 + 06 + 75 + 83 + 47 December 58 + 83 + 72 + 63 + 66 + 36 + 29 + 27 + 35 + 52 + 59 + 47 + 17 - 40 -121 -187 - 202 -183 -141 - 82 - 10 + 26 + 62 + 86 + 101 + 104 + 101 + 97 + 87 Year + 11 - 01 + 04 + 18 + 31 + 52 + 60 + 61 + 41 - 29 - 100 - 145 - 129 - 97 - 63 - 25 - 01 + 28 + 41 + 51 + 55 + 56 + 49 + 34 Winter + 55 + 34 + 32 + 37 + 53 + 68 + 66 + 51 - 17 -114 -212 - 234 -216 -167 -113 - 34 + 08 + 56 + 82 + 99 + 108 + 115 + 124 + 121 Equinox + 44 + 54 + 45 + 50 + 71 + 59 + 14 - 61 - 144 - 220 - 248 - 228 - 203 - 158 - 70 + 28 + 72 + 103 + 135 + 154 + 148 + 132 + 117 + 108 Summer WEST COMPONENT (Unit 0.17) ``` ``` - 21 - 16 25 - 20 - 31 - 36 - 26 - 04 + 40 + 104 + 123 + 76 + 58 + 51 + 53 + 36 January 14 - 20 - - 42 - 54 - 75 - 78 - 95 - 149 03 - 31 42 - 50 -120 - 128 - 45 + 50 + 149 + 174 + 134 + 106 + 51 + 42 + 24 - 22 - February 65 31 - 32 75 23 22 31 - 16 - 195 -135 - 26 +118 + 37 - 24 - 04 + 239 + 160 + 08 March +210 + 98 + 18 01 10 - 53 - 69 -103 -180 -276 -298 -244 -120 + 45 + 51 + 19 - 35 +200 +150 Apr 11 15 30 +212 + 293 +258 + 100 40 + 43 34 - 90 - 160 - 255 -310 -180 - 336 - 342 + 28 May 63 + 218 + 369 + 397 + 371 + 266 + 172 + 86 + 32 17 14 33 43 46 - 36 - 35 - 40 - 79 -127 -217 -283 - 327 + 69 + 17 -323 -287 June -144 + 43 +215 + 310 + 356 +305 +203 + 139 + 86 62 - 66 - 108 - 14 + 138 July 60 - 179 -268 - 317 - 314 - 308 - 233 -119 + 69 +241 +341 + 349 +308 +206 +106 + 77 + 68 49 05 - 70 - 129 -185 -270 -341 - 353 -227 - 19 +212 +349 + 366 + 311 + 92 + 30 + 34 August + 206 - 49 ~ 170 September - 102 - 246 - 283 - 259 + 92 + 267 + 341 + 323 +256 +170 + 10 1 - 51 - 66 - 72 - 31 - 87 - 166 + 17 - 97 - 246 - 233 - 105 +142 + 74 + 95 October + 65 + 189 + 239 + 213 + 80 + - 33 - 54 61 - 42 62 - 36 - 17 - 16 - 29 - 39 - 48 - 86 - 73 - 104 - 118 - 124 - 69 - 84 + 76 + 30 + 137 + 142 + 134 +118 + 74 61 34 09 80 21 November 84 + 11 +103 +142 +121 + 10 2 86 December -49 -49 -46 -51 -76 -120 -158 -200 -221 -183 -70 +83 +212 +259 +234 +181 +113 +79 +49 +34 +22 00 - 14 Year -72 -56 -31 -13 -20 -34 -40 -60 -83 -99 -51 +33 +123 +145 +116 +96 +63 +60 +45 +20 -05 -30 -51 -52 Winter -44 -51 -55 -60 -95 -133 -209 -256 -218 -95 +80 +220 +278 +239 +176 +108 +79 +39 +31 +29 +06 -02 -24 Equinox Summer -35 -45 -55 -87 -149 -231 -302 -331 -324 -232 -64 +136 +295 +354 +347 +271 +168 +98 +65 +52 +42 +24 +11 -07 ``` ### VERTICAL COMPONENT (Unit 0.17) ``` 00 + 02 - 02 - 10 - 06 - 12 - 04 - 16 - 24 - 10 - 20 - 32 - 14 + 08 + 04 + 18 16 January 08 + 12 + 04 - 20 - 70 - 78 - 80 - 62 - - 06 + 12 + 24 + 44 44 February + 10 + 06 06 + 08 10 32 42 24 16 + 18 - 29 + 23 + 27 - 53 -105 - 113 -109 - 85 + 13 37 + 17 + 25 45 47 29 March + 23 + 23 + 23 + 27 47 + 07 - 61 -145 - 191 - 183 - 127 - 53 + 37 + 65 43 + 49 69 21 19 + 61 + 49 65 47 35 April + 41 + 55 07 - 98 - 138 - 14 -218 - 220 + 12 96 + 100 80 38 38 + 42 20 + 34 +
70 + 60 + 56 + 28 -158 50 May + 13 - 45 -121 -181 - 197 -143 + 33 - 79 + 63 + 33 + 91 97 21 41 + 61 + 21 69 61 June - 40 July + 76 + 76 52 + 14 - 16 -100 -152 - 154 - 102 48 + 24 + 44 + 60 + 64 72 + 46 06 - 46 - 34 + 36 - 148 + 46 + 22 + 16 + 62 - 116 - 146 92 + 18 + 38 + 18 + 14 + 18 52 56 August 26 56 + 03 - 35 - 97 -167 - 181 - 109 57 + 11 + 37 73 + 67 + 65 43 37 + 21 + 23 + 25 19 + 31 + 43 37 + 35 + 43 39 September - 33 - 97 - 123 - 117 - 31 + 33 23 + 31 43 + 35 + 37 + 31 - 83 + 21 + 37 + 39 + 31 + 29 + 25 + 25 + 15 October 11 29 - 56 - 47 + 04 - 02 + 08 + 07 - 01 - 07 - 12 - 44 - 39 - 39 - 48 - 57 - 20 - 35 - 02 - 17 + 20 + + + + 20 + 16 + 08 00 - 08 00 + 06 + 08 + 28 20 42 26 - 06 November - 02 - 07 + 17 + 13 + 19 + 19 + 15 + 19 57 December + 19 + 18 + 20 + 25 + 33 + 39 + 32 + 26 + 06 - 42 - 92 - 124 - 127 - 84 - 34 + 10 + 37 + 47 + 50 + 47 + 38 + 28 + 17 Year + 04 + 07 + 04 + 02 + 12 - 02 + 01 - 03 - 24 - 41 - 50 - 54 - 33 - 05 + 10 + 28 + 24 + 27 + 23 + 26 + 17 + 11 + 02 Winter +\ 26\ +\ 24\ +\ 28\ +\ 35\ +\ 34\ +\ 40\ +\ 42\ +\ 43\ +\ 17\ -\ 46\ -111\ -\ 149\ -148\ -\ 101\ -\ 43\ +\ 13\ +\ 37\ +\ 51\ +\ 54\ +\ 52\ +\ 40\ +\ 32\ +\ 22\ +\ 16 Equinox + 23 + 26 + 26 + 35 + 65 + 64 + 56 + 33 + 05 - 57 - 121 - 174 - 180 - 119 - 53 + 08 + 46 + 66 + 68 + 66 + 48 + 35 + 17 + 17 Summer ``` Equinox Summer ### TABLE VII. - MEAN DIURNAL INEQUALITIES OF THE MAGNETIC ELEMENTS DECLINATION, INCLINATION AND HORIZONTAL INTENSITY International Disturbed Days DECLINATION WEST (Unit 0.01) Month and Universal Time. Hour commencing Season, 1946 1 2 3 6 Я 10 11 12 13 14 15 16 17 18 19 20 21 22 23 +152 +294 +268 January - 240 -122 +020 -004 -056 + 170 +246 +232 +262 +514 +356 +348 + 200 - 144 +026 - 296 - 510 -526 - 528 - 342 - 324 +066 -016 +122 +110 February - 378 - 396 -154-236 +038 +172 +082 +566 +692 +608 +564 + 306 + 148 + 194 -086 -180-672 -234402 March -798 +038 -132 -545 - 325 - 355 -075 - 165 +023 + 223 +003 +018 + 495 +855 +888 +1030 +365 + 285 -060 -272 - 590 -480 -540 +110 -418 -470 -410 -002 -166 April -456 -224+010 - 192 +018 + 350 +662 +844 + 992 +850 +812 +302 +002 -032 - 262 -276 -456 -534 ~ 936 + 586 + 532 - 142 Mav -152 - 190- 090 - 174 - 304 - 332 - 268 -096 - 152- 158 -010 + 370 + 548 + 526 + 302 +002 -154 -238 -052 -068 - 286 June - 209 - 153 - 203 - 323 - 527 -625 - 705 -617 -279 +611 -477 +035 +401 +769 +867 +1017 +647 + 333 - 149 + 205 +015 - 257 - 203 - 183 - 577 -605 -563 +439 July - 207 - 845 -755 - 277 - 299 +059 -427 +017 +413 +689 +751 +265 +125 + 307 +091 -235 + 829 +733 +035 +033 August -119 -311- 499 -303-121- 139 - 349 - 563 -487 -327 +005 +341 +681 +843 + 137 -091 + 859 -221 -113 +679 +585 - 111 - 147 -221- 152 - 190 +420 -352 September - 160 - 338 + 206 - 416 -082 + 184 + 276 +738 +788 +1146 - 580 +834 + 308 -054 - 186 -402 -428 - 692 - 576 - **548** - 440 -124 October -510 - 290 - 226 +026 -026 -022 - 166 +158 +494 +672 +**732** +672 +522 + 180 -468 +262 +220 -066 -250 -428 -358 - 223 - 123 - 231 - 165 -071 - 115 -057 +027 -047 -011 +151 +395 - 293 +525 + 567 +463 + 229 + 267 +081 -153 -203November + 127 - **499** - 471 - 145 -023 -049 -019-055 -049 -0.27-087 +015 +241 + 451 + 449 December - 189 -089+ 393 +317 +251 +071 +007 -247 - 181 - 309 -411 - 319-329 -351 -313 -259 -194 -089 -095 -146 -198 -092 +103 +349 +623 +702 +723 +591 +321 +130 -016 -174 -208 -333 -361 -384Year Winter -158 -083 -096 +010 +028 +117 +046 +068 +120 +252 +500 +517 +467 +328 +170 +093 -044 -249 -372 -379 +073 +003 -085 -220 -046 +178 +414 +687 +842 +889 +800 +309 +113 -025 -200 -300 -486 Equinox -421 -461 -394 -351 -179 -534 -603 +012 +381 +681 +748 +813 +646 +484 +184 +021 -075 -051 -064 Summer -387 -344 -307 -349 -316 -470 -420 -298 -177 -169 INCLINATION (Unit 0.01) January -072 -088 -125 -194 -200 -157 -213 -208 -176 -146 -106 +036 +104 +105 +061 +234 +231 +247 +273 +237 +184 +060-084 -011 -046 February +057 -015 - 136 - 147 - 161 - 155 - 151 - 106 +023 + 178 +069 +067 +085 + 171 +152 +080 +069 +081 +055 +023 +028 -098 -119 +062 + 288 +052 ~045 +106 +074 -123 - 156 -312 -230 -066 +096 +175 +011 +072 March -272 - 394 - 165 + 146 +252 + 310 + 146 + 108 - 260 April - 237 -212 - 202 - 378 - 290 -187-099 +012 +090 + 223 + 251 + 221 + 163 + 208 + 141 +097 +019 +074 + 106 +087 +042 +034 + 108 -074 -121 -105 - 202 - 143 +097 + 130 +057 +129 +128 + 197 + 219 + 162 +088 -018 - 109 -149 -000 +017 -069 001 -062 May -132 - 153 + 109 +127 -014 +025 +122 +093 + 160 + 100 +040 +016 -018 -036 -058 -045 +022 +001 -058 +049 -138 -095 000 June - 117 -184 -014 -159 - *368* -079 -117 -148-0.20-111 -065 +154 +119 + 163 + 197 +187 +099 +028 July -077-079 +098 +052 -021+ 20 3 +136 -016 +030 +071 -002 -021 -090 -006 -136 -155 -145 +036 +131 +215 + 297 +241 +134 +058 -036 +033 +048 August - 190 - 216 -124-155 -029 -121 September - 307 +123 + 164 + 234 +244 + 278 + 290 + 299 +122 + 347 +173 +028 +110 +097 +085 +062 -089 - 390 - 540 -508 - 297 - 385 -039 +070 +113 +045 +026 -159 +098 + 136 + 135 + 117 + 058 +096 +062 +057 +089 -074 -055 - 109 -091- 137 - 160 -131 October -076 - 108 -028 +080 +123 +103 +181 + 260 +244 +163 +141 +071 +022 -041 -029 -056 -070 -064 -088 -094 - 160 - 191 -185 -160 -124 November - 119 - 143 -113 +001 +063 +120 +114 +105 +129 + 130 +034 +051 +020 +073 +027 +042 -016 -078 -087 -092 -055 -063 December -180 -147 -083 -037 +028 +075 +150 +153 +163 +121 +128 +099 +062 +038 +041 +021 +038 +004 -047 -046 -13.1 -147 -160 -147 Year -049 -064 +084 +060 +022 -173 -147 -110 -052 +038 +073 +099 +121 +149 +190 +151 +123 +119 Winter -037 -061 - 105 -126 -152 -156 -244 -254 -299 -230 -274 -247 -091 -033 +067 +138 +226 +223 +242 +142 +181 +082 +082 +066 +084 +095 +092 +013-014 -048 Equinox -114 -037 -023 -078 -025 -112 -125 -075 -087 -114 -040 +014 +069 +127 +139 +188 +162 +148 +101 +055 +024 -047 -074 -080 Summer HORIZONTAL INTENSITY (Unit 0.17) + 74 +116 +206 +222 +178 +262 +266 +218 +180 +124 - 74 -152 -138 - 54 -278 -198 -242 -282 -258 -214 - 74 + 96 - 24 + 56 January - 81 + 51 + 67 + 35 - 67 - **289** - 87 - 75 - 81 - 155 51 + 75 + 09 + 161 + 101 - 269 -157 + 47+ 75 +119 +155 +159 +115 + 33 February 18 -143 - 143 - 281 - 473 -401 - 426 -118 + 164+ 537 +232 +139 05 + 309 - 18 +304 -116 + 202 +192 +114 + 19 -151 March +223 + 91 + 11 - 41 -353 - 97 -337 -171 11 51 +211 + 77 -403 + 29 +143 +315 -219 - 417 -157 + 407 April +163 +199 +127 + 247 + 30 +220 + 84 ~ 38 +172 + 80 -212 -260 - 274 - 364 -344 ~208 +172 + 344 + 386 - 74 - 146 -268+210 +124 +126 + 96 May + 78 + 39 -273 -259 - 329 -181 +101 +201 +243 +253 +203 + 53 + 87 - 81 - 49 -237 - 287 - 07 - 10 3 June +133 +149 +131 + 93 - 19 +157 + 739 +381 +147 + 285 - 31 + 81 +217 +315 +461 +429 + 09 - 243 -253 -303 -295 - 157 -119 -405 - 513 - 319 July - 277 -339 - 26 +114 +108 +164 - 256 - 36 + 172 +104 + 76 + 18 + 28 -424 +132 -104 - 226 - 360 - 496 96 August + 252 + 268 + 120 +170 + 144 + 148 +138 + 162 -394 + 22 - 190 + 158+212 +100 + 34 + 34 + 94 +400 +130 +264 +120 -512 -466 -480 -454 -482 -472 + 644 + 460 September +488 - 62 - 02 + 10 +120 + 44 - 64 - 16 - 14 + 24 - **220** - 182 - 122 - 26 + 76 + 174 -212 -188 + 208 + 194 + 160 - 148 +104 + 76 October + 70 -137 - 43 + 13 + 89 + 55 + 83 + 145 - 157 + 145 - 09 -171 -263 -**347** -295 - 165 - 217 + 253 + 237 +197 +111 +113 +209 November + 91 + 81 - 01 - 37 - 145 - **211** - 175 - 139 - 157 +111 + 165 + 189 +139 + 10 3 + 47 - 37 -133 + 79 + 87 December + 83 + 99 +125 +126 +121 + 86 +156 +120 + 29 - 19 - 98 -165 -274 -270 -258 -147 - 97 + 11 + 94 +116 + 82 + 84 + 29 + 38 + 81 + 32 Year + 24 + 90 +118 +165 +188 +212 +179 +125 + 38 - 92 -128 -152 -164 -174 -203 -112 - 78 - 82 - 45 - 31 - 06 + 75 + 64 Winter + 258 +232 +242 +124 +222 +209 + 02 - 53 -177 -276 - 393 -370 -344 -112 - 76 +175 +178 +140 + 43 - 09 - 38 + 24 + 16 - 16 +128 +122 + 30 + 15 + 82 - 38 -126 -185 -242 -258 - 339 -313 -277 -163 - 40 + 61 +215 +288 +286 +307 +156 + 95 +153 + 47 # TABLE VII. - MEAN DIURNAL INEQUALITIES OF GEOGRAPHICAL COMPONENTS OF MAGNETIC INTENSITY International Disturbed Days ### NORTH COMPONENT (Unit 0.17) ``` Month and Universal Time. Hour Commencing Season. 1946 0 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 January + 77 + 83 +113 +204 +224 +160 + 244 +235 +190 +155 +101 - 97 - 197 - 169 - 85 - 293 -182 -241 -251 - 207 - 163 -24 + 126 + 06 February - 181 -120 +139 + 83 + 88 +149 +151 + 98 + 34 - 293 - 96 -126 - 144 -132 + 22 + 52 - 77 - 209 + 17 + 58 + 91 71 + 180 +137 +355 + 56 +330 March -82 + 206 +205 +110 + 15 -137 -277 - 468 -416 -466 - 195 + 80 +434 +195 +111 - 00 - 28 -116 + - 97 +131 April +204 +235 +163 +443 +264 +310 +226 + 76 - 80 -218 - 260 - 430 - 472 -410 - 233 - 46 + 113 + 220 + 93 - 01 - 262 May + 85 + 94 +133 +111 +235 - 129 - 263 +153 - 48 - 200 - 242 - 304 - 413 - 388 + 395 + 192 - 256 - 86 + 142 34 + 223 + 109 92 June +162 +145 +166 +159 + 17 - 45 -243 - 286 +140 + 39 - 190 -292 - 395 - 259 - 10 1 + 40 + 142 + 209 + 231 + 199 + 55 +110 66 - 61 July + 87 - 300 -329 - 203 - 281 - 92 -372 - 511 - 259 - 188 -210 -218 -100 + 03 +146 +270 + 430 + 303 +412 +726 + 137 +152 August +260 +293 +164 +162 - 51 -178 + 196 +153 +159 -325 - 490 +116 -450 -315 -173 - 105 - 98 + 83 +123 +127 +172 + 31 + 48 September +496 + 666 +481 +142 +278 + 80 -524 -435 -427 -440 - 492 - 491 - 457 - 51 - 293 + 79 + 366 + 214 +116 + 71 +132 +200 + 213 October +116 +129 +126 +116 +193 +203 +194 +160 + 39 -135 -224 -231 -279 -247 - 182 - 74 - 87 - 36 - 30 - 55 + 21 + 53 + 158 + 76 +111 +101 +125 +123 +213 +260 +239 +192 +147 November - 08 - 177 - 251 - 217 - 312 - 385 -312 -179 - 147 35 + 27 + 107 + 81 + 128 + 187 December + 99 +111 + 94 + 82 +111 +168 +191 +140 +104 + 54 - 08 - 38 - 153 - 244 - 214 -179 -184 -166 - 37 + 36 - 55 + 16 - 03 + 64 +154 +157 +148 +108 +172 +126 + 38 - 06 - 78 -154 -280 -299 -311 -209 -162 - 44 + 63 +103 + 83 + 99 + 48 + 68 +113 + 67 Year Winter + 27 + 44 + 104 + 124 + 172 + 184 + 206 + 166 + 119 + 31 - 102 - 149 - 196 - 210 - 215 - 230 - 126 - 86 - 77 - 22 - 05 + 36 + 108 +293 +272 +275 +155 +235 +200 + 02 - 44 -153 -268
-404 -403 -403 -188 -157 + 98 +147 +127 + 45 + 10 - 10 + 69 + 65 Equinox Summer +142 +155 + 65 + 46 +109 - 05 - 95 -139 -200 -227 -335 -344 -335 -230 -115 + 01 +168 +267 +280 +310 +158 +100 +167 + 62 ``` ### WEST COMPONENT (Unit 0.17) ``` January -118 - 52 + 30 + 33 + 08 + 121 + 126 + 202 + 180 + 162 + 145 + 127 + 248 + 166 + 176 + 59 - 110 - 27 - 206 - 316 - 317 - 294 - 166 - 177 - 531 - 228 - 203 - 69 February + 62 +111 - 03 + 90 - 106 + 47 + 54 - 05 + 44 +289 +355 +298 +287 +172 +109 - 37 -347 - 97 - 197 -428 -121 -209 - 96 - 46 - 71 + 51 March - 238 - 55 + 32 + 23 +175 06 +191 +435 +501 +640 +234 + 56 - 169 -314 -280 -274 - 189 - 197 - 77 - 28 +118 +282 + 59 April -223 - 174 - 66 + 12 - 105 +392 +499 + 426 +438 +185 + 39 02 - 138 - 154 - 245 - 293 - 559 - 16 - 62 - 23 May - 88 - 27 - 76 -126 -156 -155 - 87 -125 -109 - 51 +151 +250 +225 +257 +274 +190 + 60 + 01 -138 - 87 - 59 - 83 -150 - 384 - 70 June -195 - 30 -265 -336 -346 -294 + 170 +354 +431 + 541 + 362 + 360 +219 + 152 + 43 - 91 -122 -122 - 56 -377 - 77 + 44 -103 -449 -449 -365 -168 -228 +144 +228 + 74 July -271 +170 +340 +395 + 455 + 427 +288 +220 +140 August - 21 -120 - 245 -133 -165 - 318 -298 -235 - 82 +110 +319 +433 + 453 + 356 +341 - 36 - 40 - 75 + 91 32 - 113 - 78 - 59 - 208 -212 - 345 -279 September + 244 + 23 -267 - 303 -121 + 16 + 67 +326 +424 + 578 +471 +232 + 07 - 303 82 - 279 + 16 - 84 October -260 -137 -222 - 91 + 49 + 19 - 91 + 48 +231 +321 +359 +337 +274 +129 +115 + 94 - 46 - 134 - 248 - 208 - - 183 -105 - 69 - 46 02 - 18 + 10 + 48 - 00 - 07 + 52 + 174 + 44 - - 79 +251 + 257 + 188 + 72 + 116 - 93 - 147 - 252 - 226 November - 108 50 -60 - 33 - 13 + 09 - 01 + 06 + 09 + 05 - 38 + 02 + 106 + 174 + 210 + 216 + 142 + 109 + 38 - 03 - 129 - 109 - 167 - 226 - 164 December - 87 Year -154 -166 -146 -124 - 77 - 27 - 46 - 82 -122 - 77 + 08 +140 +288 +349 +369 +317 +187 + 89 + 06 - 79 -106 -171 -178 - 199 Winter -211 -111 - 68 - 24 - 23 + 37 + 51 .+ 93 + 46 + 43 + 49 +113 +241 +247 +220 +140 + 72 + 36 - 38 -140 -152 -239 -185 -181 -206 -169 -166 - 58 + 74 + 02 - 54 -147 - 72 + 28 +158 +308 +429 +461 +456 +195 + 84 - 06 -108 -166 -255 -282 -324 Equinox - 70 -179 -201 -181 -150 -192 -190 -282 -265 -203 - 51 +150 +316 +371 +427 +355 +295 +148 + 60 + 12 - 01 - 18 - 68 - 82 Summer ``` # VERTICAL COMPONENT (Unit 0.17) ``` -119 -133 -163 -193 -177 -127 -129 -101 -103 -85 -79 -49 +07 +41 +87 +161 +339 +291 +287 +221 +137 +35 -65 -93 January + 396 + 394 + 362 + 308 + 252 -178 -152 -102 - 84 - 76 - 56 + 38 + 58 + 106 + 232 + 338 +118 - 178 -430 -418 -360 -334 -280 36 February + 560 + 290 + 274 - 183 -135 -148 -105 + 82 +232 +907 + 577 + 360 -658 - 348 - 223 +1095 March - 223 - 583 840 610 60 47 83 236 -156 -162 -184 -198 -166 -100 - 16 +166 + 668 + 586 -360 - 326 - 270 +352 +554 +468 + 390 +204 +122 - 446 -440 -270 -406 April + 76 + 382 + 186 - 44 -142 -178 -194 -166 - 42 + 268 +128 - 156 + 214 + 422 38 - 212 - 206 -176 -156 +340 May - 48 - 76 -126 - 138 - 18 + 92 -114 -152 -172 -212 -230 -280 -210 - 76 +122 +292 +404 + 440 + 388 +316 +202 00 - 70 -150 -182 -174 -114 - 94 June + 447 +279 +141 -351 -409 -493 -329 - 95 - 23 - 25 - 37 -25 + 25 + 137 + 233 + 329 +437 +445 + 375 +275 July - 169 -253 -305 - 609 -117 - 73 - 73 - 125 - 149 - 141 - 135 - 195 - 193 - 95 -125 -153 -131 - 23 + 45 + 161 + 277 + 357 +341 +261 +181 + 69 + 21 + 09 August - 369 +117 +473 +757 +967 +1027 +871 + 569 +373 +295 +117 + 15 - 41 -725 - 719 -781 -765 -515 - 309 -211 -159 - 93 September - 215 -687 - 85 - 93 - 69 - 65 - 103 - 81 - 81 - 101 - 101 - 97 - 43 + 45 +121 +143 + 185 +175 +165 +163 +153 +115 + 23 -101 -135 - 139 October - 38 - 32 - 34 - 44 - 62 - 70 - 74 - 90 - 96 - 92 - 116 - 108 - 25 - 37 - 45 - 49 - 41 - 27 - 55 - 69 - 81 - 79 - 83 - 78 - 40 + 14 + 92 + 160 + 198 +170 +146 +106 + 66 + 28 00 November - 37 - 75 - 81 - 79 - 83 - 89 - 13 + 43 + 81 + 115 + 115 + 91 + 101 + 83 + 61 + 47 + 27 - 25 December -162 -215 -272 -310 -259 -231 -221 -172 -130 -124 -118 - 99 - 37 + 79 +219 +367 +432 +403 +334 +270 +201 +101 + 26 - 84 Year -152 -156 -153 -160 -142 -102 -107 -92 -90 -89 -82 -45 -13 +37 +114 +185 +262 +243 +222 +184 +135 +61 +05 -71 Winter -245 -339 -473 -505 -431 -366 -312 -235 -177 -165 -133 - 88 + 35 +229 +448 +690 +697 +552 +391 +304 +232 +100 - 11 -202 Equinox - 90 -151 -191 -266 -203 -226 -244 -189 -124 -118 -140 -166 -133 - 29 + 95 +225 +338 +414 +389 +323 +236 +141 + 85 + 22 Summer ``` TABLE VIII. - HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF MAGNETIC INTENSITY Values of a_n , b_n in the series Σ (a_n cos nt + b_n sin nt), t being reckoned in hours from 0^h U.T. and converted into arc at the rate of 15° to each hour. | Month
and | | | NOR' | TH CO | MPONE | NT | | | | | WE | ST COM | PONEN | T | | | | | VERT | ICAL | COMPO | NENT | | | |--|---|----------------|---|---|--|--|--|--|--|--|---|---|---|---|--|--|--|---|---|--|--|---
--|--| | Season | a 1 | b ₁ | a 2 | b 2 | a 3 | <i>b</i> 3 | a 4 | b4 | a 1 | b 1 | a 2 | b 2 | a 3 | b 3 | a 4 | b 4 | a ₁ | b 1 | a_2 | b 2 | a ₃ | b 3 | a 4 | b4 | | | | | | | | | | | | | All D | a y s | | | | | | | | | | | | | | | Y | Υ | Y | Y | | Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Year Winter Equinox Summer | + 6.5
+12.9
+17.2
+17.5
+17.5
+15.7
+17.5
+20.1
+16.9
+ 7.3
+13.6
+ 6.9
+16.8 | + 1.0 | - 3.0
- 5.4
- 7.4
-11.6
-10.6
-11.0
- 8.7
- 8.2
- 7.2
- 8.4
- 6.8
- 5.1
- 7.8
- 5.1
- 7.9 | -2.4
-1.2
-0.2
+0.6
+1.3
+0.6
+2.7
+3.4
-1.6
-3.12
-0.4
-2.6
+0.1 | +1.3
+4.0
+3.3
+0.6
+0.1
+1.2
+0.1
+3.0
+2.8
+1.7
+1.2
+1.8
+1.6
+3.3 | -1.7
-2.6
-1.0
+1.7
+0.6
-1.1
-2.2
-0.2
-2.9
-1.1
-0.0
-1.0
-1.1 | -0.7
-1.1
-0.7
+1.4
+0.5
-0.1
+1.5
+0.4
+0.3
+0.2
-0.2
+0.0 | +0.3
-0.1
+1.1
-1.6
-1.2
-0.8
+0.5
+0.5
+0.3
+0.3 | -9.0
-14.0
-13.1
-10.4
-8.4
-9.0
-10.0
-13.2
-9.7
-9.3
-8.4
-10.3 | + 0. 4 - 4. 8 - 13. 3 - 15. 5 - 18. 1 - 22. 5 - 22. 3 - 18. 5 - 13. 0 - 10. 1 - 7. 0 - 5. 5 - 12. 5 - 4. 2 - 13. 0 - 20. 4 | -1.56
+2.56
+4.55
+7.57
+5.77
+3.89
-1.9
+2.29
+3.75
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+3.57
+ | + 5.8
+10.8
+12.6
+11.5
+12.5
+ 8.9
+12.2
+14.5
+ 9.9
+ 6.6
+ 5.5
+ 9.6
+ 5.6
+ 12.0 | -1.9 -2.7 -4.2 -3.5 -2.4 -3.5 -2.3 -2.5 -2.5 -2.7 -2.8 -1.3 | -2.64
-5.7-3.30
-5.84
-7.46
-7.46
-2.33
-2.00 | +1.0
+0.6
+1.6
+1.2
-0.3
-0.0
+1.5
+1.1
+3.6
-1.9
+1.1
+1.0
+1.7 | +1.87
+1.64
+0.44
+0.37
-0.22
+2.12
+0.3
+1.8
+1.8 | -1. 1
-1. 0
+2. 4
+8. 6
+4. 5
+5. 8
-0. 4
+1. 6
+3. 0
+2. 7
+1. 0
+0. 8 | - 8.8
-12.1
- 9.6
-10.4
-11.9
- 4.8
-17.6
- 5.2
- 4.1
- 3.8
- 8.7 | - 2.80
- 7.2
- 7.2
- 9.4
- 9.3
- 6.8
- 6.9
- 2.3
- 1.9
- 6.1
- 2.7
- 8.3 | -1. 1
-0. 3
+0. 2
-0. 5
-0. 5
-0. 2
+0. 1
+0. 1
+0. 1
+0. 3
-0. 2
-0. 3 | +0.9
+4.4
+3.1
+2.9
+2.2
+2.3
+2.7
+4.0
+1.0
+2.3
+0.4 | -0. 2
-1. 1
-0. 5
+1. 0
+0. 7
+0. 6
+0. 3
-0. 1
+0. 1
+0. 1
-0. 5 | -0.8
-1.3
-1.2
-0.6
-0.1
-0.7
-0.9
-1.5
-0.3
-0.5
-0.5 |
-0.2
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6 | | | | | | | | | | | IN | TERNAT | IONAL | QUIET | DAYS | | | | | | | | | | | | | Year
Winter
Equinox
Summer | + 5.9
+13.1 | + 1.2
+ 0.0 | - 6.9
- 5.3
- 7.3
- 8.0 | -2.0
-1.6 | +2. 1
+3. 0 | -0.8
-1.6 | -0.8
-0.1 | +0.6
+0.7 | - 5. 4
- 4. 6
- 4. 7
- 7. 1 | - 5.3
-12.9 | ¬0.2
+4.5 | + 5.2
+10.1 | -2. 3
-4. 3 | -2. 1
-5. 1 | +0.8
+1.9 | +1. 4
+1. 5 | +2. 1
+6. 0 | - 1.4
- 0.8 | - 5.0
- 2.0
- 5.0
- 7.3 | -0. 1
-0. 1 | +0.8
+2.6 | -0.0
-0.0 | -0.5
-1.0 | -0.1
+0.3 | | | | | | | | | | | INTER | RNATIO | NAL DI | STURBE | D DAY | rs | | | | | | | | | | | | Year
Winter
Equinox
Summer | +11.1
+23.2 | +11.2
- 5.7 | - 9.5
- 5.8
-10.7
-11.9 | -6. 1
+8. 8 | +1.5
+6.3 | -2. 3
-1. 3 | +0.3
-0.8 | -1. 3
-2. 1 | -18.9
-17.5
-24.8
-14.3 | + 1. 2
-12. 2 | -1. 2
-1. 6 | + 7.0
+13.7 | -0.3
-0.6 | -2.6
-8.3 | +0.5
+1.3 | +2. 1
+1. 3 | -4.0
-17.1 | -16.6
-45.2 | - 8.7
- 7.0
-10.3
- 8.9 | +0.2
+3.2 | +0. 7
+8. 9 | +0. 2
-2. 3 | -0.2
-2.8 | -0.6
-1.8 | # TABLE IX. - HARMONIC COMPONENTS OF THE DIURNAL INEQUALITY OF MAGNETIC INTENSITY Values of c_n , α_n in the series Σ c_n sin $(nT + \alpha_n)$, T being reckoned in hours from midnight, Abinger Local Mean Time, and converted into arc at the rate of 15° to each hour. New phase-angles expressing the inequalities relative to Local Apparent Time may be obtained from the tabulated angles by applying corrections α , 2α , 3α , 4α respectively, where α has the following values:- | | | Janu
Febr
Marc | uary +3 | 2°19′
3 28
2 12 | | Apr
May
Jun | 7 70 | 51
5 | | July
Augus
Septe | t +0 | 1°22′
9 59
1 12 | | Nov | ober
ember
ember | | | | Winter
Equinox
Summer | +0 °1
: ¬0 3
+0 2 | 6 | | | | |---|---|--|---|---|--|---|--|---|--|--|--|--|--|--|--|---|---|---|--|--|--|--|--|---------------------------------| | Month
and | | | NOI | RTH CC | MPONE | VT | | | | | WE | ST CO | MPONEN | T | | | | | VERT | ICAL | COMPO | ENT | | | | Season | C 1 | α1 | C 2 | α2 | СЗ | α_3 | C 4 | α.4 | C 1 | α_1 | C 2 | α 2 | СЗ | α 3 | C 4 | α4 | C 1 | α1 | C 2 | α2 | С 3 | α3 | Ċ.4 | α. | | | | | | | | | | | | | All Da | 7 S | | | | | | *** | | | | | | | | 1946 | Y | 0 | Y | o | Y | 0 | Y | 0 | Y | .о | Y | 0 | Y | ۰ | Y | 0 | Y | ٥ | Y | 0 | Y | 0 | Y | 0 | | Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Year Winter Equinox | 6. 6
6. 5
12. 9
17. 2
18. 7
19. 5
18. 4
20. 3
17. 3
11. 3
8. 5
13. 7 | 24
82
96
95
109
111
127
109
99
78
75
60
97 | 4.0
5.9
7.5
11.6
10.6
11.0
8.7
8.6
8.6
7.5
5.6
7.8 | 231
247
262
270
274
277
275
289
296
260
246
247
268
268
271 | 2. 4
2. 2
4. 8
3. 4
1. 6
2. 2
3. 0
4. 0
2. 1
1. 2
2. 0
1. 9
3. 7 | 127
144
124
108
21
15
133
178
96
137
124
92
120 | 0.8
0.8
1.1
1.3
2.1
1.0
1.4
1.6
0.9
0.6
0.5
0.2 | 281
292
268
330
141
157
185
51
119
27
42
44
107
328
8 | 9, 9
10, 2
19, 3
20, 3
20, 9
24, 0
24, 1
21, 1
18, 5
14, 0
11, 6
10, 1
16, 2 | 273
242
227
221
210
201
202
209
226
224
237
220
246
224 | 4. 5
5. 9
11. 1
13. 6
13. 6
11. 1
15. 3
15. 0
10. 3
6. 7
5. 5
10. 2 | 9
347
15
20
33
25
38
38
16
17
350
352
20 | 1. 1
3. 0
7. 1
4. 9
3. 8
5. 7
7. 8
6. 8
2. 9
5. 0
2. 6
6. 6 | 222
217
207
218
228
220
213
223
199
216
229
218
216
221
210
221 | 1.7
2.0
1.8
2.2
1.2
0.5
0.3
1.7
1.1
4.2
2.6
1.9
1.6
2.12
0.7 | 29
30
22
47
72
328
354
68
104
61
39
280
45
31
555 | 8. 8
12. 1
9. 9
13. 3
11. 3
17. 6
17. 6
5. 7
4. 4
4. 8
9. 1 | 160
130
182
155
159
142
163
170
176 | 4. 1
7. 2
9. 4
9. 3
6. 9
5. 1
1. 9
6. 1
2. 7 | 268
272
272
268
260
268
273
272
274
280
269
267 | 0.6
1.0
4.5
3.1
2.4
2.8
4.2
2.1
1.0
2.3
0.9
3.4 | 71
105
105
101
73
77
79
88
105
95
87
89
93
99
76 | 1. 4
1. 2
0. 6
0. 2
1. 2
0. 7
1. 3
1. 5
0. 8
0. 4
0. 8 | 261
249
283
255
203 | | Summer | 18.7 | 114 | 9.7 | 278 | 0.6 | 115 | 1.0 | 136 | 1 22. 4 | 205 | 13.3
IONAL G | 33 | 5.6 | 221 | 0.7 | >> | f 11. 1 | 146 | 8. 2 | 267 | 2. / | 76 | 0. 6 | 250 | | Year | 11.3 | 97 | 6.9 | 267 | 2. 3 | 127 | 0.4 | 338 | 1 14. 1 | 203 | 10.3 | 27 | 5.4 | 227 | 1. 5 | 40 | 5.2 | 102 | 5.0 | 268 | 1.9 | 93 | 0.8 | 274 | | Winter
Equinox
Summer | 6.0
13.1
15.5 |
79
90
109 | 5.6
7.5
8.3 | 250
258
287 | 2. 3
3. 4
1. 7 | 112
119
164 | 1.0
0.7
0.5 | 308
351
97 | 7. 0
13. 7
22. 0 | 221
200
199 | 5. 2
11. 0
15. 5 | 359
25
39 | 3. 1
6. 7
6. 3 | 228
221
232 | 1.6
2.4
0.9 | 31
53
16 | 2. 5
6. 1
7. 2 | | 5.0 | 269
269
269 | 0.8
2.6
2.4 | 94
91
93 | 1. 1 | 262
288
261 | | | | | | | | | | | INTER | OITAM | NAL DIS | TURBE | | | | | | | | | | | | | | Year
Winter
Equinox
Summer | 19. 1
15. 8
23. 9
27. 3 | 103
45
104
131 | 9.5
8.4
13.9
11.9 | 276
224
310
272 | 3. 1
2. 7
6. 4
2. 5 | 101
148
103
39 | 1. 7
1. 4
2. 3
1. 8 | 173
168
201
147 | 22. 3
17. 6
27. 6
27. 7 | 239
274
244
212 | 10.7
7.1
13.8
12.3 | 5
351
354
26 | 6. 1
2. 6
8. 4
7. 3 | 189
188
185
194 | 1. 4
2. 2
1. 8
1. 9 | 55
15
47
121 | 30.4
17.1
48.3
27.4 | 194
201 | 10.8 | | 4.4
0.7
9.2
4.9 | 85
77
106
46 | 0.6
3.3 | 223
202
238
193 | | Month
and | | 11 Day | 'S | Qu | iet Da | . y s | Dist | urbed | Days | A | 11 Day | y s | Qu | ilet Da | ays | Dis | turbed | Days | |------------------|--------|--------|-------|--------|--------|--------------|--------|-------|--------|-------|--------|------------|-------|---------|------|--------|--------|------| | Season | D | I | H | ם | I | Н | D | I | Н | х | Y | Z | х | Y | Z | х | Y | Z | | | , | | Y | , | , | Y | , | , | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | | January | 5. 53 | 1. 47 | 18.0 | 3.74 | 0.94 | 14. 4 | 10.42 | 4.86 | 54.8 | 20.3 | 28. 3 | 13.6 | 15.6 | 20.2 | 5. 2 | 53.7 | 56. 5 | 53 | | ebruary | 6. 16 | 1. 32 | 20.1 | 6. 16 | 1. 29 | 22.4 | 16.02 | 3. 39 | 45.0 | 20. 2 | 32. 2 | 20.1 | 27.0 | 30. 2 | 12.4 | 47.3 | 88.6 | 82 | | farch | 10.29 | 1.87 | 31.5 | 8. 22 | 1. 17 | 22.8 | 18. 28 | 7.04 | 101.0 | 37.4 | 53.9 | 34.7 | 23.0 | 43.4 | | 90.2 | 106.8 | 193 | | pril | 12. 15 | 2.27 | 43.6 | 11.38 | 1.86 | 36.0 | 19. 28 | 6. 29 | 82. 4 | 47.0 | 63.6 | 34. 4 | 37.4 | 59. 1 | 26.0 | 91.5 | 105.8 | 111 | | lay | 11.35 | 1.98 | 45.6 | 13.66 | 2.30 | 41.6 | 9. 18 | 4.21 | 75.0 | 48.8 | 60.4 | 42.3 | 38.9 | 73.9 | 32.0 | 80.8 | 43.0 | 63 | | une | 12 46 | 2.31 | 48.0 | 12.72 | 2.20 | 40.6 | 17.22 | 3. 13 | 58. 2 | 48.7. | 67. 3 | 37.9 | 38.7 | 68.3 | 29.4 | 62.6 | 92.5 | 72 | | uly | 11.65 | 2. 78 | 53.5 | 12.60 | 2. 58 | 45.6 | 16.74 | 5.65 | 125. 2 | 51.9 | 63. 1 | 33.3 | 42.9 | 66.6 | 23.0 | 123. 7 | 90.4 | 10 | | ugust | 12.91 | 2.53 | 46.0 | 13. 10 | 2.90 | 45.6 | 14. 22 | 5. 13 | 76.4 | 45.6 | 69. 9 | 30.7 | 43. 2 | 71.9 | 21.0 | 78.3 | 77. 1 | 55 | | eptember | 11.62 | 2.93 | 44. 1 | 11.72 | 2. 43 | 41.4 | 18.38 | 8. 87 | 115.6 | 47.4 | 63. 3 | 42.0 | 42.5 | 62.4 | 25.4 | 115.8 | 92. 3 | 180 | | ctober | 9.82 | 2. 29 | 37 3 | 9.46 | 2.49 | 43.6 | 12.80 | 2. 96 | 42.8 | 41.1 | 50.5 | 20.7 | 44.6 | 48,5 | 16.6 | 48. 2 | 63.8 | 32 | | ovember | 6. 78 | 1.77 | 27.8 | 5.04 | 1.51 | 25.0 | 10.66 | 4.51 | 60.0 | 30.2 | 33. 1 | 13. 1 | 26.5 | 26.0 | 9.8 | 64.5 | 50.9 | 31 | | ecember | 5.67 | 1. 49 | 20.9 | 4. 90 | 1. 41 | 23.8 | 8.62 | 2. 73 | 40.0 | 24.1 | 28. 4 | 11.7 | 23.7 | 26.6 | 8.6 | 43.5 | 44.2 | 20 | | lean for
Year | 9. 70 | 2.08 | 36. 4 | 9. 39 | 1. 92 | 33.6 | 14. 32 | 4. 90 | 73.0 | 38.6 | 51. 2 | 27.9 | 33.7 | 49.8 | 18.8 | 75.0 | 76.0 | 83 | | inter | 6. 04 | 1.51 | 21.7 | 4.96 | 1. 29 | 21.4 | 11.43 | 3. 87 | 49.9 | 23.7 | 30.5 | 14.6 | 23. 2 | 25.8 | 9.0 | 52.3 | 60.1 | 46 | | quinox | 10.97 | 2 34 | 20 1 | 10. 20 | 1 00 | 36.0 | 17. 19 | 6 20 | 85. 5 | 42.2 | 57. 8 | | 36.9 | 53. 4 | 21.0 | 86.4 | 92. 2 | 129 | | TABLE XI NON-CYCLIC CHA | $NGE (24^{h} minus 0^{h})$ | |-------------------------|----------------------------| |-------------------------|----------------------------| | | | All Days | | | Quiet Da y s | | | Disturbed Days | | |---------------|-------------|-------------------------|-----------------------|-------------|-------------------------|-----------------------|-------------|-------------------------|-----------------------| | Month
1946 | Declination | Horizontal
Intensity | Vertical
Intensity | Declination | Horizontal
Intensity | Vertical
Intensity | Declination | Horizontal
Intensity | Vertical
Intensity | | | , | Y | Y | , | Y | Y | , | Υ | Υ | | January | -0.03 | +0.1 | +0.1 | +0.08 | +0.8 | -0.4 | -0.36 | - 8.4 | + 1.2 | | February | -0.03 | -0.1 | +0.3 | +0.78 | +4.0 | -1.2 | + 3. 12 | - 7.0 | + 10.0 | | March | -0.27 | -1.4 | +0.3 | +0.24 | +6.2 | -1.0 | - 1.90 | - 29. 5 | - 10.0 | | April | +0.23 | + 1. 2 | +0.2 | +0.12 | +3.8 | - 2. 8 | - 1.06 | - 20. 4 | - 7.2 | | May | -0.03 | +0.4 | -0.1 | -0.50 | + 3. 0 | -1.6 | - 1.04 | - 6.6 | - 0.6 | | June | +0.04 | -0.2 | +0.0 | +0.28 | +9.4 | - 1.6 | +0.06 | - 21. 8 | + 3.2 | | July | -0.04 | -0.3 | -0.0 | -0.34 | + 1. 8 | -1.6 | -0.30 | - 23.6 | + 4.8 | | August | -0.12 | -0.4 | +0.2 | +0.26 | +5.4 | - 1. 2 | -0.78 | - 17. 2 | + 4.8 | | September | +0.01 | 0.0 | +0.4 | + 1.06 | + 7, 2 | -1.6 | - 2.96 | - 27. 8 | + 2.2 | | October | -0. 10 | -0.3 | -0.3 | -0.58 | +1.2 | +0.2 | + 1. 24 | - 7.2 | + 1.0 | | November | +0.03 | +0.8 | -0.4 | -0.38 | -0.4 | -0.6 | -1.76 | - 2.2 | - 2.4 | | December | +0.05 | +0.4 | -0.1 | +0.46 | +4.8 | -1.6 | -0.74 | - 7.2 | + 4.6 | | Year 1946 | | | • • | +0.12 | +3.9 | -1.3 | -0.54 | - 14. 9 | + 2.2 | TABLE XII. - MEAN MONTHLY AND ANNUAL VALUES OF GEOMAGNETIC ELEMENTS AT THE ABINGER MAGNETIC STATION | Month | Declination | | | | Intensity | | | |---------------|-------------|-------------|------------|---------|-----------|----------|---------| | Month
1946 | West | Inclination | Horizontal | North | West | Vertical | Total | | | 0 / | . 0 / | c.g.s. | c.g.s. | c.g.s. | c.g.s. | c.g.s. | | January | 9 54.9 | 66 44.8 | . 18572 | . 18295 | . 03198 | . 43221 | . 47042 | | February | 9 54.1 | 66 45.8 | . 18560 | . 18285 | . 03192 | . 43229 | . 47045 | | March | 9 53.3 | 66 46.1 | . 18557 | . 18281 | .03187 | . 43231 | . 47046 | | April | 9 52.2 | 66 46.4 | . 18556 | . 18281 | .03181 | . 43240 | . 47054 | | May | 9 51.9 | 66 45.0 | . 18574 | . 18299 | .03182 | . 43233 | . 47054 | | June | 9 51.5 | 66 44.6 | . 18581 | . 18307 | .03181 | . 43233 | . 47057 | | July | 9 50.9 | 66 44.9 | . 18576 | . 18302 | .03177 | . 43234 | . 47056 | | August | 9 50.2 | 66 44.9 | . 18576 | . 18303 | . 03174 | . 43235 | . 47057 | | September | 9 49.3 | 66 46.5 | . 18557 | . 18285 | .03166 | . 43243 | . 47057 | | October | 9 48.9 | 66 45.7 | . 18568 | . 18296 | .03165 | . 43242 | . 47060 | | November | 9 48.2 | 66 45.3 | . 18573 | . 18302 | .03162 | . 43240 | . 47060 | | December | 9 47.5 | 66 44.8 | . 18578 | . 18307 | . 03160 | . 43236 | . 47058 | | Year 1946 | 9 51.1 | 66 45.4 | . 18569 | . 18295 | . 03177 | . 43235 | . 47054 | | Day | January | February | March | April | May | June | July | August | September | October | November | December | |-----|-----------------------|-----------------------|---------------|------------|--------|----------------|----------------|----------------|---------------|---------------|-----------------------|--------------| | 1 | o 1
9 49 .9 | o '
9 19 .7 | o '
9 19.7 | o , 9 19.5 | 9 19.4 | o '
9 19.5 | o '
9 19.4 | o '
9 19.5 | o ,
9 19.7 | 9 19.8 | 。,
9 19.7 | 。,
9 19.6 | | 2 | | | 19.7 | 19.4 | 19.4 | 19.5 | 19.4 | 19.5 | 19.7 | 19.7 | 19.6 | 19.6 | | | 49.9 | 19.7 | | | | | | | 19.7 | 19. 8 | | 19.6 | | 3 | 49. 9 | 19.7 | 19.7 | 19.4 | 19.4 | 19. 5
19. 5 | 19. 3
19. 2 | 19. 5
19. 5 | 19.7 | 19. 7 | <u>19. 6</u>
19. 6 | 19.6 | | 4 | 49.9 | 19.7 | 19. 7 | 19. 4 | 19.5 | | | | | 19. 7 | 19.6 | 19.6 | | 5 | 49.8 | 19. 6 | 19. 7 | 19.5 | 19.4 | 19.5 | 19.3 | 19.5 | 19. 7 | | | 19.6 | | 6 | 49.7
9 49.7 | 19.8 | 19. 7 | 19.5 | 19.5 | 19. 5 | 19.3 | 19.6 | 19. 7 | 19.7 | 19.6 | | | 7 | 9 19.4 | 19.6 | 19.6 | 19. 4 | 19. 4 | 19.5 | 19. 3 | 19.5 | 19. 7 | 19. 7 | 19. 6 | 19.6 | | 8 | 19.5 | 19.7 | 19.7 | 19. 4 | 19. 4 | 19.5 | 19.3 | 19.6 | 19. 7 | 19. 7. | 19.6 | 19.6 | | 9 | 19.5 | . 19. 7 | 19.6 | 19. 4 | 19. 4 | 19.4 | 19.3 | 19.5 | 19.7 | 19.8 | 19. 7 | 19. 7 | | 10 | 19.6 | 19. 7 | 19.5 | 19.5 | 19. 4 | 19. 4 | 19. 4 | 19. 6 | 19.7 | 19.8 | 19. 6 | 19.6 | | 11 | 19.6 | 19.7 | 19.6 | 19.5 | 19. 4 | 19. 4 | 19. 3 | 19.6 | 19.7 | 19. 8 | 19.5 | 19. 6 | | 12 | 19. 7 | 19. 7 | 19.6 | 19. 5 | 19. 4 | 19. 4 | 19.3 | 19.5 | 19. 7 | 19.8 | 19.6 | 19.7 | | 13 | 19.7 | 19.6 | 19.6 | 19.5 | 19. 4 | 19. 4 | 19. 1 | 19.6 | 19.7 | 19.8 | 19.6 | 19.7 | | 14 | 19.7 | 19. 7 | 19.6 | 19. 5 | 19. 5 | 19.4 | 19. 4 | 19.6 | 19.7 | 19. 7 | 19. 6 | 19. 7 | | 15 | 19.7 | 19. 7 | 19. 5 | 19.5 | 19.5 | 19. 4 | 19.5 | 19. 6 | 19. 7 | 19. 7 | 19.6 | 19.7 | | 16 | 19.8 | 19. 7 | 19.5 | 19. 5 | 19. 4 | 19. 4 | 19.5 | 19.6 | 19.7 | 19. 7 | 19.6 | . | | 17 | 19.8 | 19.6 | 19.5 | 19.5 | 19. 4 | 19. 4 | 19.6 | 19.6 | 19.8 | 19.8 | 19. 6 | 19.5 | | 18 | 19. 8 | 19.6 | 19. 5 | 19. 5 | 19. 4 | 19.4 | 19. 6 | 19.6 | 19.7 | 19. 7 | 19.6 | 19.6 | | 19 | 19.8 | 19.7 | 19.5 | 19. 5 | 19. 4 | 19.4 | 19. 5 | 19.6 | 19. 7 | 19.7 | 19.6 | 19.6 | | 20 | 19.8 | 19. 7 | 19.5 | 19.5 | 19. 5 | 19. 4 | 19. 5 | 19.6 | 19.7 | 19.8 | 19.5 | 19.7 | | 21 | 19.8 | 19.7 | 19.5 | 19. 5 | 19.5 | 19. 5 | 19.6 | 19.6 | 19.8 | 19. 8 | 19.6 | 19.6 | | 22 | 19.8 | 19.8 | 19. 5 | 19.6 | 19. 5 | 19.4 | 19. 5 | 19.6 | 19.7 | 19.8 | 19.6 | 19. 6 | | 23 | 19. 7 | 19. 8 | 19. 4 | 19. 4 | 19.5 | 19.4 | 19.6 | 19.6 | 19.8 | 19. 8 | 19.6 | 19.6 | | 24 | 19.8 | 19.7 | 19. 5 | 19.4 | 19. 5 | 19. 5 | 19.5 | 19.6 | 19.8 | 19. 8 | 19.5 | 19.6 | | 25 | 19.8 | 19. 7 | 19.5 | 19. 5 | 19.4 | 19.4 | 19.5 | 19.6 | 19.8 | 19. 8 | 19.5 | 19.6 | | 26 | 19.7 | 19.8 | 19.5 | 19. 4 | 19. 4 | 19. 4 | 19. 5 | 19.7 | 19.8 | 19.7 | 19.5 | 19.5 | | 27 | 19.8 | 19. 8 | 19. 4 | 19. 4 | 19. 4 | 19. 5
 19.6 | 19. 7 | 19.8 | 19.8 | 19.6 | 19.6 | | 28 | 19.7 | 19. 8 | 19. 4 | 19. 5 | 19. 5 | 19. 4 | 19. 5 | 19. 6 | 19.8 | 19. 7 | 19.6 | 19.6 | | 29 | 19.6 | -,,- | 19. 5 | 19. 4 | 19. 5 | 19.3 | 19.5 | 19. 8 | 19. 8 | 19.8 | 19.6 | 19.7 | | 30 | 19.6 | | 19.5 | 19. 4 | 19.6 | 19. 4 | 19.6 | 19. 7 | 19.8 | 19. 8 | 19.6 | 19.6 | | 31 | 19.6 | | 19.5 | -7 | 19. 5 | - | 19. 5 | 19. 8 | | 19.8 | | 19.6 | Jan. 7. The position of the Base-line was altered. July 13. The Recording-Room Temperature was raised from 16.0 C to 21.0 C. Nov. 4. " " " " lowered " 21.0 C " 16.0 C. Dec. 16. " " " " " " 16.0 C " 11.0 C TABLE XIV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF HORIZONTAL INTENSITY FROM OBSERVATIONS MADE WITH THE SCHUSTER-SMITH COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE HORIZONTAL INTENSITY MAGNETOGRAMS | No. Color | | | | OF THE HORIZONTAL INTENS | ITY MAGNET | OGRAMS | | } | |---|------------------|--------------------------------|----------------------------------|--------------------------|---------------------|----------------------------------|------------------------------------|----------------------------------| | | Universal Time | ocon
observed
Horizontal | Deduced
Value of
Base-line | Universal Time o | Observed Horizontal | Deduced
Value of
Base-line | Obs. Observed Horizontal Intensity | Deduced
Value of
Base-line | | 2 10 18 - 10 27 8 18377 18355 | | - | | | | | h m h m Y | | | 4 10 35 - 10 42 8 18590 18555 22 10 1 - 10 9 8 18541 18553 13 9 40 - 9 33 8 18541 18557 18552 18557 18552 18557 18552 18557 18552 18557 18552 | 2 10 18 - 10 27 | 8 18577 | | - · | | | | | | 5 10 46 - 10 54 8 18556 18355 25 10 8 - 10 17 8 18392 18353 14 9 26 - 9 54 8 18357 18353 19 10 33 - 10 42 8 18565 18355 26 10 17 - 10 20 8 18355 19 10 37 - 10 12 8 18565 18355 27 10 7 - 10 15 8 18518 18352 17 9 41 - 9 30 8 18353 18311 11 10 17 - 10 20 8 18565 18355 27 10 7 - 10 15 8 18518 18352 17 9 41 - 9 30 8 18353 18351 18351 11 10 17 - 10 20 8 18559 18356 12 10 10 17 - 10 20 8 18559 18356 12 10 10 17 - 10 20 8 18559 18356 12 10 10 17 - 10 20 8 18550 18355 12 10 10 10 10 10 10 10 10 10 10 10 10 10 | • | | - | - - | | - | - | | | 9 10 33 - 10 47 8 18509 18355 | | | - | | | | | | | 10 10 1 - 10 12 8 18589 18556 18556 12 10 3 - 10 12 8 18599 18556 12 10 3 - 10 12 8 18599 18556 12 10 3 - 10 13 8 18599 18556 18594 18556 18594 18595 18594 18595 18594 18595 | | | | | | | | | | 12 10 3 - 10 17 8 18559 18554 | | | | | | | | | | 14 10 23 - 10 32 8 18576 18356 Apr. 2 10 38 - 10 46 8 18590 18352 24 9 43 - 9 51 8 18576 18351 15 10 27 - 10 36 18 18586 18551 18516 18551 18516 1 | = - | | | | | | | | | 16 10 19 -10 31 8 18595 18555 18556 18556 18556 18556 18556 18556
18556 | _ | | | Apr. 2 10 38 - 10 46 8 | 18505 | 18352 | | | | 18 10 33 - 10 42 8 18574 18556 6 10 21 - 10 51 8 18524 18535 29 9 14 - 9 26 8 18566 18350 1818 10 33 - 10 42 8 18559 18556 18 10 46 - 10 0 48 8 18574 18552 19 10 41 - 10 48 8 18574 18555 21 9 35 - 9 45 8 18574 18557 10 10 56 - 11 19 8 18514 18552 21 9 35 - 9 45 8 18568 18557 18557 10 10 56 - 11 19 8 18514 18552 22 9 49 - 10 1 8 18585 18556 18557 18555 22 9 40 - 10 1 8 18585 18556 18557 18555 22 10 15 - 10 15 8 18551 18555 10 15 - 10 15 8 18551 18555 12 10 40 - 10 56 8 18546 18551 18556 12 9 10 15 - 10 15 8 18551 18556 15 9 48 - 9 56 8 18464 18551 18551 18556 12 9 10 15 - 10 15 8 18551 18555 12 9 46 - 9 50 8 18546 18551 18551 18556 15 9 48 - 9 56 8 18464 18551 18551 18556 12 9 10 15 - 10 15 8 18551 18555 18556 15 9 48 - 9 56 8 18464 18551 18551 18556 12 9 10 15 - 10 15 8 18551 18555 18 9 48 - 9 56 8 18464 18551 | | | | - | | | - | 4 | | 18 | • | | | | | | | | | 21 9 33 - 9 45 8 18571 18857 18576 12 10 10 58 - 11 19 8 18514 18552 31 19 7 9 73 - 9 58 6 18545 18350 22 9 9 7 - 10 17 8 18558 18356 13 14 49 - 10 2 8 18548 18353 3 14 28 8 - 14 36 8 18582 18351 23 10 9 - 10 17 8 18558 18355 18356 18356 18356 18357 18357 25 10 15 - 10 15 8 18558 18356 1 | | | 18356 | | | 18352 | | | | 22 9 49 - 10 1 8 18597 18356 11 11 14 9 - 12 2 8 18548 18533 3 14 28 - 14 36 8 18598 18351 23 18352 24 10 5 - 10 15 8 18558 18555 18552 18552 25 18552 25 9 0 - 9 7 8 18557 18550 24 10 5 - 10 15 8 18558 18356 13 10 49 - 10 56 8 18546 18351 6 9 47 - 9 54 8 18578 18350 26 10 19 - 10 31 8 18556 18355 1855 18552 18552 28 18552 18552 28 185 | | | | | | | July 1 9 53 - 9 58 6 18545 | 18350 | | 24 10 5 - 10 15 8 18561 18555 13 10 49 - 10 56 8 18546 18551 6 9 47 - 9 54 8 18578 18350 26 10 19 - 10 31 8 18566 18556 18556 18556 16 9 6 9 51 8 18552 18552 18552 18552 18552 18552 18552 18552 18553 19 37 - 10 49 8 18556 18555 18 9 22 - 9 30 8 18528 18535 13 9 37 - 9 34 8 18557 18350 10 34 - 10 45 8 18577 18355 24 9 32 - 9 41 8 18473 18350 15 9 45 - 9 27 9 34 8 18557 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 9 34 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18575 18350 15 9 45 - 9 27 8 18550 18575 18350 15 9 45 - 9 27 8 18550 | 22 9 49 - 10 1 | 8 18587 | 18356 | 11 11 49 - 12 2 8 | 3 18548 | 18353 | 3 14 28 - 14 36 8 18582 | 18351 | | 25 10 15 - 10 26 8 185958 18356 15 9 48 - 9 56 8 18464 18351 18 9 21 - 9 58 8 18522 18330 28 10 49 - 10 57 8 18 185970 18355 17 10 6 - 10 19 8 18552 18351 13 9 27 - 9 34 8 18555 18355 31 10 34 - 10 45 8 18545 18355 18355 23 9 46 - 10 0 8 18493 18350 16 47 - 10 58 8 18577 18355 23 9 46 - 10 0 8 18493 18350 16 9 6 - 9 57 8 18555 18349 18350 16 9 8 - 9 21 8 18557 18355 18355 18355 18355 18355 18356
18356 183 | _ | | | | | | | | | 28 10 49 - 10 57 8 18570 18355 | | | | | | | | | | 29 10 37 - 10 49 8 18365 18355 18 9 22 - 9 30 8 18528 18351 13 9 27 - 9 34 8 18569 18355 31 10 34 - 10 45 8 18579 18355 23 9 46 - 10 0 8 18493 18350 16 9 8 - 9 27 8 18 18575 18355 24 9 32 - 9 41 8 18473 18350 16 9 8 - 9 21 8 18575 18355 26 9 37 - 9 47 8 18544 18351 17 9 15 - 9 26 8 18374 18350 16 9 8 - 9 21 8 18578 18350 16 9 8 - 9 21 8 18578 18350 16 9 8 - 9 21 8 18578 18350 16 9 8 - 9 21 8 18578 18350 16 9 8 - 9 21 8 18578 18350 16 9 8 - 9 21 8 18578 18350 18 18 18 18 18 18 18 18 18 18 18 18 18 | | | | | | | | | | 30 10 47 - 10 58 8 18577 18355 24 9 32 - 9 41 8 18473 18350 15 9 45 - 9 57 8 18575 18355 24 9 32 - 9 41 8 18473 18350 16 9 8 - 9 21 8 18575 18355 25 9 12 - 9 21 8 18488 18351 17 9 15 - 9 26 8 18575 18355 26 9 39 - 9 47 8 18549 18352 18 9 43 - 9 55 8 18587 18350 16 9 8 - 9 55 8 18547 18350 16 9 8 - 9 55 8 18547 18350 16 10 11 - 10 19 8 18569 18333 18350 16 9 10 5 - 10 13 8 18534 18355 18354 18355 11 1 1 1 0 42 - 10 49 8 18543 18355 11 1 1 0 34 - 10 33 8 18557 18354 18354 18354 18356 18354 18356 18354 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18354 18356 18356 18354 18356 18354 18356 18354 18356 18354 18356 18356 18354 18356 18356 18354 18356 18357 18356 | | | | | | | | | | Feb. 1 10 27 - 10 35 8 18592 18355 27 9 32 - 9 21 8 18488 18351 17 9 15 - 9 26 8 18547 18350 26 9 39 - 9 47 8 18549 18552 19 9 33 - 9 44 8 18590 18553 10 13 - 10 22 8 18558 18354 30 9 46 - 9 55 8 18547 18355 11 10 42 - 10 49 8 18548 18355 18355 18354 18355 11 10 42 - 10 49 8 18548 18355 18355 18354 18355 18354 18356 18349 11 10 42 - 10 49 8 18548 18355 18354 13 10 11 10 42 - 10 49 8 18548 18355 18354 13 10 11 10 12 1 | 30 10 47 - 10 58 | 8 18577 | 18355 | | | | | | | Feb. 1 10 27 - 10 35 8 18582 18355 27 9 33 - 9 44 8 18549 18350 18350 4 10 5 - 10 13 8 18557 18355 29 9 47 - 9 55 8 18547 18350 29 9 47 - 9 55 8 18547 18350 20 9 21 - 9 33 8 18545 18350 6 10 11 - 10 19 8 18569 18353 9 46 - 9 55 8 18547 18351 22 9 37 - 9 45 8 18560 18359 9 10 5 - 10 13 8 18543 18355 8 | 31 10 34 - 10 45 | 8 18579 | 18355 | | | | | | | 4 10 5 - 10 13 8 18557 18355 29 9 47 - 9 55 8 18351 20 9 21 - 9 33 8 18546 18350 6 10 11 - 10 19 8 18569 18353 9 46 - 9 55 8 18547 18351 22 9 37 - 9 45 8 18561 18350 26 9 13 - 9 23 8 18561 18350 26 9 13 - 9 23 8 18561 18350 26 9 13 - 9 23 8 18561 18350 27 8 39 - 8 48 8 18442 18359 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 38 - 9 49 8 18536 18350 27 8 39 - 8 48 8 18442 18349 27 8 30 2 2 9 2 9 9 39 8 18514 18349 27 8 30 2 2 9 2 2 9 39 8 18514 18349 27 8 30 2 2 9 2 2 9 39 8 18514 18349 27 8 30 2 2 9 2 2 9 39 8 18514 18349 27 8 30 2 2 9 2 2 9 39 8 18514 18349 27 8 30 2 2 9 2 2 9 39 8 18514 18349 27 8 3 8 18545 18350 27 8 2 2 9 38 18550 18349 27 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | 26 9 39 - 9 47 8 | 18549 | 18352 | 18 9 43 - 9 55 8 18587 | 18350 | | 5 10 13 - 10 22 8 18558 18558 18553 30 9 46 - 9 55 8 18547 18351 22 9 37 - 9 45 8 18560 18349 9 10 5 - 10 13 8 18554 18355 18355 18355 18356 18350 | | | | | | | | | | 9 10 5 5 - 10 13 8 18534 18355 May 1 8 11 - 8 24 8 18549 18350 27 8 39 - 8 48 8 18442 18349 12 10 25 - 10 34 8 18546 18354 13 10 21 - 10 29 8 18554 18354 2 9 38 - 9 49 8 18536 18350 31 9 45 - 9 52 8 18534 18348 14 10 25 - 10 33 8 18542 18354 4 9 6 - 9 18 8 18341 18352 15 10 20 - 10 29 8 18555 18354 6 9 7 - 9 20 8 18559 18354 12 21 13 38 8 18553 18354 6 9 7 - 9 20 8 18559 18354 18 10 24 - 10 51 8 18555 18354 18 350
18 350 18 35 | | · | | T | | - | 22 9 37 - 9 45 8 18561 | 18350 | | 11 10 42 - 10 49 8 18543 18355 | - | | - | | | | l | | | 13 10 21 - 10 29 8 18558 18354 | • | | | May 1 8 11 - 8 24 8 | 18549 | 18350 | 30 9 29 - 9 39 8 18514 | 18349 | | 14 10 25 - 10 33 8 18542 18354 4 9 6 - 9 18 8 18541 18352 Aug. 1 9 15 - 9 23 8 18536 18349 15 10 20 - 10 29 8 18557 18354 6 9 7 - 9 20 8 18599 18353 Aug. 1 9 15 - 9 23 8 18550 18349 18 10 44 - 10 51 8 18555 18354 78 858 - 9 11 8 18543 18352 2 9 42 - 9 50 8 18554 18349 19 10 24 - 10 31 8 18555 18354 10 83 8 - 8 51 8 18549 18352 3 9 42 - 9 50 8 18544 18348 18 10 33 10 41 8 18557 18354 10 8 38 - 8 51 8 18557 18352 7 9 41 - 9 50 8 18552 18348 11 8 32 - 8 46 8 18482 18352 8 6 - 8 19 8 18555 18348 12 10 57 - 11 16 8 18540 18353 13 8 58 - 9 10 8 18557 18354 10 8 38 - 8 51 8 18557 18352 7 9 41 - 9 50 8 18555 18348 13 8 58 - 9 10 44 - 10 53 8 18543 18354 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18571 18348 12 10 10 42 - 10 50 8 18543 18354 15 8 44 - 8 55 8 18560 18352 10 9 38 - 9 46 8 18556 18349 12 10 10 42 - 10 32 8 18571 18354 17 8 46 - 8 57 8 18560 18352 12 9 37 - 9 45 8 18544 18348 12 10 30 - 10 41 8 18538 18355 18 4 4 - 8 55 8 18560 18352 10 9 38 - 9 46 8 18544 18348 12 10 10 - 10 23 8 18571 18354 17 8 46 - 8 57 8 18578 17353 14 10 36 - 10 48 8 18488 18347 12 9 48 - 9 57 8 18521 18353 15 8 39 - 8 52 8 18534 18348 15 8 39 - 8 52 8 18534 18348 15 9 54 - 10 8 8 18528 18355 12 9 30 - 9 43 8 18541 18352 10 9 44 - 9 52 8 18544 18348 18 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18354 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 12 8 18388 18355 10 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | 31 9 45 - 9 52 8 18532 | 18348 | | 15 10 20 - 10 29 8 18557 18354 6 6 9 7 - 9 20 8 18599 18353 Aug. 1 9 15 - 9 23 8 18536 18349 18 10 44 - 10 51 8 18553 18354 9 7 8 58 - 9 11 8 18543 18352 2 9 42 - 9 53 8 18536 18349 18 10 44 - 10 51 8 18555 18354 9 9 5 - 9 16 8 18557 18352 5 9 9 5 - 9 16 8 18557 18354 9 9 5 - 9 16 8 18557 18352 7 9 41 - 9 50 8 18552 18348 21 10 57 - 11 16 8 18540 18353 13 85 8 - 9 10 8 18557 18354 22 10 37 - 10 44 8 18548 18353 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18557 18348 22 10 37 - 10 44 8 18548 18353 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18571 18348 23 10 44 - 10 53 8 18528 18355 14 8 29 - 8 41 8 18566 18352 9 9 13 - 9 22 8 18571 18348 27 9 24 - 9 36 8 18571 18354 16 7 57 - 8 16 8 18569 18352 13 10 28 - 10 42 - 10 32 8 18571 18354 18 9 10 - 9 23 8 18557 18352 13 10 28 - 10 42 - 10 32 8 18571 18354 18 9 10 - 9 23 8 18550 18352 13 10 28 - 10 42 - 10 32 8 18571 18356 29 9 17 - 9 26 8 18551 18358 18357 18348 21 10 33 - 10 41 8 18588 18355 24 9 9 17 - 9 26 8 18551 18353 15 8 39 - 8 52 8 18544 18348 18347 21 9 48 - 9 57 8 18551 18353 15 8 39 - 8 52 8 18538 18347 21 9 48 - 9 57 8 18551 18353 15 9 20 9 44 - 9 52 8 18544 18348 18347 21 9 48 - 9 57 8 18551 18353 15 20 9 44 - 9 52 8 18544 18348 18347 21 9 48 - 9 57 8 18551 18353 15 20 9 44 - 9 52 8 18544 18348 18347 21 9 48 - 9 57 8 18551 18353 15 20 9 44 - 9 52 8 18544 18348 18347 21 9 48 - 9 57 8 18551 18353 15 20 9 44 - 9 52 8 18543 18347 21 9 48 - 9 57 8 18551 18351 22 9 46 - 9 57 8 18538 18347 21 9 49 - 9 57 8 18553 18349 22 9 9 50 - 9 58 6 18549 18353 22 9 9 50 - 9 59 8 18546 18347 21 9 9 50 - 9 59 8 18556 18347 21 9 9 50 - 9 59 8 18556 18347 21 9 9 50 - 9 59 8 18556 18347 21 9 9 50 - 9 59 8 18546 18347 21 9 37 - 10 46 8 18553 18355 21 18355 21 18356 21 18357 21 18355 21 18356 21 18357 21 18355 21 18356 21 18357 21 18356 21 | - | | - | 1, 1 | | | | İ | | 18 10 44 - 10 51 8 18554 18353 8 7 22 - 7 38 8 18589 18352 3 9 42 - 9 50 8 18544 18348 19 10 24 - 10 31 8 18555 18354 9 9 5 - 9 16 8 18557 18352 6 9 37 - 9 45 8 18562 18349 21 10 57 - 11 16 8 18557 18354 11 8 32 - 8 46 8 18482 18352 8 8 6 - 8 19 8 18557 18348 22 10 37 - 10 44 8 18548 18353 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18571 18348 23 10 44 - 10 53 8 18543 18354 15 8 44 - 8 55 8 18566 18352 10 9 38 - 9 46 8 18558 18349 26 10 34 - 10 45 8 18557 18353 16 7 57 - 8 16 8 18598 18352 12 9 37 - 9 45 8 18558 18349 26 10 34 - 10 45 8 18557 18353 16 7 57 - 8 16 8 18598 18352 12 9 37 - 9 45 8 18558 18349 26 10 34 - 10 32 8 18571 18354 17 8 46 - 8 57 8 18578 17353 14 10 36 - 10 48 8 18488 18347 20 9 17 - 9 26 8 18551 18353 17 10 32 - 10 42 8 18542 18348 14 10 33 - 10 41 8 18538 18355 24 9 42 - 9 9 9 5 - 9 10 8 18538 18347 21 9 48 - 9 57 8 18521 18353 17 10 32 - 10 42 8 18543 18348 18348 18347 18 9 50 - 9 43 8 18551 18353 17 10 32 - 10 42 8 18543 18348 18348 18347 18 10 36 - 10 48 8 18538 18355 18 18348 18 18 18 18 18 18 18 18 18 18 18 18 18 | 15 10 20 - 10 29 | | | - · · | | | | | | 19 10 24 - 10 31 8 18555 18354 9 9 5 - 9 16 8 18547 18352 6 9 37 - 9 45 8 18562 18348 20 10 33 10 41 8 18557 18354 10 8 38 - 8 51 8 18587 18352 7 9 41 - 9 50 8 18552 18348 21 10 57 - 11 16 8 18540 18353 13 8 58 - 9 10 8 18550 18352 8 8 6 - 8 19 8 18557 18348 22 10 37 - 10 44 8 18548 18353 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18571 18348 23 10 44 - 10 53 8 18528 18355 14 8 29 - 8 41 8 18566 18352 10 9 38 - 9 46 8 18558 18358 25 10 42 - 10 50 8 18557 18333 16 7 57 - 8 16 8 18560 18352 12 9 37 - 9 45 8 18558 18349 26 10 34 - 10 45 8 18557 18333 16 7 57 - 8 16 8 18589 18352 13 10 28 - 10 42 8 18544 18348 27 9 24 - 9 36 8 18571 18354 18 9 10 - 9 23 8 18578 17353 14 10 36 - 10 48 8 18488 18347 20 9 17 - 9 26 8 18551 18353 16 9 48 - 9 57 8 18551 18353 16 9 48 - 9 58 8 18522 18347 18348 18 9 10 - 9 23 8 18570 18354 18 9 10 - 9 23 8 18570 18356 21 9 10 10 - 10 23 8 18570 18356 22 9 30 - 9 43 8 18541 18351 15 8 39 - 8 52 8 18544 18348 18 10 36 - 10 48 8 18542 18348 18 18 18 18 18 18 18 18 18 18 18 18 18 | | | | | | | | | | 21 10 57 - 11 16 8 18540 18354 13354 11 8 32 - 8 46 8 18482 18352 8 8 6 - 8 19 8 18557 18348 22 10 37 - 10 44 8 18548 18353 13 8 58 - 9 10 8 18550 18352 9 9 13 - 9 22 8 18571 18348 23 10 44 - 10 53 8 18528 18355 14 8 29 - 8 41 8 18560 18352 10 9 38 - 9 46 8 18558 18349 25 10 42 - 10 50 8 18543 18354 15 8 44 - 8 55 8 18560 18352 12 9 37 - 9 45 8 18546 18349 26 10 34 - 10 45 8 18557 18353 16 7 57 - 8 16 8 18589 18352 13 10 28 - 10 42 8 18544 18348 27 9 24 - 9 36 8 18571 18354 17 8 46 - 8 57 8 18578 17353 14 10 36 - 10 48 8 18488 18347 28 10 24 - 10 32 8 18571 18354 17 8 46 - 8 57 8 18558 18351 15 8 39 - 8 52 8 18532 18347 20 9 17 - 9 26 8 18561 18352 15 8 39 - 8 52 8 18532 18347 20 9 17 - 9 26 8 18561 18352 16 9 48 - 9 58 8 18542 18348 20 9 17 - 9 26 8 18561 18352 16 9 48 - 9 58 8 18542 18348 20 9 17 - 9 26 8 18561 18352 10 9 41 - 9 49 8 18548 18348 21 0 10 - 10 23 8 18570 18356 22 9 30 - 9 43 8 18542 18351 19 9 41 - 9 49 8 18548 18348 21 0 10 - 10 10 23 8 18538 18355 24 9 42 - 9 49 8 18536 18351 19 9 41 - 9 49 8 18548 18348 21 0 10 - 10 10 28 8 18538 18355 24 9 42 - 9 49 8 18536 18351 22 9 46 - 9 57 8 18538 18347 25 10 8 - 10 20 8 18535 18351 22 9 46 - 9 57 8 18538 18347 21 9 49 - 9 57 8 18538 18347 21 9 49 - 9 57 8 18538 18347 21 9 49 - 9 57 8 18538 18347 21 9 49 - 9 57 8 18538 18347 21 9 40 - 9 50 - 9 58 6 18554 18353 22 9 46 - 9 54 8 18555 18347 21 9 40 - 9 55 8 18553 18347 21 9 40 - 9 55 8 18553 18347 21 9 40 - 9 55 8 18553 18351 22 9 46 - 9 55 8 18553 18347 21 10 39 - 10 48 8 18554 18355 30 9 31 - 9 41 8 18543 18351 27 15 3 - 15 14 8 18555 18347 21 10 37 - 10 46 8 18554 18355 18355 30 9 31 - 9 41 8 18556 18351 22 9 50 - 9 59 8 18546 18347 21 10 37 - 10 46 8 18554 18355 18355 30 9 31 - 9 41 8 18556 18351 22 9 50 - 9 59 8 18566 18351 22 9 50 - 9 59 8 18566 18357 18355 14 10 37 - 10 46 8 18557 18355 30 9 31 - 9 41 8 18560 18351 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 55 8 18557 18355 30 9 43 - 9 | 19 10 24 - 10 31 | 8 18555 | 18354 | | | | | | | 22 10 37 - 10 44 8 18548 18353 | | | | | | | | 1 | | 25 10 42 - 10 50 8 18543 18354 15 8 44 - 8 55 8 18560 18352 12 9 37 - 9 45 8 18546 18349 26 10 34 - 10 45 8 18557 18353 16 7 57 - 8 16 8 18589 18352 13 10 28 - 10 42 8 18544 18348 27 9 24 - 9 36 8 18571 18354 17 8 46 - 8 57 8 18578 17353 14 10 36 - 10 48 8 18488 18347 28 10 24 - 10 32 8 18571 18354 18 9 10 - 9 23 8 18561 18352 16 9 48 - 9 58 8 18526 18347 20 9 17 - 9 26 8 18561 18352 16 9 48 - 9 58 8 18526 18347 21 9 48 - 9 57 8 18521 18353 17 10 32 - 10 42 8 18542 18348 21 10 33 - 10 46 8 18588 18355 24 9 42 - 9 49 8 18536 18351 20 9 44 - 9 52 8 18534 18348 25 10 36 - 10 48 8 18588 18355 27 9 36 - 9 45 8 18535 18351 22 9 46 - 9 57 8 18534 18347 21 9 48 - 9 57 8 18535 18351 22 9 46 - 9 57 8 18538 18357 27 9 36 - 9 45 8 18535 18351 22 9 46 - 9 57 8 18538 18347 21 9 46 - 10 54 8 18538 18355 27 9 36 - 9 45 8 18535 18351 22 9 46 - 9 57 8 18538 18347 21 9 46 - 10 54 8 18538 18355 27 9 36 - 9 45 8 18554 18353 22 9 46 - 9 57 8 18538 18347 21 9 10 46 - 10 54 8 18553 18355 27 9 36 - 9 45 8 18554 18353 22 9 46 - 9 57 8 18538 18347 21 9 10 46 - 10 58 8 18553 18355 29 9 50 - 9 58 6 18549 18353 26 9 26 - 9 37 8 18536 18347 21 10 39 - 10 48 8 18554 18355 29 9 50 - 9 58 6 18549 18353 26 9 26 - 9 37 8 18553 18348 21 10 35 - 10 44 8 18554 18355 29 9
50 - 9 58 6 18549 18353 26 9 26 - 9 37 8 18556 18347 21 10 35 - 10 44 8 18554 18355 29 9 50 - 9 58 6 18549 18353 26 9 26 - 9 37 8 18556 18347 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 36 - 9 48 8 18551 18355 29 9 50 - 9 58 6 18549 18351 27 15 3 - 15 14 8 18553 18347 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 35 - 10 44 8 18551 18355 21 10 10 10 10 10 10 10 10 10 10 10 10 10 | - · · · | 8 18548 | 18353 | 13 8 58 - 9 10 8 | 18550 | 18352 | 9 9 13 - 9 22 8 18571 | | | 26 10 34 - 10 45 8 18557 18353 27 9 24 - 9 36 8 18571 18354 28 10 24 - 10 32 8 18571 18354 28 10 24 - 10 32 8 18571 18354 29 10 10 - 10 23 8 18571 18356 20 10 10 - 10 23 8 18570 18356 21 10 10 - 10 23 8 18570 18356 22 9 30 - 9 43 8 18541 18351 24 9 42 - 9 49 8 18541 18352 25 9 54 - 10 8 8 18528 18354 26 10 1 - 10 12 8 18538 18355 27 9 36 - 9 45 8 18554 18355 28 10 36 - 10 45 8 18530 18354 29 10 46 - 10 54 8 18530 18355 30 9 31 - 9 41 8 18554 18353 31 9 36 - 9 45 8 18557 18353 31 9 36 - 9 45 8 18557 18353 31 9 36 - 9 48 8 18543 18351 31 10 38 - 10 44 8 18544 18348 31 10 37 - 10 46 8 18551 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18551 18347 31 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 36 - 9 48 8 18560 18351 31 9 36 - 9 48 8 18560 18351 31 9 36 - 9 48 8 18560 18351 31 9 36 - 9 48 8 18560 18351 31 9 36 - 9 58 8 18556 18351 31 9 26 - 9 37 8 18555 18347 30 9 43 - 9 55 8 18557 18347 31 11 30 - 11 43 8 18551 18355 30 9 43 - 9 55 8 18551 18347 31 11 30 - 11 43 8 18551 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18551 18346 | | | | | | | | | | 28 10 24 - 10 32 8 18571 18354 | | | | 16 7 57 - 8 16 8 | 18589 | 18352 | 13 10 28 - 10 42 8 18544 | 18348 | | 20 9 17 - 9 26 8 18561 18352 16 9 48 - 9 58 8 18526 18347 21 9 48 - 9 57 8 18521 18353 17 10 32 - 10 42 8 18542 18348 1851 10 10 - 10 23 8 18570 18356 23 10 11 - 10 24 8 18541 18352 20 9 44 - 9 52 8 18543 18348 18 15 9 54 - 10 8 8 18538 18355 24 9 42 - 9 49 8 18536 18351 20 9 44 - 9 52 8 18538 18347 18356 10 1 - 10 12 8 18538 18355 27 9 36 - 9 45 8 18554 18353 22 9 46 - 9 54 8 18554 18348 18348 18 10 36 - 10 45 8 18530 18354 28 9 37 - 9 45 8 18557 18352 24 9 48 - 9 56 8 18574 18347 13 10 39 - 10 48 8 18551 18355 31 9 36 - 9 48 8 18560 18351 27 15 3 - 15 14 8 18536 18347 13 13 30 - 11 43 8 18551 18355 31 9 36 - 9 48 8 18560 18351 27 9 50 - 9 59 8 18546 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18553 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18556 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 41 - 9 50 8 18556 18351 31 9 26 - 9 37 8 18515 18346 18347 14 10 37 - 10 46 8 18557 18355 31 9 41 - 9 50 8 18556 18351 31 9 26 - 9 37 8 18515 18346 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 9 36 - 9 48 8 18560 18351 31 9 26 - 9 37 8 18555 18347 14 10 37 - 10 46 8 18557 18355 31 | | - · · · | | | | | | | | Mar. 1 10 34 - 10 46 8 18562 18356 22 9 30 - 9 43 8 18542 18351 19 9 41 - 9 49 8 18548 18348 2 10 10 - 10 23 8 18570 18356 23 10 11 - 10 24 8 18541 18352 20 9 44 - 9 52 8 18548 18348 5 9 54 - 10 8 8 18528 18354 24 9 42 - 9 49 8 18536 18351 21 9 49 - 9 57 8 18538 18347 5 9 54 - 10 8 18538 18355 25 10 8 - 10 20 8 185351 18351 21 9 49 - 9 57 8 18538 18347 7 10 46 - 10 54 8 18553 18355 | 28 10 24 - 10 32 | 8 183/1 | 10004 | | | | 16 9 48 - 9 58 8 18526 | 18347 | | 2 10 10 - 10 23 8 18570 18356
4 10 33 - 10 41 8 18538 18355
5 9 54 - 10 8 8 18528 18354
6 10 1 - 10 12 8 18538 18355
7 10 46 - 10 54 8 18530 18354
8 10 36 - 10 45 8 18553 18356
9 10 46 - 10 58 8 18561 18355
11 10 39 - 10 48 8 18551 18355
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
31 9 36 - 9 48 8 18556 18351
32 9 44 - 9 52 8 18543 18348
22 9 44 - 9 52 8 18543 18348
22 9 44 - 9 52 8 18543 18348
22 9 46 - 9 54 8 18554 18354
23 10 11 - 10 24 8 18536 18351
24 9 44 - 9 52 8 18543 18348
25 10 8 - 10 20 8 18555 18355
27 9 36 - 9 45 8 18557 18355
28 9 37 - 9 45 8 18557 18355
29 9 50 - 9 58 6 18549 18353
20 9 44 - 9 52 8 18543 18348
21 9 49 - 9 57 8 18538 18347
22 9 46 - 9 54 8 18554 18354
23 10 11 - 10 24 8 18554 18355
24 9 44 - 9 50 8 18554 18355
25 10 8 - 10 20 8 18555 18355
26 9 26 - 9 37 8 18536 18347
27 15 3 - 15 14 8 18585 18347
28 9 43 - 9 55 8 18553 18348
29 9 50 - 9 59 8 18546 18347
30 9 43 - 9 55 8 18557 18347
30 9 43 - 9 55 8 18557 18347
30 9 43 - 9 55 8 18557 18347
31 9 26 - 9 37 8 18515 18346 | | | 1025 | | | | | | | 4 10 33 - 10 41 8 18538 18355
5 9 54 - 10 8 8 18528 18354
6 10 1 - 10 12 8 18538 18355
7 10 46 - 10 54 8 18530 18354
8 10 36 - 10 45 8 18553 18356
9 10 46 - 10 58 8 18561 18355
11 10 39 - 10 48 8 18501 18353
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
31 9 36 - 9 48 8 18560 18351
32 9 40 - 9 57 8 18538 18347
22 9 46 - 9 54 8 18554 18347
23 9 7 - 9 17 8 18561 18347
24 9 48 - 9 56 8 18574 18347
25 10 8 - 10 20 8 18555 18353
27 15 3 - 15 14 8 18585 18347
28 9 43 - 9 55 8 18553 18348
29 9 50 - 9 59 8 18546 18347
30 9 43 - 9 55 8 18557 18348
30 9 43 - 9 55 8 18557 18348 | | | | 22 9 30 - 9 45 8 | | | 20 9 44 - 9 52 8 18543 | | | 6 10 1 - 10 12 8 18538 18355
7 10 46 - 10 54 8 18530 18354
8 10 36 - 10 45 8 18553 18356
9 10 46 - 10 58 8 18561 18355
11 10 39 - 10 48 8 18501 18353
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
31 9 36 - 9 45 8 18554 18353
24 9 48 - 9 56 8 18574 18347
26 9 26 - 9 37 8 18561 18347
27 15 3 - 15 14 8 18585 18347
28 9 43 - 9 55 8 18553 18348
29 9 50 - 9 59 8 18566 18351
20 9 50 - 9 59 8 18556 18351
30 9 43 - 9 55 8 18557 18347
30 9 43 - 9 55 8 18557 18347
31 9 26 - 9 37 8 18515 18346 | 4 10 33 - 10 41 | 8 18538 | 18355 | 24 9 42 - 9 49 8 | 18536 | 18351 | | | | 7 10 46 - 10 54 8 18530 18354
8 10 36 - 10 45 8 18553 18356
9 10 46 - 10 58 8 18561 18355
11 10 39 - 10 48 8 18501 18353
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
31 9 26 - 9 37 8 18515 18346 | | | | | | | | | | 9 10 46 - 10 58 8 18561 18355
11 10 39 - 10 48 8 18501 18353
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351 27 15 3 - 15 14 8 18585 18347
28 9 43 - 9 55 8 18553 18348
29 9 50 - 9 59 8 18546 18347
30 9 43 - 9 55 8 18557 18347
31 9 26 - 9 37 8 18515 18346 | | | 18354 | 28 9 37 - 9 45 8 | 8 18557 | 18352 | 24 9 48 - 9 56 8 18574 | | | 11 10 39 - 10 48 8 18501 18353
12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
June 1 9 41 - 9 50 8 18556 18351
31 9 26 - 9 37 8 18515 18346 | | | | | | | | | | 12 10 35 - 10 44 8 18554 18355
13 11 30 - 11 43 8 18551 18355
14 10 37 - 10 46 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351
29 9 50 - 9 59 8 18546 18347
30 9 43 - 9 55 8 18557 18347
31 9 26 - 9 37 8 18515 18346 | | | | | | 18351 | 28 9 43 - 9 55 8 18553 | 18348 | | 13 11 30 - 11 43 8 18557 18355 June 1 9 41 - 9 50 8 18556 18351 31 9 26 - 9 37 8 18515 18346 | 12 10 35 - 10 44 | | | | | ` | | | | 10.00
10.00 1 | | | | June 1 9 41 - 9 50 | 8 18556 | | 31 9 26 - 9 37 8 18515 | | | 2 40 0 10500 10251 | 15 10 30 - 10 39 | 8 18546 | 18355 | 3 9 55 - 10 12 8 | | | | | | 16 10 48 - 10 56 8 18569 18355 4 9 43 - 9 51 8 18560 18351
18 10 38 - 10 45 8 18576 18355 5 9 48 - 9 58 8 18569 18352 Sept. 2 9 48 - 9 56 8 18565 18347 | | | | | | - | | | | 19 10 31 - 10 39 8 18568 18354 6 9 41 - 9 49 8 18540 18351 4 13 38 - 13 47 8 18548 18347 | | | | | B 185 4 0 | 18351 | 4 13 38 - 13 47 8 18548 | 18347 | TABLE XIV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF HORIZONTAL INTENSITY FROM OBSERVATIONS MADE WITH THE SCHUSTER-SMITH COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE HORIZONTAL INTENSITY MAGNETOGRAMS | Unive | ersal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | Uni | lvei | rsal | Time | 9 | No.
of
Obs. | Observed
Hor1zontal
Intensity | Deduced
Value of
Base-line | | Univ | versal Time | No.
of
Obs. | Observed
Horizontal
Intensity | Deduced
Value of
Base-line | |---------|---------------|-------------------|-------------------------------------|----------------------------------|----------|------|----------------|--------------|----------------|-------------------|-------------------------------------|----------------------------------|------|----------|-----------------------------|-------------------|-------------------------------------|----------------------------------| | | hm hm | | Y | Υ | | | h i | n | h m | 1 | Υ | Y | | | h m h | m | Y | Y | | Sept. 5 | 9 45 - 9 56 | 8 | 18547 | 18347 | Oct. 14 | 1 | 11 9 |) – 1 | 1 24 | 8 | 18535 | 18346 | Nov. | 21 | 10 45 - 10 5 | 3 8 | 18542 | 18346 | | 6 | 9 31 - 9 40 | 8 | 18555 | 18348 | 15 | . 1 | 0 30 | - 1 | 0 44 | 8 | 18538 | 18345 | | 22 | 10 44 - 10 5 | 18 | 18554 | 18346 | | 7 | 9 17 - 9 29 | 8 | 18536 | 18347 | 16 | 5 1 | 10 49 |) - 1 | 1 0 | 8 | 18546 | 18346 | | 23 | 11 9 - 11 2 | | 18547 | 18347 | | 9 | 9 47 - 9 58 | 8 | 18556 | 18347 | 17 | | | | 0 52 | 8 | 18553 | 18347 | l | 25 | 9 45 - 9 5 | | 18561 | 18346 | | 10 | 9 41 - 9 50 | 8 | 18542 | 18346 | 18 | 3 1 | 10 23 | 3 - 1 | 0 36 | 8 | 18564 | 18346 | | 26 | 10 47 - 10 5 | | 18562 | 18346 | | 11 | 9 34 - 9 45 | 8 | 18551 | 18347 | 19 | | .0 40 | - | 0 50 | 8 | 18566 | 18346 | | 27 | 10 40 - 10 4 | _ | 18567 | 18346 | | 12 | 9 27 - 9 41 | 8 | 18559 | 18347 | 21 | . 1 | .0 42 | ? - 1 | 0 50 | 8 | 18551 | 18346 | l | 28 | 10 36 - 10 4 | | 18568 | 18345 | | 13 | 9 14 - 9 22 | 8 | 18553 | 18347 | 22 | | 0 47 | - 1 | .1 7 | 8 | 18558 | 18345 | | 29 | 10 19 - 10 2 | - | 18564 | 18346 | | 16 | 9 35 - 9 45 | 8 | 18550 | 18346 | 24 | | 1 22 | | 1 32 | 8 | 18537 | 18345 | | 30 | 11 11 - 11 2 | 28 | 18565 | 18346 | | 18 | 11 16 - 11 25 | 8 | 18476 | 18346 | 25 | | 0 47 | | | 8 | 18538 | 18345 | | | | | | | | 19 | 8 36 - 8 48 | 8 | 18527 | 18347 | 26 | | 1 26 | | 1 38 | 8 | 18526 | 18346 | _ | _ | | | | | | 20 | 9 11 - 9 20 | 8 | 18546 | 18347 | 28 | - | .1 4 | | 1 15 | 8 | 18538 | 18345 | Dec. | 2 | 10 33 - 10 4 | | 18570 | 18345 | | 21 | 9 35 - 9 42 | 8 | 18541 | 18346 | 29 | - | 0 47 | | 0 57 | 8 | 18533 | 18345 | | 3 | 12 40 - 12 5 | | 18551 | 18346 | | 23 | 9 32 - 9 39 | 8 | 18406 | 18345 | 30 | | 0 51 | | 0 59 | 8 | 18440 | 18345 | | 4 | 12 44 - 12 5 | - | 18571 | 18347 | | 24 | 9 32 - 9 40 | 8 | 18505 | 18345 | 31 | . 1 | .0 48 | 3 - 1 | .0 56 | 8 | 18574 | 18346 | | > | 10 49 - 10 5 | | 18574 | 18347 | | 25 | 9 39 - 9 47 | 8 | 18530 | 18345 | | | | | | | | | | 6
7 | 11 49 - 12 | _ | 18568
18576 | 18346 | | 26 | 9 41 - 9 50 | 8 | 18537 | 18345 | | _ | | | | _ | 10500 | 10276 | | 9 | | | 185/6 | 18347
18348 | | 27 | 9 37 - 9 45 | 8 | 18531 | 18345 | Nov. 1 | | 0 39 | | 0 46 | 8 | 18508 | 18346 | | - | | - · | 18582 | 18347 | | 28 | 10 16 - 10 27 | 8 | 18484 | 18345 | 2 | _ | 0 51 | • | 0 59 | 8 | 18543 | 18346 | | 10 | | , - | 18572 | 18347 | | 30 | 9 42 - 9 49 | 8 | 18509 | 18345 | 5 | - | | | 0 41 | 8 | 18564 | 18345 | | 11 | | - | 18569 | 18346 | | | | | | | 6 | _ | .0 48 | | 0 55 | 8 | 18520 | 18345 | | 12
13 | 10 27 - 10 3
12 2 - 12 1 | | 18569 | 18347 | | | | _ | | | 7 | | 0 40 | | 0 53 | 8 | 18547 | 18345
18345 | | 14 | 10 45 - 10 5 | | 18568 | 18348 | | Oct. 1 | 9 10 - 9 18 | 8 | 18516 | 18344 | 8 | | 0 32 | | 0 41 | 8
8 | 18567
18556 | 18345 | | 18 | 11 16 - 11 3 | , - | 18586 | 18347 | | 2 | 10 26 - 10 33 | 8 | 18511 | 18345 | 9 | | | | 0 54 | 8 | 18553 | 18346 | | 19 | 11 28 - 11 3 | - | 18556 | 18347 | | 3 | 9 44 - 9 52 | 8 | 18540 | 18345 | 11 | | 0 56 | | 1 11 | 8 | 18548 | 18346 | | 20 | 10 9 - 10 1 | | 18544 | 18347 | | 4 | 9 36 - 9 44 | 8 | 18539 | 18344 | 12 | _ | 0 41
0 18 | | .0 54
.0 38 | 8 | 18552 | 18345 | | 21 | 10 55 - 11 1 | | 18559 | 18347 | | 5 | 9 37 - 9 45 | 8 | 18556 | 18345 | 13
14 | _ | 8 21 | | .U 38
8 35 | - 8 | 18575 | 18346 | | 23 | 10 54 - 11 | • | 18578 | 18347 | | 7 | 9 52 - 10 6 | 8 | 18550 | 18345 | 14 | | 0 25 | - | 0 37
0 37 | 8 | 18590 | 18345 | | 24 | 10 27 - 10 3 | | 18572 | 18347 | | 8 | 10 48 - 10 56 | 8
8 | 18554 | 18347
18346 | 16 | | .0 52 | | 1 16 | - 8 | 18552 | 18346 | | 27 | 10 12 - 10 2 | | 18559 | 18347 | | 9 | 10 46 - 10 58 | - | 18550
18545 | 18346 | 18 | _ | .0 32
10 32 | - | 0 40 | 8 | 18565 | 18346 | | 28 | 10 24 - 10 3 | | 18571 | 18349 | | 10 | 10 43 - 10 50 | 8
8 | 18562 | 18346 | 18 | | 0 39 | | 0 48 | 8 | 18551 | 18346 | | 30 | 10 45 - 10 5 | | 18572 | 18347 | | 11 | 10 46 - 10 54 | 8 | 18539 | 18345 | 20 | | 1 5 | | 1 17 | 8 | 18570 | 18347 | | 31 | 10 25 - 10 3 | - | 18579 | 18347 | | 12 | 11 18 - 11 31 | 0 | 10/37 | 1034) | 20 | | • • | | / | | | | | | | | | | July 13 - Recording-Room Temperature raised from 16.0 C to 21.0 C. Nov. 4 - " " " lowered Dec. 16 - " " " " " " 16.0 C " 11.0 C. TABLE XIV(A). No observations were made with Magnetometer CASELLA 181 during the Year 1946. TABLE XV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF VERTICAL INTENSITY FROM OBSERVATIONS MADE WITH THE DYE COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS | / | | OF T | HE VERTICAL INT | ENSITY | MAGNETOGRAMS | | | |---|--|---|--|--|--|--|--| | Universal Time | observed
Vertical
Intensity | Value of Base-line | iversal Time | No. No. of ago | Vertical
Intensity
Deduced
Value of
Base-line | No. No. Obs. Obs. Obs. Obs. Obs. Obs. Obs. Obs | Deduced
Value of
Base-line | | h m h m Jan. 1 10 9 - 10 33 2 9 53 - 10 12 3 10 6 - 10 24 4 10 11 - 10 28 5 10 26 - 10 42 8 10 4 - 10 30 9 9 45 - 10 14 | 8 43214 4
8 43206 4
8 43225 4
8 43223 4
8 43218 4 | Y 30 21 Mar. 19 30 20 20 30 21 20 30 21 20 30 20 30 21 30 20 30 21 20 30 21 | 10 1 - 10 30
1 10 17 - 10 39
2 10 11 - 10 32
3 10 17 - 10 40
5 10 29 - 10 54 | 8 43
8 43
8 43
8 43
8 43 | Y Y 3216 43020 3211 43019 3208 43018 3217 43021 3205 43019 3240 43020 3228 43017 | h m h m Y June 8 9 16 - 9 39 8 43222 11 7 38 - 8 5 8 43222 12 9 30 - 9 54 8 43218 13 9 5 - 9 30 8 43222 14 8 58 - 9 20 8 43222 15 9 10 - 9 34 8 43218 17 9 12 - 9 34 8 43214 | 430 21
430 23
430 22
430 24
430 21 | | 10 10 22 - 10 42
11 9 45 - 10 9
12 10 24 - 10 47
14 9 52 - 10 18
15 9 50 - 10 16
16 9 40 - 10 7
17 9 54 - 10 22
18 9 57 - 10 26 | 8 43213 4
8 43222 4
8 43219 4
8 43214 4
8 43216 4
8 43220 4
8 43218 4 | 30 19
30 20
30 20
30 20 | 2 10 7 - 10 32
3 9 50 - 10 14
4 10 13 - 10 34
5 9 50 - 10 8
5 9 52 - 10 14 | 8 43
5 43
8 43
8 43
8 43 | 3244 430 20
3230 430 18
3231 430 19
3222
430 19
3229 430 18
3215 430 17 | 19 9 14 - 9 32 8 43202
21 9 12 - 9 28 8 43224
22 9 19 - 9 34 8 43222
24 9 20 - 9 38 8 43222
27 8 46 - 9 3 8 43222
28 8 53 - 9 19 8 43221 | 430 21
430 20
430 22
430 22
430 23 | | 19 10 5 - 10 35
21 9 56 - 10 30
22 10 11 - 10 38
23 9 40 - 10 4
24 10 24 - 10 50
25 10 35 - 10 58
26 9 32 - 10 7
28 10 28 - 10 47
29 10 1 - 10 28 | 8 43218 4
8 43212 4
8 43220 4
8 43216 4
8 43222 4
8 43219 4
8 43210 4 | 30 21 8
30 22 9
30 20 10
30 20 12
30 20 12
30 19 13
30 19 15
30 18 16 | 10 20 - 10 35
10 36 - 10 53
10 25 - 10 55
2 9 47 - 10 12
10 23 - 10 44
9 16 - 9 43
9 36 - 9 56 | 8 43
8 43
8 43
8 43
8 43
8 43 | 430 20
430 22
430 22
430 18
430 17
430 21
430 18
430 21
431 430 18
432 21
430 20
430 20
430 20
430 19 | July 1 9 23 - 9 46 8 43237
5 8 36 - 8 53 8 43231
6 9 23 - 9 41 8 43222
8 9 25 - 9 45 8 43222
11 9 29 - 9 54 8 43222
12 9 4 - 9 25 8 43222
15 9 6 - 9 37 8 43218
16 8 23 - 8 58 8 43223
17 8 29 - 9 5 8 43218 | 430 20
430 21
430 19
430 19
430 21
430 20
430 21 | | 30 10 15 - 10 41
31 10 0 - 10 25
Feb. 1 9 59 - 10 21
4 9 26 - 9 59
5 9 37 - 10 7
6 9 48 - 10 5 | 8 43204 43
8 43212 43
8 43209 43
8 43217 43
8 43213 43 | 30 19 18
30 21 23
24
26
30 21 27
30 19 29
30 18 30
30 21 | 8 44 - 9 15
9 6 - 9 35
9 8 - 9 24
8 59 - 9 33
9 10 - 9 28
9 21 - 9 42 | 8 43
8 43
4 43
8 43
8 43
8 43 | 430 22
4217 430 22
4250 430 20
4245 430 20
4243 430 22
4231 430 22
4230 430 23 | 18 9 12 - 9 34 8 43217
19 8 54 - 9 25 8 43228
20 8 42 - 9 12 8 43229
22 9 3 - 9 31 8 43213
24 8 26 - 8 53 8 43230
26 8 44 - 9 7 8 43206
29 9 6 - 9 29 8 43237
31 9 13 - 9 38 8 43238 | 430 22
430 27
430 23
430 24 | | 7 9 54 - 10 34
9 10 25 - 10 46
11 10 21 - 10 37
12 9 54 - 10 19
13 9 55 - 10 14
14 9 54 - 10 18
15 9 50 - 10 13
16 10 27 - 10 51 | 8 43248 43
8 43232 43
8 43224 43
8 43245 43
8 43234 43
8 43211 43
8 43220 43 | 30 20
30 23 May 1
30 19 3
30 19 3
30 20 4
30 20 7
30 20 7
30 20 7
30 21 8 | 9 2 - 9 28
9 12 - 9 46
8 22 - 8 52
8 33 - 8 58
8 13 - 8 48
7 50 - 8 13 | 8 43
8 43
8 43
8 43
8 43
8 43 | 430 22
430 22
430 22
1217 430 21
1226 430 23
1221 430 20
13196 430 20
1205 430 20
1232 430 20 | Aug. 2 8 42 - 9 32 8 43242
3 9 15 - 9 37 8 43233
6 9 11 - 9 32 8 43232
7 9 14 - 9 34 8 43234
9 8 45 - 9 6 8 43232
10 9 16 - 9 35 8 43228
12 9 14 - 9 30 8 43233 | 430 27
430 27
430 26
430 26
430 28 | | 18 10 12 - 10 37
19 9 49 - 10 17
20 10 13 - 10 28
21 10 21 - 10 54
22 10 9 - 10 28
23 10 13 - 10 40
25 10 15 - 10 35
26 9 54 - 10 24
27 9 47 - 10 37 | 8 43218 42
8 43226 43
8 43222 43
8 43227 43
8 43229 43
8 43222 43
8 43226 43 | 30 21 10
30 20 11
30 22 13
30 20 14
30 20 15
30 20 16
30 21 17
30 21 18 | 8 3 - 8 30
7 44 - 8 22
8 17 - 8 42
8 52 - 9 25
7 57 - 8 34
8 29 - 9 7
7 57 - 8 37 | 8 43
8 43
8 43
8 43
8 43
8 43 | 430 21
1219 430 21
1213 430 20
1323 430 21
13229 430 21
12231 430 22
12232 430 20
12231 430 23
1225 430 22 | 13 9 22 - 9 56 8 43234
14 9 12 - 9 52 8 43224
15 9 30 - 9 57 8 43231
16 9 15 - 9 40 8 43222
17 9 22 - 9 55 8 43211
19 9 16 - 9 36 8 43222
20 9 23 - 9 39 8 43230
21 9 21 - 9 43 8 43232 | 430 28
430 26
430 24
430 25
430 25
430 24
430 23 | | 28 10 0 - 10 19 Mar. 1 10 6 - 10 27 2 10 30 - 10 53 4 10 6 - 10 28 5 10 18 - 10 43 6 10 22 - 10 45 | 8 43217 43
8 43216 43
8 43220 43
8 43212 43
8 43223 43
8 43220 43 | 30 21 20
21
22
30 20 23
30 21 24
30 21 25
30 21 27
30 20 28 | 9 18 - 9 43
8 43 - 9 20
9 37 - 9 59
9 15 - 9 36
9 22 - 9 56
9 11 - 9 31
9 11 - 9 33 | 8 43
8 43
8 43
8 43
8 43
8 43 | 430 23
1224 430 23
1200 430 20
1227 430 20
1225 430 21
13224 430 23
13225 430 22
1321 430 24
1308 430 22 | 22 9 20 - 9 42 8 43226
23 8 35 - 8 58 8 43236
24 9 26 - 9 42 8 43222
26 8 52 - 9 15 8 43222
28 8 59 - 9 29 8 43220
29 9 21 - 9 44 8 43222
30 9 9 - 9 36 8 43222
31 8 55 - 9 18 8 43222 | 430 26
430 25
430 26
430 25
430 25
430 26 | | 7 10 16 - 10 42
8 10 12 - 10 32
9 10 6 - 10 42
11 10 20 - 10 34
12 10 0 - 10 30
13 10 27 - 10 50
14 10 7 - 10 31
15 10 2 - 10 25
16 10 22 - 10 42
18 10 12 - 10 32 | 8 43210 43
8 43212 43
8 43227 43
8 43220 43
8 43221 43
8 43211 43
8 43209 43
8 43205 44 | 30 18 30
30 19 31
30 19
30 18
30 19 June | 9 3 - 9 24
9 4 - 9 28
9 12 - 9 36
9 14 - 9 52
9 21 - 9 39
9 17 - 9 40 | 8 43
8 43
8 43
8 43
8 43
8 43 | 3226 430 24
3203 430 22
3229 430 23
3229 430 24
3227 430 24
3226 430 22
3222 430 23 | Sept. 2 9 20 - 9 42 8 43224
5 9 15 - 9 39 8 43233
6 8 59 - 9 25 8 43234
7 8 45 - 9 9 8 43218
9 9 19 - 9 44 8 43231
10 9 15 - 9 35 8 43220
11 8 59 - 9 26 8 43224
12 8 42 - 9 18 8 43220 | 43027
43027
43024
43027
43024
43024 | TABLE XV. - RESULTS OF THE DETERMINATIONS OF THE ABSOLUTE VALUE OF VERTICAL INTENSITY FROM OBSERVATIONS MADE WITH THE DYE COIL MAGNETOMETER IN THE MAGNETIC PAVILION AT ABINGER, WITH THE DEDUCED VALUES OF THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS | Univ | versal Time | No.
of
Obs. | Observed
Vertical
Intensity | Deduced
Value of
Base-line | Uni | versa] | L Time | | No.
of
Obs. | Observed
Vertical
Intensity | Deduced
Value of
Base-line | Ţ | Univ | ersal | Time | No
or
Obs | er
ens | Deduced
Value of
Base-line | |---------|---------------|-------------------|-----------------------------------|----------------------------------|---------|--------|--------|------|-------------------|-----------------------------------|----------------------------------|------|------|-------|----------|-----------------|-----------|----------------------------------| | • | h m h m | | Y | Y | | h | m : | h m | | Y | Y | | | h | m h | m | Y | Y | | Sept.13 | 8 46 - 9 8 | 8 | 43226 | 43024 | Oct. 21 | 10 1 | 6 - 10 | 36 | 8 | 43226 | 430 25 | Nov. | 26 | 10 1 | 5 - 10 4 | 2 8 | 43222 | 43023 | | 14 | 8 59 - 9 56 | 8 | 43226 | 43027 | 22 | 10 | 7 - 10 | 36 | 8 | 43222 | 43023 | | 27 | 10 1 | | 6 8 | 43231 | 43023 | | 16 | 9 11 - 9 28 | 8 | 43219 | 43023 | 24 | 10 4 | 0 - 1: | 1 14 | 8 | 43228 | 430 26 | | 28 | | | 2 8 | 43232 | 43026 | | 18 | 9 36 - 9 57 | 8 | 43223 | 43025 | 25 | 10 1 | 5 - 10 | 39 | 8 | 43226 | 430 24 | | 29 | 9 5 | _ | 5 8 | 43232 | 430 26 | | 19 | 9 6 - 9 35 | 8 | 43243 | 43025 | 26 | 10 3 | 1 - 11 | l 14 | 8- | 43222 | 43023 | | 30 | 16 3 | | 4 4 | 43234 | 43023 | | 20 | 8 52 - 9 6 | 8 | 43241 | 430 26 | 28 | 10 3 | 1 - 10 | 53 | 8 | 43228 | 430 27 | | | | | | | | | 21 | 9 13 - 9 29 | 8 | 43248 | 43026 | 29 | 10 | 8 - 10 | 41 | 8 | 43232 | 43024 | | | | | | | | | 23 | 9 8 - 9 26 | 8 | 43235 | 43026 | 30 | 10 2 | 8 - 10 | 45 | 8 | 43233 | 430 24 | Dec. | 1 | 10 | 7 - 10 4 | 8 8 | 43232 | 430 26 | | 26 | 9 15 - 9 37 | 8 | 43242 | 43022 | 31 | 10 2 | 8 - 10 | 44 | 8 | 43230 | 430 25 | | 3 | 12 1 | 8 - 12 3 | 3 8 | 43236 | 430.25 | | 27 | 9 8 - 9 31 | 8 | 43244 | 43026 | | | | | | | | | 4 | 10 53 | 3 - 11 2 | 7 8 | 43232 | 430 25 | | 28 | 9 34 - 9 59 | 6 | 43242 | 43027 | | | | | | | | | 5 | 10 2 | 1 - 10 4 | 4 8 | 43231 | 43026 | | | | | | | Nov. 1 | 10 1 | - | 34 | 8 | 43232 | 430 25 | • | 6 | 10 1 | 5 - 10 5 | 4 6 | 43235 | 43026 | | | | | | | 2 | 10 2 | | | 8 | 43231 | 430 21 | | 7 | 10 30 | - 10 4 | 8 8 | 43225 | 430 27 | | Oct. 2 | 9 50 - 10 19 | 8 | 43246 | 43026 | 5 | 95 | | | 8 | 43227 | 43023 | | 9 | 10 20 | 5 - 10 5 | 0 8 | 43225 | 43027 | | 3 | 9 21 - 9 38 | 8 | 43250 | 43026 | 6 | | 5 - 10 | | 8 | 43237 | 430 23 | | 10 | 9 49 | - 10 | 78 | 43224 | 43025 | | 4 | 9 14 - 9 30 | 8 | 43249 | 43026 | 7 | | 2 - 10 | | 8 | 43236 | 43024 | | 11 | 10 11 | | 2 8 | 43224 | 430 27 | | 5 | 9 18 - 9 33 | 8 | 43244 | 43027 | 8 | | 2 - 10 | | 8 | 43229 | 430 26 | | 12 | 9 45 | | _ | 43233 | 43025 | | 7 | 9 14 - 9 43 | 8 | 43238 | 43024 | 9 | 10 1 | | | 8 | 43233 | 430 26 | | 13 | 11 29 | - | 1 8 | 43230 | 43027 | | 8 | 10 16 - 10 41 | 8 | 43228 | 43026 | 11 | 10 30 | | | 8 | 43235 | 43027 | | 14 | 10 14 | | 8 8 | 43232 | 430 28 | | 9 | 10 27 - 10 42 | 8 | 43229 | 43024 | 12 | 9 5 | | - | 8 | 43241 | 43025 | | 18 | 10 27 | - 10 4 | 9 4 | 43223 | 430 25 | | 10 | 10 16 - 10 39 | 8 | 43226 | 43023 | 13 | 9 | | | | 43242 | 43025 | | 19 | 10 14 | | 78 | 43231 | 43027 | | 11 | 10 10 - 10 39 | 8 | 43230 | 430 24 | 14 | 8 5 | | 55 | | 43241 | 430 25 | | 20 | 9 43 | | 28 | 43237 | 43028 | | 12 | 10 24 - 11 1 | 8 | 43231 | 43027 | 15 | 9 4 | • | 17 | 8 | 43230 | 430 25 | | 21 | 10 19 | | _ | 43235 | 430 29 | | 14 | 10 23 - 10 36 | 4 | 43227 | 43028 | 16 | 10 20 | | 48 | | 43239 | 43024 | | 23 | 10 25 | - | - | 43224 | 43027 | | 15 | 9 50 - 10 21 | 8 | 43235 | 43027 | 18 | 9 5 | | | | 43236 | 430 26 | - | 24 | 9 46 | | - | 43235 | 430 28 | | 16 | 10 4 - 10 42 | 8 | 43236 | 43027 | 19 | 9 5 | | | | 43237 | 43025 | | 27 | 9 23 | | | 43234 | 43030 | | 17 | 10 17 - 10 38 | 8 | 43222 | 43022 | 20 | 10 2 | | 53 | 8 | 43238 | 43027 | | 28 | 10 4 | | | 43236 | 430 28 | | 18 | 9 54 - 10 8 | 8 | 43222 | 43024 | 21 | 10 1 | | | 8 | 43239 | 43028 | | 30 | 10 20 | | - | 43228 | 43026 | | 19 | 10 16 - 10 34 | 8 | 43223 | 43026 | 22 | 10 19 | - 10 | 39 | 8 | 43239 | 430 27 | | 31 | 9 44 | - 10 1 | 7 8 | 43233 | 43028 | July 13 - The Recording-Room Temperature was raised from 16.0 C to 21.0 C. Nov. 4 - " " " " lowered " 21.0 C " 16.0 C. Dec. 16 - " " " " " " " " " 16.0 C " 11.0 C. TABLE XV(A). - DAILY VALUE OF
THE BASE-LINE OF THE VERTICAL INTENSITY MAGNETOGRAMS AT THE ABINGER MAGNETIC STATION, DEDUCED FROM OBSERVATIONS OF MAGNETIC DIP MADE WITH THE EARTH INDUCTOR | Day | January | February | March | April | May | June | July | August | September | October | November | December | |-----|----------|------------------|--------|--------|-------|--------|------------|--------|-----------|---------|----------|--------------| | | Y | Y | Y | Y | Y | Y | Y | Y | Υ | Y | Y | Y | | 1 | 43023 | 43029 | 43022 | - | 43023 | 430 24 | 43024 | 43030 | - | 43025 | - | - | | 2 | 430 27 | - | - | 43018 | 43020 | - | - | 430 27 | 43027 | 43025 | - | 43025 | | 3 | - | . - | 43025 | - | 43024 | 43022 | - | 43031 | - | 43025 | - | - | | 4 | 43027 | 43027 | 43031 | 43018 | 43023 | 43024 | - | - | - | 430 28 | - | - | | 5 | 43026 | 430 26 | 43028 | 43019 | | 43026 | 43020 | - | 43027 | 43025 | - | 430 28 | | 6 | - | 43026 | 43027 | 43022 | 43021 | 43022 | 43021 | 43031 | 43025 | - | 43023 | 43026 | | 7 | - | - | 43029 | - | 43024 | - | - | 43027 | 43026 | 43024 | 43024 | 43026 | | 8 | 43025 | - | 43032 | 43012 | - | - | 43020 | 43031 | - | 43028 | 430 23 | - | | 9 | 430 28 | 43025 | 43025 | 43019 | 43021 | - | - | 430 27 | - | 43026 | 43023 | 430 27 | | 10 | 43029 | , - . | - | - | 43022 | - | - • | 430 29 | 43031 | 43024 | - | 43027 | | 11 | - | 43025 | 43031 | 430 20 | - | 43021 | 43024 | - | 43026 | 43023 | 430 25 | 43025 | | 12 | 43027 | 43025 | 43032 | 430 20 | - | 43023 | 430 25 | 43026 | 43027 | 43024 | 430 28 | 43027 | | 13 | - | 43027 | 43031 | 43021 | 43024 | 43022 | 43023 | 43028 | 43026 | - | 43025 | 43027 | | 14 | 43030 | 43024 | 43033 | - | 43024 | 43025 | | 43029 | - | 430 26 | 43029 | 43026 | | 15 | 43028 | 43030 | 43025 | 43021 | 43023 | 43023 | 43026 | 430 29 | - | - | 430 26 | - | | 16 | 43031 | 43027 | 43028 | 43020 | 43018 | • | 430 29 | 43030 | 43024 | 43028 | - | - | | 17 | 43028 | - | _ | 43020 | 43022 | 43023 | 43026 | 43029 | - | 43023 | - | | | 18 | 43027 | 43029 | 43029 | 43021 | 43023 | - | 430 26 | - | - | 430 26 | 430 22 | 43028 | | 19 | 43028 | 43027 | 43020 | - | - | 430 24 | 43025 | 43023 | 43024 | 43027 | 43025 | 43026 | | 20 | - | 43024 | 43021 | - | 43021 | - | 43027 | 43024 | 43021 | - | 43024 | 43027 | | 21 | 430 29 | - | 430 19 | - | 43021 | 430 27 | - | 43029 | 430 26 | 430 25 | 43026 | 43028 | | 22 | 43024 | 43026 | 430 26 | - | 43020 | 43022 | 43026 | 430 25 | - | - | 430 25 | - | | 23 | 430 24 | 43029 | 43017 | 43018 | 43019 | _ | - | 430 25 | 43026 | - | 43023 | 43029 | | 24 | 430 27 | - | - | 430 19 | 43025 | 43022 | - | 430 30 | 430 28 | - | - | 43028 | | 25 | 43025 | 430 25 | - | 43022 | 43030 | · - | - | - | 43029 | - | 430 27 | - | | 26 | 43025 | 430 26 | _ | 43017 | - | - | 43026 | 43031 | 43025 | - | 43025 | - | | 27 | _ | 43030 | 43018 | 43020 | 43032 | 43025 | _ | | 430 25 | - | 43026 | 430 27 | | 28 | 43028 | 430 20 | - | - | 43024 | 43025 | - | 43032 | 43023 | - | 43027 | 430 27 | | 29 | 43025 | | - | 430 20 | 43026 | 43024 | - | 43030 | - | - | 43026 | - | | 30 | 43030 | | 43017 | 43024 | 43031 | - | 43027 | 43031 | 430 24 | - | 43023 | 43027 | | 31 | 43029 | | _ | | 43023 | | 43026 | 43028 | | _ | | 43030 | Mar. 19 - The Inductor bearings were tightened. July 13 - The Recording-Room Temperature was raised from 16.0 C to 21.0 C. Nov. 4 - " " " " lowered " 21.0 C " 16.0 C. Dec. 16 - " " " " " 16.0 C " 11.0 C. Oct. 22-Nov. 5 - The Inductor was dismounted for a general overhaul, in the course of which new bearings were fitted. TABLE XVI(A). - MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS DETERMINED AT THE ROYAL OBSERVATORY, GREENWICH, BETWEEN THE YEARS 1818-1925. | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Dip | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Dip | |------|---------------------|-------------------------|-----------------------|-----------------|------|---------------------|-------------------------|-----------------------|--------------------| | - | 0 / | C.G.S.Unit | C.G.S.Unit | 0 / | | 0 / | C.G.S.Unit | C.G.S.Unit | 0 / | | 1818 | 24 19 † | • • | •• | • • | 1882 | 18 22.3 | 0. 1806 | 0.4375 | 67 34.2 | | 1819 | 24 21 | | | | 1883 | 18 15.0 | 0. 1812 | 0.4381 | 67 31.7 | | 820 | 24 21 | | | | 1884 | 18 7.6 | 0. 1814 | 0.4379 | 67 29.7 | | 841 | 23 16. 2 | • • | | | 1885 | 18 1.7 | 0.1817 | 0.4380 | 67 28.0 | | 842 | 23 14.6 | • • | • • | | 1886 | 17 54. 5 | 0.1818 | 0.4377 | 67 27.1 | | 843 | 23 11.7 | • • | | 69 0.6 | 1887 | 17 49.1 | 0. 1819 | 0.4380 | 67 26.6 | | 844 | 23 15.3 | | | 69 0.3 | 1888 | 17 40.4 | 0.1822 | 0.4383 | 67 25.6 | | 845 | 22 56.7 | • • | • • | 68 57.5 | 1889 | 17 34.9 | 0. 1823 | 0.4380 | 67 24.3 | | 846 | 22 49.6 | 0.1731 | | 68 58.1 | 1890 | 17 28.6 | 0. 1825 | 0.4381 | 67 23.0 | | 847 | 22 51.3 | 0.1736 | •• | 68 59.0 | 1891 | 17 23. 4 | 0.1827 | 0.4380 | 67 21.5 | | 848 | 22 51.8 | 0.1731 | •• | 68 54 √7 | 1892 | 17 17.4 | 0. 1829 | 0.4379 | 67 20.0 | | 849 | 22 37.8 | 0.1733 | •• | 68 51.3 | 1893 | 17 11.4 | 0.1831 | 0.4373 | 67 17.9 | | 850 | 22 23.5 | 0. 1738 | •• | 68 46.9 | 1894 | 17 4.6 | 0. 1831 | 0.4374 | 67 17.4 | | 851 | 22 18.3 | 0.1744 | •• | 68 40.4 | 1895 | 16 57.4 | 0. 1834 | 0.4378 | 67 16. 1 | | 852 | 22 17.9 | 0.1745 | | 68 42.7 | 1896 | 16 51.7 | 0.1835 | 0.4382 | 67 15.1 | | 853 | 22 10.1 | 0.1748 | | 68 44.6 | 1897 | 16 45.8 | 0.1838 | 0.4377 | 67 13.5 | | 854 | 22 0.8 | 0.1749 | | 68 47.7 | 1898 | 16 39. 2 | 0.1840 | 0.4377 | 67 12.1 | | 855 | 21 48.4 | 0. 1756 | | 68 44.6 | 1899 | 16 34. 2 | 0. 1843 | 0.4380 | 67 10.5 | | 856 | 21 43.5 | 0.1759 | • • | 68 43.5 | 1900 | 16 29.0 | 0. 1846 | 0.4380 | 67 8.8 | | 857 | 21 35.4 | 0.1769 | • • • | 68 31.1 | 1901 | 16 26.0 | 0. 1850 | 0.4381 | 67 6.4 | | 858 | 21 30.3 | 0.1762 | | 68 28.3 | 1902 | 16 22.8 | 0.1852 | 0.4377 | 67 3.8 | | 859 | 21 23.5 | 0.1761 | • • | 68 26.9 | 1903 | 16 19. 1 | 0.1852 | 0.4368 | 67 1.2 | | 860 | 21 14.3 | • • | | 68 30. 1 | 1904 | 16 15.0 | 0.1854 | 0.4359 | 66 57.6 | | 861 | 21 5.5 | 0.1773 | • • | 68 24.6 | 1905 | 16 9.9 | 0.1854 | 0. 4355 | 66 56.3 | | 1001 | • | | | | 1906 | 16 3.6 | 0.1854 | 0.4353 | 66 55.6 | | 861 | | 0. 1759 | | 68 15.8 | 1907 | 15 59.8 | 0. 1855 | 0.4357 | 66 56. 2 | | 862 | 20 52.6 | 0.1763 | 0.4403 | 68 9.6 | 1908 | 15 53.5 | 0.1854 | 0.4356 | 66 56.3 | | 863 | 20 45.9 | 0.1764 | 0.4396 | 68 7.0 | 1909 | 15 47.6 | 0.1854 | 0.4348 | 66 54. 1 | | 864 | | 0.1767 | 0.4393 | 68 4.1 | 1910 | 15 41.2 | 0. 1855 | 0.4345 | 66 52.8 | | 865 | 20 33.9 | 0. 1767 | 0. 4388 | 68 2.7 | 1911 | 15 33.0 | 0.1855 | 0. 4342 | 66 52.1 | | 866 | 20 28.0 | 0.1773 | 0.4397 | 68 1.3 | 1912 | 15 24.3 | 0. 1855 | 0.4340 | 66 51.8 | | 867 | 20 20.5 | 0. 1777 | 0.4392 | 67 57.2 | 1913 | 15 15. 2 | 0. 1853 | 0. 4333 | 66 50.5 | | 868 | 20 13.1 | 0. 1779 | 0. 4395 | 67 56.5 | | | | | | | 869 | 20 4. 1 | 0.1782 | 0.4396 | 67 54.8 | | | | 0 /000 | | | 870 | 19 53.0 | 0.1784 | 0.4392 | 67 52.5 | 1914 | 15 6.3 | 0.1853 | 0.4333 | 66 50.8 | | 871 | 19 41.9 | 0. 1786 | 0.4389 | 67 50.3 | 1915 | 14 56.5 | 0. 1851 | 0.4331 | 66 51.6 | | 872 | 19 36.8 | 0.1789 | 0. 4383 | 67 47.8 | 1916 | 14 46. 9 | 0.1848 | 0.4326 | 66 52.2 | | 873 | 19 33.4 | 0.1793 | 0.4386 | 67 45.8 | 1917 | 14 37. 1 | 0. 1848 | 0.4330* | 66 53.0
66 52.8 | | 874 | 19 28.9 | 0.1797 | 0.4387 | 67 43.6 | 1918 | 14 27.8 | 0. 1846 | 0. 4325 | | | 875 | 19 21.2 | 0.1797 | 0.4383 | 67 42.4 | 1919 | 14 18. 2 | 0. 1845 | 0.4324 | 66 53.3 | | 876 | 19 8.3 | 0.1799 | 0.4383 | 67 41.0 | 1920 | 14 8.6 | 0. 1845 | 0. 4325 | 66 53.6 | | 877 | 18 57.2 | 0.1800 | 0.4381 | 67 39.7 | 1921 | 13 57.6 | 0. 1845 | 0.4322 | 66 53.0 | | 878 | 18 49.3 | 0.1802 | 0.4382 | 67 38.2 | 1922 | 13 46.7 | 0. 1844 | 0.4318 | 66 52.3
66 51.9 | | 879 | 18 40.5 | 0.1805 | 0.4382 | 67 37.0 | 1923 | 13 35.1 | 0.1843 | 0.4314 | 66 51.6 | | 880 | 18 32.6 | 0.1805 | 0.4380 | 67 35.7 | 1924 | 13. 22. 8 | 0. 1843 | 0. 4311 | | | 1881 | 18 27.1 | 0. 1807 | 0.4379 | 67 34.7 | 1925 | 13 9.9 | 0.1841 | 0. 4308 | 66 51.4 | In 1818, 1819 and 1820 numerous observations of Declination were made with a Dolland needle. In 1861 new Unifilar Apparatus for absolute Horizontal Intensity and the Airy Dip-Circle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused a suspension of Declination Observations. From 1914 the Dip was determined with an Inductor. N.B. - In the above table the values of Vertical Intensity for the years 1862-1913 inclusive were computed from the corresponding values of Horizontal Intensity and Dip, the values of Dip being the mean of all the absolute observations taken in any year, and the time of observation approximating to noon on the average. Beginning with 1914 the values of Dip have been computed from the corresponding annual mean values of Horizontal and Vertical Intensity. [†] Mean of seven months June to December. ^{*} Mean of ten months, March to December. TABLE XVI(B). - MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS DETERMINED AT THE ABINGER MAGNETIC STATION, FOR THE YEARS 1925-1946. | Year | Declination
West | Horizontal
Intensity | Vertical
Intensity | Inclination | | |-------|---------------------|-------------------------|-----------------------|-------------|--| | | 0 / | C.G.S.Unit | C.G.S.Unit | 0 / | | | 1925 | 13 22.7 | 0. 18597 | 0. 42946 | 66 35.1 | | | 1926 | 13 10.4 | 0.18581 | 0.42947 | 66 36.3 | | | 19 27 | 12 58.4 | 0. 18575 | 0.42932 | 66 36.2 | | | 1928 | 12 47.0 | 0. 18564 | 0.42941 | 66 37.3 | | | 1929 | 12 35.8 | 0.18555 | 0.42918 | 66 37.2 | | | 1930 | 12 24.6 | 0.18542 | 0.42924 | 66 38.2 | | | 1931 | 12 13.7 | 0.18543 | 0.42923 | 66 38.1 | | | 1932 | 12 2.6 | 0.18536 | 0.42940 | 66 39.1 | | | 1933 | 11 51.7 | 0.18532 | 0.42942 | 66 39.4 | | | 1934 | 11 41.1 | 0. 18533 | 0.42955 | 66 39.7 | | | 1935 | 11 30.3 | 0. 18527 | 0.42981 | 66 40.9 | | | 1936 | 11 20.0 | 0.18524 |
0.43007 | 66 41.8 | | | 1937 | 11 10.4 | 0.18522 | 0.43031 | 66 42.7 | | | 1938* | 11 1.4 | 0.18522 | 0.43050 | 66 43.2 | | | 1939 | 10 51.9 | 0. 18528 | 0.43074 | 66 43.5 | | | 1940 | 10 43.0 | 0.18533 | 0.43099 | 66 43.9 | | | 1941 | 10 33.8 | 0.18539 | 0.43128 | 66 44.3 | | | 1942 | 10 24.8 | 0.18554 | 0.43146 | 66 43.9 | | | 1943 | 10 16.2 | 0. 18556 | 0.43172 | 66 44.5 | | | 1944 | 10 7.8 | 0. 18566 | 0.43189 | 66 44.3 | | | 1945 | 9 59.5 | 0. 18573 | 0.43207 | 66 44.3 | | | 1946 | 9 51.1 | 0. 18569 | 0.43235 | 66 45.4 | | The values of Inclination are computed from the corresponding values of horizontal and vertical intensity. Commencing with the years 1927 and 1929 respectively, the values of horizontal and vertical intensity are based upon observations with Coil-magnetometers. * Discontinuities of -1.77 in H and -3.97 in Z were introduced in 1938. See Introduction pp.x and x1. January. There were two or three unimportant movements on 1st and 2nd, the traces being otherwise fairly steady, but at $3^{d}8^{h}10^{m}$ there was a sudden rise in activity and two hours later this developed quickly into a storm of considerable magnitude. The most active stage was from 15h to 22h and included a range of 1907 in Z. During the same period declination moved approximately 20' eastwards and horizontal intensity remained about 100 y below its normal value. A brief revival of activity occurred between 4d15h and 23h, the principal movements being a wave in D (15'E) at 16h and a wave in H (-100y) at 19th. Conditions then became relatively quiet, with occasional small isolated bays appearing on the traces. Unsteadiness gradually increased after 8d. A prominent wave occurred in H (+80y) and in D (12'W) at 11d5ah and another in D (12'E) at 11d21h. There were spells of marked unsteadiness from 15d20h to 16d6h and from 17d17h to 18d1h. These were followed by a short minor disturbance lasting from $18^{d}14^{h}$ to $19^{d}4^{h}$ in which, however, no movement exceeded about 50%. A quiet period from 20d8h to 21d18h was followed by one of great unstradiness which, at about 23d20h, merged into one of moderate disturbance. Prominent waves occurred in H at $23^{d}22\frac{1}{2}^{h}$ (+100 γ) and at $24^{d}13\frac{1}{2}^{h}$ (-80 γ); in D at $23^{d}22\frac{1}{2}^{h}$ (20'E) and at $24^{d}19\frac{1}{2}^{h}$ (12'E). The disturbance ceased soon after 24dOh though marked unsteadiness still prevailed for another 48 hours and there was a prominent wave in both the D and H traces at 26d172h; but there was a general tendency to quiet conditions during the remaining days. The range in declination during the month was from 9°30'.6 on 23rd to 10°13'.1 on 3rd; in horizontal intensity, from .18385 on 3rd to .18642 on 23rd; in vertical intensity, from .43169 on 4th to .43363 on 3rd. February. Conditions were rather unsteady at the beginning of the month. At 3d13h43m there was an abrupt movement in all traces followed by a marked increase of unsteadiness but no actual disturbance developed, the largest movement being a double wave in H at $6^{dO_{2}^{h}}$ (±40 γ). There was also a prominent wave in D (9'E) at 7dOh. Signs of increasing activity appeared at 7d7h and then, with great suddenness at 7d10h20m, a great storm began which developed immediately and continued with varying intensity until 9dOh. The climax was reached at about 8d1h after which the ranges rapidly decreased. A characteristic of the storm was the frequency of the oscillations in field intensity, especially during the periods $7^{d}13^{h}$ to 16^{h} and $8^{d}7^{h}$ to 12^{h} , when ranges approaching 100 y occurred four or five times within ten minutes on several occasions. The extreme ranges in the three elements respectively during the storm were $1^{\circ}17'$ in D, 525 γ in H and 375 γ in Z. The traces of the principal part are reproduced in Plates I and II. Conditions remained unsteady, in general, until 12d0h. In particular there was an easterly movement in D (18'), between 10d7h and 8h, accompanied by irregular oscillation in H. Unsteadiness was renewed from 12d14h to 13d15h. A short quiet period followed and then a spell of moderate activity of which the most notable features were: a decrease in H (70y) between 14d7th and 9h accompanied by a wave in D (14'W); a sudden increase in H (90Y) at 14d17h37m followed immediately by a partial return; a counterpart of this movement in Z (+30y); two further sharp peaks in H, (+80y at 1931 and +100y at 203h); an oscillatory movement in D (15'W) between 15d2h and 4h accompanied by smaller movements in H (+50y) and Z (-25y). Activity declined rapidly after 15d8h, but general unsteadiness remained excepting a quiet period from 17d8h to 18d0h. At 19d14h59m there was another sudden movement in all traces, resembling the commencement of a large disturbance. The change in H was +70\u03c3. The activity which followed immediately was short-lived, its principal features being a sharp peak in H (+90γ) and in D (17'E) and a temporary increase in Z (70γ) between 19d19h and 22h. Later, however, a disturbance of considerable intensity developed, the first movement in which was shown on the traces at 20d183h. Full development was not attained until 21h. An oscillatory decrease in H (120y) between 20d20th and 21d1h was accompanied by a similar though much smaller decrease in Z, the latter persisting until 21d7h. In the same period irregular movements in D covered a range of 32'. After 21d7h activity declined somewhat, but many irregular movements continued to appear on the traces during the two succeeding days and a state of relative quiescence was not reached until 24d2h. Further activity ensued between 24d18h and 25d6h, the largest movement in which, however, did not exceed 50%. Unsteadiness then gradually diminished and from 27d1h conditions were quiet. The range in declination during the month was from 9°9.3 to 10°26.9 both on 7th; in horizontal intensity, from .18224 on 8th to .18750 on 7th; in vertical intensity, from .42980 on 8th to .43355 on 7th. March. A sudden movement in all traces at 1d1h38m initiated a brief period of disturbance lasting for about eight hours. The movement in H was an increase of 60y and this was the largest, the whole range in H being only 1107. The range in D was 15' and that in Z, 407, almost all of which occurred between 1d4h and 5h. Conditions remained very unsteady during 2nd and 3rd and there was a prominent peak in H (+80 γ) at $2^{d}O_{\frac{1}{2}h}$. On 4th activity increased to the dimension of moderate disturbance, there being a range of 120γ in H between 21½h and 22½h accompanied by irregular changes in D exceeding 10' and followed by a temporary decrease in Z (30y). A sudden decrease in H (80y) occurred at 5d11h29m which however soon passed, though many fluctuations of the order of 20 y were registered during the next two days. A temporary return to quieter conditions was shown from 8dOh to 9d12h, and then considerable disturbance began to develop. The first movement occurred at 9d13ah; a period of irregular fluctuation in H accompanied by an easterly trend of 20' in D lasted from 16h to 21h; a period characterised by spells of extremely rapid oscillation began with a sudden movement in all traces at 10d1h52m (+80y in H, 10'W in D) and ended about 10d18h; this was succeeded by the culminating stage, from 10d19h to 11d3h, during which large irregular fluctuations in all elements were registered, the ranges being 120y in H, 80y in Z and 28' in D. After 11d3h activity rapidly subsided, but the disturbance had not wholly ceased at the end of 11th. Nearly quiet conditions were established by 12d2h. These lasted only a few hours, the general character being one of slight unsteadiness until 16d21h. Unsteadiness then increased in a marked degree and two rather prominent waves occurred in D at 17d17h and 21h respectively, the second just exceeding 10' (eastwards). During the interval 18d16h to 19d20h unsteadiness was slight. If then increased again - markedly between 19d20h and 20d1h and between 20d11h and 21^d5^h - until 21^d16^h when about twelve hours quiescence set in, to be terminated by a prolonged period of disturbance. This began abruptly at 22d5h40m. The first six hours were characterised by rapid rather than large changes in the field. There followed about thirty-six hours of minor disturbance before the development of "storm" conditions at 23d232h. The storm continued until 26^{d7h} . There were three main stages: the first, from 24^{d0h} to 5^h , was notable for diminished values of both H and Z shown by two separate bays of 150γ in each trace, the second, from $25^{\rm d}0^{\rm h}$ to $9^{\rm h}$, which comprised movements up to 200 γ in H and 30' in D, together with a temporary slow decrease in Z of 150y; the third, from 25d11h to 26d2h (in which the climax was reached), remarkable for numerous large oscillations, and for the high value attained by Z (nearly 43700y) during the hour 15 to 16. The extreme ranges during the storm were 88' in D 420Y in H and 610Y in Z. The traces are partly reproduced in Plates II and III. Considerable disturbance continued to show during 26th and 27th and then at 28d6h36m, began, suddenly, what proved to be the most intense magnetic storm since that of 1941 March 1. It was relatively short-lived, being over by 29d2h, but during the most active stages that is between 12h and 15h, the movements were so large and rapid that the traces became difficult to follow. A short revival of violent activity occurred around 20h and included the most easterly movement of the declination needle, after which the storm rapidly subsided. The ranges during this disturbance were 162' in D 1661y in H and 918y in Z (Plates IV and V). A large number of small oscillations took place in H and Z between 29d82h and 17h. The amplitude of these gradually diminished, but for the remainder of the month the traces exhibited marked
irregularity. The range in declination during the month was from 8°35'.1 to 11°16'.8 in horizontal intensity, from .18072 to .19733; all on 28th; in vertical intensity, from .42708 on 28th to .43678.on 25th. April. The prevailing character during the earlier days of the month was the general unsteadiness of the field. A prominent wave in all traces occurred at 2^d21^h and there was a period of considerable activity, from 9^d8½^h to 10^d3^h during which Z increased 70y in three hours. A relatively quiet spell lasted from 10^d2^h to 12^d10^h. From 12^d19½^h brisk activity was continuous until 15^d20^h, and in the period from 14^d11^h increased almost to "storm" dimensions. Between 15^d12½^h and 15½^h Z rose 90y, afterwards slowly diminishing until 20^h, the whole range during the disturbance being 117y. A short spell of unsteadiness between 16^d20^h and 17^d4^h was followed by relative quiet until 20^d20^h, after which conditions became substantially quiet until 22^d7^h. At 22^d6^h59^m activity suddenly recommenced - at first inconsiderable, but gradually increasing. Much fluctuation in H was shown between 22^d16½^h and 20½^h, including a sudden decrease of 80y at 18^h39^m. At 23^d7^h a rapid decrease in H began amounting to 130y in three hours. This was the initial stage of a great storm in which the ranges were 91' in D, 580y in H and 570y in Z. The full development was delayed until about 23^d14^h; the climax was reached at 23^d23½^h, by 24^d6^h a great declime had set in, which, with the exception of one large wave movement at 24^d16½^h (amounting to +200y in H), continued until the virtual end of the storm at $25^{d}3^{h}$. The traces are in part reproduced in Plate VI. After a period of quiet lasting from $25^{d}8^{h}$ to $26^{d}10^{h}$, the prevailing state of general unsteadiness returned (though a second quiet spell intervened from $27^{d}4^{h}$ to $28^{d}12^{h}$) and remained to the end of the month. The range in declination during the month was from 8°44'.2 to 10°15'.0, both on 23rd, in horizontal intensity from .18147 on 23rd to .18729 on 24th; in vertical intensity, from .42886 to .43457, both on 23rd. May. Numerous small irregular movements appeared on the traces during the first five days, but activity was not notable until 5^d22^h , when both range and frequency began to increase. A peculiar abrupt displacement of all traces lasting for nine minutes occurred at 6d4h26m (+35y in H; 6'W in D) and was followed by a period of continuous small-scale agitation accompanied by some prominent movements. Among these may be mentioned a wave in H (-80 γ) at $6^{d}6^{\frac{1}{2}h}$; a double wave in all traces at 6d17h40m, (±35y in H); a large steep wave in H at 6d22h30m (+150y) accompanied by similar though smaller waves in D (28'E) and Z (±25y); a wave in D at 7d6h (15'W); a temporary decrease in Z from $7^{d}5^{3h}_{\pi}$ (40 γ). Activity decreased markedly after $7^{d}15^{h}$ but was resumed at $8^{d}5^{h}$. A wave in H at 8^d6^h (-90 γ) was followed at 6^h54^m by an extremely sharp double wave in the same element (±457) the whole movement occupying only two minutes of time. A train of irregular sharp oscillatory movements in all traces began at 8d13h lasting until 192h, after which they became undulatory in character and gradually increased in amplitude. Among the most prominent in H were waves at $8^{d}23^{3h}$ (+90 γ), at $9^{d}15^{h}$ (+80 γ) and $9^{d}18^{2h}$ (+70 γ). Each was accompanied by a rather smaller wave in the other two elements, and there was a considerably enlarged diurnal range in Z (125y). Traces remained subject to much minor disturbance throughout 10d. This rapidly increased after 11d6h, the most notably feature being a large wave in H between 11d7h and 9h (-140Y) with a sharp accompanying movement in D (20'W). An abrupt movement occurred at 11d12h50m (-60γ in H) but an increase of 100γ in H at 14½h restored this element to its normal value. After 12dOh the prevailing characteristic was a general unsteadiness which, between 14d1Oh and 15d11h, diminished almost to quiet conditions. Increased activity was shown from 17d12h, one movement in H amounting to -807. Nearly quiet conditions were re-established by $18^{ m d}20^{ m h}$ and continued until 20^d15^h . A period of considerable activity began at 20^d16^h , lasting for about six full days, in which the interval between 21^d15^h and 24^d3^h was the most disturbed. Several individual movements in H exceeded 100 γ , one at $22^{d}6^{h}$ being particularly noteworthy (-120 γ), while diurnal ranges approaching 100Y occurred each day in Z. After 25d20h activity declined rapidly and from 27d0h nearly quiet conditions became apparent. These lasted for only twelve hours, however, and then general unsteadiness set in once more to persist through the remainder of the month. The range in declination during the month was from 9°32'.5 on 6th to 10°8'.6 on 8th; in horizontal intensity, from .18448 on 11th to .18739 on 6th; in vertical intensity, from .43178 on 7th to .43315 on 9th. June. Conditions were nearly quiet until 4^d13^h when marked unsteadiness began in horizontal intensity. This ceased at about 20^h , quiet conditions being resumed until 5^d19^h . At $5^d20^h10^m$ there was an abrupt movement in all traces - +70 γ in H - followed by considerable unsteadiness, but not by active disturbance, until 7^d8^h . Disturbance began at $7^d7^h40^m$ and quickly developed. The largest movements were recorded in the early stages the maximum range in H, (160 γ), occurring between 7^d14^h and 143^h . There was a nearly steady increase in Z (130 γ) between 7^d12^h and 17^h which declined, generally, during the next nine hours to normal value. A second period of brisk activity was recorded between 8^d14^h and 9^d4^h . The movements were again chiefly in H, notably one at 8^d15^h (-130 γ), and diminished rapidly after 9^d0^h . Great unsteadiness persisted, however, until 12^d13^h , when further brisk activity developed. A sharp increase in H (80 γ) at 12^d13^h , followed by a general increase in Z (40 γ) during the next three hours, was succeeded by smaller oscillations at irregular intervals until 13^d5^h , by which time Z had returned to normal intensity. During 13th 14th and 15th there was much unsteadiness and this, after almost disappearing on 16th, increased rapidly towards the end of the day, reaching the dimensions of a moderate disturbance between 16^d20^h and 17^d8^h . A series of oscillatory movements in all elements, superposed on a general decrease in H (130 γ) and in Z (70 γ), was the principal feature. After 17^d1^h H increased again to normal, and declination also changed 18' westward to a normal value. Irregular movements appeared occasionally during 18th. From 18^d16^h these became very numerous, seldom however, greater than about 30γ in amplitude, and this state of unsteadiness persisted in a gradually diminishing degree until 23^d10^h . Nearly quiet conditions existed from 24^d0^h to 18^h and then the prevailing unsteadiness re-appeared. At $27^d17^h30^m$ an abrupt movement in all traces (+50 γ in H) had the semblance of a "sudden commencement". The disturbance which followed, however, was slight (though oscillations were very numerous) until 29^d12^h , when a short period of brisk activity began, during which a range of 185γ occurred in H and 110γ in Z. Activity ceased at 30^d1^h , after which only a few small irregularities were recorded. The range in declination during the month was from 9°34'.6 on 17th to 10°8'.0 on 8th; in horizontal intensity, from .18475 on 7th to .18728 on 29th; in vertical intensity, from .43187 on 19th to .43326 on 7th. July. A series of small irregular oscillations, chiefly in H, extended from $1^d 14\frac{1}{2}^h$ to 21^h and was followed by a temporary decrease in H (60Y) between $2^d 6^h$ and 14^h . Further small irregular movements between 2d17h and 24h preceded an abrupt movement in all traces which occurred at 3d1h20m. The largest movement was in H (+25y). No marked disturbance followed, but there was a spell of increased unsteadiness lasting until about 3d22h. A period of nearly quiet conditions then began which was terminated by unsteadiness, developing from about 6d14h. This merged into a state of brisk activity between 7d3h and 20h, the main features of which were waves in H at $7^{d}4^{h}$ (+60 γ) and $7^{d}17^{\frac{1}{2}h}$ (+80 γ) and short spells of more or less regular oscillation, having the appearance of "pulsations", in all traces. The most conspicuous of these was recorded between 7^d63^h and 7^h. Considerable unsteadiness with similar characteristics prevailed until 12^d0^h when a quiet spell began, lasting for about thirty-six hours. Activity was renewed at 14d12h. Waves in H (+90 γ) occurred at $14^d 16^{\frac{1}{2}h}$ and $17^{\frac{1}{2}h}$ and were accompanied by an enlarged diurnal range in Z (70 γ). Partial relaxation on 15th was followed at $16^d 10^h$ by a return to a state of incessant movement, occasionally regular, but generally quite irregular, with amplitudes of 10 to 20 y in H and less in the other elements. At $18^{d}14^{h}15^{m}$ an abrupt increase in H (70Y), with smaller movements in D and Z, began a period of moderate disturbance. The principal feature was a wave in H $(+150\gamma)$ at 18^d16½h, but several other movements exceeded 50Y and the whole range in Z was 95Y. Conditions became much steadier from 20d0h. At 21d10h, however, the prevailing unsteadiness returned, to continue in varying degree until the outbreak of the great storm on 26th. Periods of special activity, when unsteadiness amounted to "mild disturbance", occurred at 23d11h to 21h and 25d16h to 26^d6^h. Activity was still marked when, at
26^d18^h46^m a suddem movement took place in all traces, which initiated a great storm. The movement in H was an increase of no less than 320γ in two minutes of time, while that in Z was an increase of 90% in the same interval. The storm was at its climax between $27^{d}1^{h}$ and 7^{h} after which time it rapidly subsided, being virtually over by 27d10h, though great unsteadiness prevailed for a further twelve hours. The extreme ranges during the storm were, respectively, 76' in D, 925y in H and 615y in Z. The traces are reproduced in Plate VIII. A further disturbance began at 28d12h which ultimately reached the dimensions of a small storm. There was a notable increase of H (100Y) between 29d17h and 18h, preceded at 16 h 40m by a very sharp wave (+150y), but the remarkable feature of the disturbance was a long series of nearly regular "pulsations" in all elements. The first small examples appeared at 29d3h55m, and then intermittently during the next two hours. From 6h38m they were continuous and more or less regular until 11h25m and persisted, with less regularity almost until 29d16h. These pulsations, which in H had a amplitude (i.e. range) frequently exceeding 40%, occurred at the rate of fifteen to twenty per ten-minute interval when fully developed. The principal time during which the maximum rate was attained were, 6h35m to 8h0m, 8h50m to 9h0m and 9h55m to 10h10m; but there were many shorter spells when the rate was as high, though the oscillations were less regular. The disturbance as a whole lasted until 30d19h and included a series of brisk irregular oscillations from 30d1h to 3½h, the range of which averaged about 30Y in H. There was then a return to the prevailing condition of general unsteadiness. The range in declination during the month was from 9°5'.1 on 27th to 10° 21'.5 on 26th, in horizontal intensity, from .18082 on 27th to .19006 on 26th; in vertical intensity, from .42722 on 27th to .43339 on 26th. August. Excepting occasional small irregularities the traces showed no magnetic activity until 6^d13½ h, when there was a quick decrease of H (50γ) followed by a spell of marked unsteadiness. From 7^d10h to 21h brisk activity was shown, which included a range of 100γ in Z and several movements approaching 50γ in H. Periods of activity occurred from 8^d16½ h to 9^d2h, (slight), from 10^d23h to 12^d4h (moderate with one sharp peak in H, +80γ, at 11^d13h), and from 12^d15h to 13^d6h (slight). Activity became increasingly continuous from 14^d6h. There was a decrease of H (90γ) between 14^d7h and 9½ h which was rapidly retrieved at 12½ h; prominent movements in all traces occurred at 14^d21h, namely a sharp peak in H (+100γ), a double wave in D (±14') and a fall in Z (40γ) following which there were many irregular, but smaller, movements at intervals until 18^d0h. A condition of slight general unsteadiness then prevailed, declining to negligible dimensions by 21^d0h. Slight unsteadiness revived at 24^d2h and continued till 29^d4h when a short quiet period began, terminating at 30^d18½ with the first movement of a short disturbance which, in respect of the ranges, proved to be the most considerable of the month. The principal movements occurred at 30^d22^h40^m (a sharp peak in all traces), between 31^d0h and 2h (15'E in D; 40γ in Z) and between 31^d5h and 6h (-120γ in H; 25'W in D; -50γ in Z). The disturbance ended at 31^d19h with a series of small irregular oscillations. The range in declination during the month was from 9°31.4 on 14th to 10°12.7 on 31st; in horizontal intensity, from .18465 to .18681, both on 14th; in vertical intensity, from .43145 on 31st to .43306 on 7th. September. Small irregularities in the traces occurred on 1st and 2nd and increased in magnitude on 3rd and 4th. There was a rapid decrease of H from 4d7ah to 10h (60y). Considerable unsteadiness persisted throughout 5th and 6th. A sharp decrease in H (60y) between 7d8h and 9h, which quickly recovered, was succeeded by a further period of unsteadiness. This continued until the end of 15th, exhibiting no special features beyond an occasional prominent wave. At 16d13h49m there was a typical "sudden commencement" movement in all traces, the range in H being 65%. The disturbance which followed was only of moderate intensity, however, and had practically ceased by 17d4h; it included two prominent waves in both H (100y) and D (25') between 19h and 20h and a steady increase in Z (100y) until 16d19h, followed by an oscillatory decrease of about the same amount until 17d2h. Other prominent movements occurred in H and D between 17d0h and 2h. A second and considerably more intense disturbance began at about 17d192h. Full development was not attained until 23th. The most active periods were from 18d2h to 6h and 19h to 20h. The ranges were 41' in D, 280 y in H and 295 y in Z. Although the main disturbance was over by 19d5h there was brief revival between 19d12h and 18h one feature of which was a temporary increase in Z (80γ) between 12^h and $13\frac{1}{2}^h$. Conditions then relapsed into general unsteadiness until 21^d17^h . At $21^d17^h13^m$ a large and very sudden movement in H (+115\gamma) was accompanied by smaller movements in the other elements. The onset of the storm which was to follow was not immediate however, and the initial movements occurred abruptly at 22d4h24m. The storm then developed rapidly. Between 22d5h and 6hh there was a range 390y in H and 170y in Z, and between 53h and 63h a range of 60' in D. A lull then occurred, after which - from 22d10h12m onwards - the movements became so large and rapid that occasionally they can be followed only with difficulty on the record. The stage of rapid fluctuation ended at about 22d17h and during this interval the extreme ranges occurred, namely 925y in H, 450y in Z and 135' in D. The storm continued with somewhat diminished intensity for a further thirty-four hours, ceasing rather abruptly at 24d4h. Between 22d17h and 23d2h there was a continuous fall in the value of Z amounting in all to 2507, the movement being reversed from 23^{d7h} to 16½h during which interval an increase of 360γ took place, before a steady return to normal values. During 23d several fluctuations exceeding 100y were recorded in H, while movements exceeding 15' in D were numerous. The traces are reproduced in Plates IX and X. The period from 24d4h to 27d6h was nearly quiet, although many small fluctuations were apparent until 24d19h. At 27d6th a steady decrease in H began (70y), possibly the first movement of a further spell of disturbance which developed eight hours later. The first peak of activity lasted from 27d16h to $20^{\rm h}$ and included a range of 170 γ in H; the second and principal period began at about $28^{\rm d}15{1\over 2}^{\rm h}$ although for several hours previous the value of Z had been steadily increasing - and lasted until 29d4h. The main characteristic was the number of nearly regular oscillations in H (about 50y in amplitude) superposed on a general decrease ending at 20h. These had their counterparts in D and to a minor extent in Z. The value of Z after reaching a maximum at 28d153h, declined in two stages to a minimum at 29d12h. (Specially prominent waves occurred in H at 28d21h (+180y) and at 29d14h (+150y) and a large double wave in D (±18') coincided with the second fall in Z referred to already. The extreme ranges during this disturbance were: 41' in D, 310 in H and 230 in Z. The conditions remained highly unsteady with enhanced daily ranges during the last two days of the month. The range in declination during the month was from 8°53'8 to 11°9'4; in horizontal intensity, from .18125 to .19050, in vertical intensity, from .43073 to .43523, all on September 22. Occasionally the movements amounted to about 50 γ in H and 10' in D, notable instances occurring at $5^d18^{\frac{1}{2}h}$, $6^d20^{\frac{1}{2}h}$, 9^d23^h . Movements became very numerous, though still small, between 9^d1^h and 23^h and again between 20^d3^h and 21^d23^h . There was a nearly quiet interval from 13^d1^h to 14^d0^h and also from 17^d2^h to 19^d22^h . At about 25^d22^h signs of increased activity appeared, which persisted until 26^d21^h and then gave way to the rapid development of a small storm. The principal features of this disturbance were two steep waves in H (+150 γ) culminating at 26^d22^h and 27^d1^h , respectively, and accompanied by a series of oscillatory changes in D superposed on a general easterly drift of about 20'. There followed a westerly drift amounting to 30', between $27^d2^{\frac{1}{2}h}$ and $5^{\frac{1}{2}h}$. During the period of maximum activity there was a temporary decrease of Z (70γ) . The disturbance declined rapidly after 27^d6^h and ceased at about 28^d0^h . It included ranges of 38' in D, 200γ in H and 130γ in Z. During 28^d and 29^d slight general unsteadiness prevailed which, however, became negligible on 30th, and until 31^d8^h , when marked unsteadiness once more became the prevailing condition. The range in declination during the month was from 9°22'.4 to 10°1'.2, both on 27th; in horizontal intensity, from .18468 on 27th to .18670 on 26th; in vertical intensity, from .43168 to .43295, both on 27th. November. Very unsteady conditions were recorded on 1st, especially during the second half, when movements of 40y in H occurred at 182h and 212h and a wave in D (12'E) at 22h. A period of relative inactivity then set in which lasted until 5dgh. At 5dgh23m there was a sudden movement in all traces, followed by many irregular rapid oscillations which persisted for about twenty hours though declining steadily in amplitude after 6dOh. The individual movements, however, seldom exceeded 20%, even in the most active stage. Larger irregularities occurred at intervals on 6th, the most prominent being a wave in H (+60γ) at 233h. A second period of almost quiet conditions began at 7d6h,
lasting until 8d23h. Considerable unsteadiness then developed, prominent features of which were a rapid movement east in D (13') between 10d19h and 20h followed by a decrease of H (75Y) between 20h and 21h; a wave in H (+60Y) at 11d3h accompanied by a fall in Z (30y); and several erratic changes of about 40y in H between 11^d20^h and 12^d6^h. Conditions remained unsteady generally until the end of 13th. At 15d7h54m there was another sudden oscillatory movement in all traces, similar to but rather larger than that at 5^d9^h mentioned above. The range of the double movement in H was 70 y and in D, 9'. As in the former case a long series of small rapid oscillations followed - sometimes nearly regular, but generally irregular. These finally ceased at about 16d18h. Unsteadiness continued to be the general characteristic, however, and during 19th 20th and 21st increased to the dimensions of a mild disturbance. The principal movements were waves in H (+70γ) and D (11 E) at 19d22h, a wave in H (-50γ) at 20d19h, and a marked decrease of H between 21d8h55m and 11dOh (90y). There was also a prominent movement in H (+50y) and D (12'E) at 22d163h. Conditions then became steadier for a time, but at 24d3h46m an abrupt movement in all traces occurred and was followed by a resumption of the rapid oscillatory changes mentioned in the respect of 15th and 16th. The initial movement was only +25Y in H and 6'W in D; most of those following were much smaller, but there was a brief spell of activity extending from 24d13h to 14h in which a range of 115 y occurred in H and 18' in D. Several prominent isolated waves appeared on the traces during 25th. The principal examples were recorded at 15h (D, 10'E) and 20h (D, 10'E, H. +80y). From 26d 18h conditions were practically quiet. The range in declination during the month was from 9°33'1 on 1st to 10°7'4 on 24th; in horizontal intensity, from .18480 on 24th to .18638 on 25th; in vertical intensity, from .43213 on 24th to .43294 on 1st. December. Slight unsteadiness was shown on the traces during 1st and 2nd, and increased on 3rd. There was a prominent wave in H (+50γ) at 3^d2½h, accompanied by a rapid decrease in Z (20γ). Between 4^d20h and 11^d16h conditions were almost continuously unsteady. Periods especially affected were 7^d3h to 8h and 8^d3h to 6h. A short-lived disturbance occurred between 11^d17h and 12^d2h in which the principal movement was a wave in H (-85γ) at 20½h, preceded at 19½h by a smaller wave in D (10'E). After further considerable unsteadiness, lasting until 13^d1h quiet conditions gradually became established. These continued until 16^d20h when general unsteadiness was resumed. A brief spell of activity extended from 19^d11h to 20h, the climax of which was reached at 17h with a wave in D (17'E). Movements in H exceeding 50γ occurred at 19^d12h-13h and at 19^d17h-18h. Another prominent movement in H took place at 21^d8½h to 10½h, namely a wave, -60γ. General unsteadiness remained the prevalent condition until about 25^d0h. At 25^d19^h12^m a small abrupt movement occurred in all traces (+30γ in H) and was followed by minor activity lasting five hours. The largest movement was in H (-60γ) at 22h. Unsteadiness still continued to a marked extent, especially from 27^d18h to 28^d3h but gradually declined after the middle of 28th. The range in declination during the month was from 9°36'2 on 11th and 19th to 9°58'3 on 19th; in horizontal intensity, from .18494 to .18620, both on 19th; in vertical intensity, from .43213 on 3rd to .43275 on 19th. The absolute maximum and minimum values respectively of the elements recorded during the year were:- Declination: 11°16′.8 W; 8°35′.1 W Horizontal Intensity: .19733; .18072 All on March 28. Vertical Intensity: .43678 on March 25; .42708 on March 28. #### SCALES FOR THE MAGNETIC ELEMENTS SCALE FOR H 0 100y 200y O 100y 200y VERTICAL INTERSITY SCALES FOR THE MAGNETIC ELEMENTS O 100y 200Y MORIZOWTAL INTERSITY 42900y 42800_Y ### ROYAL OBSERVATORY, GREENWICH. # Results of Meteorological Observations 1946 | | | | | TABLE | XVII. | - DAIL | RESUL | TS OF T | THE ME | TEOROLO | GICAL | OBSE | RVATIONS | | | | | | |----------------------------|---|---|---|--|---|--|---|---|--------------------------------------|--|--------------------------------------|-----------------------------|---|---|---|--|--------------------------------------|--------------------------------------| | | BAROMETER | | | 7 | EMPERATU | RE | | | | | | | TE | MPERATUR | E | 8.50 | | | | Month
and | Hourly
mrected
1 to 320
left) | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the A | rence be
ir Tempe:
i Dew Po
emperatur | rature
int | of Humidity
ation = 100) | Of Radi | ation | Of the
Earth
4 ft. | ain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun | | Day
1946 | Nean of 24 Hourly
Values (corrected
and reduced to 329
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree (Satura) | Highest
in Sun's
Ra y s | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, who
surface
above | Sun-
shine | Horizon | | | in. | 0 | ٥ | ٥ | 0 | 0 | 0 | 0 | ٥ | • | ٥ | | 0 | 0 | ٥ | in. | hours | hours | | Jan. 1
2
3
4
5 | 30. 064
30. 288
30. 361
30. 153
29. 983 | 34.0
32.9
34.1
40.0
48.4 | 27. 7
31. 0
23. 3
25. 2
36. 8 | 6. 3
1. 9
10. 8
14. 8
11. 6 | 31. 5
32. 3
27. 9
33. 4
44. 6 | - 7. 1
- 6. 1
-10. 4
- 4. 9
+ 6. 4 | 30. 2
30. 5
26. 5
31. 3
41. 9 | 28. 1
27. 5
23. 7
27. 8
38. 2 | 3. 4
4. 8
4. 2
5. 6
6. 4 | 5. 5
6. 6
6. 7
12. 3
8. 4 | 1. 2
3. 1
1. 3
1. 5
4. 4 | 86
81
83
79
78 | 45. 2
37. 6
56. 3
48. 5
54. 6 | 21. 2
23. 0
9. 7
12. 0
32. 6 | 46. 5
46. 3
46. 0
45. 6
45. 5 | 0.000
0.000
0.000
0.000
0.000 | 0.6
0.0
5.1
0.6
0.0 | 7. 9
7. 9
8. 0
8. 0
8. 0 | | 6
7
8
9
10 | 29. 995
29. 921
29. 700
29. 351
29. 368 | 48. 9
46. 5
47. 9
51. 3
54. 6 | 42. 3
33. 4
43. 0
47. 2
46. 3 | 6. 6
13. 1
4. 9
4. 1
8. 3 | 45. 4
41. 0
45. 6
49. 2
50. 6 | + 7.3
+ 3.0
+ 7.7
+11.3
+12.7 | 43. 3
39. 4
43. 8
47. 5
47. 7 | 40. 6
37. 2
41. 5
45. 6
44. 5 | 4. 8
3. 8
4. 1
3. 6
6. 1 | 8. 2
9. 6
7. 7
7. 2
8. 2 | 2.5
0.0
2.2
0.8
0.8 | 83
86
86
87
80 | 61.0
71.4
60.9
55.1
73.7 | 37. 0
24. 0
37. 0
43. 7
41. 3 | 45. 5
45. 1
45. 1
45. 1
45. 2 | 0.000
0.000
0.139
0.453
0.050 | 1. 4
3. 8
0. 0
0. 0
0. 9 | 8. 0
8. 1
8. 1
8. 1
8. 1 | | 11
12
13
14
15 | 29. 517
29. 729
30. 230
30. 567
30. 671 | 55. 5
49. 2
42. 9
38. 3
37. 2 | 48. 0
41. 2
32. 2
31. 1
31. 3 | 7. 5
8. 0
10. 7
7. 2
5. 9 | 53. 9
45. 6
39. 4
34. 3
34. 1 | +16.0
+ 7.7
+ 1.4
- 3.7
- 4.0 | 52. 3
42. 8
36. 9
31. 0
31. 1 | 50. 8
39. 1
32. 8
25. 4
26. 0 | 3. 1
6. 5
6. 6
8. 9
8. 1 | 3. 9
11. 5
10. 5
14. 9
12. 5 | 1. 2
1. 2
3. 0
6. 0
5. 4 | 89
78
77
67
70 | 57. 2
75. 3
59. 2
65. 3
77. 3 | 43. 2
36. 3
24. 8
23. 7
23. 8 | 45.5
45.6
45.9
45.9
45.7 | 0. 489
0. 020
0. 000
0. 000
0. 000 | 0. 0
6. 4
3. 3
3. 4
5. 0 | 8. 2
8. 2
8. 2
8. 3
8. 3 | | 16
17
18
19
20 | 30. 509
30. 212
29. 790
29. 824
30. 049 | 38. 8
33. 5
32. 6
38. 2
27. 9 | 29. 5
28. 3
26. 9
26. 8
20. 5 | 9. 3
5. 2
5. 7
11. 4
7. 4 | 34. 0
31. 6
30. 0
31. 4
25. 3 | - 4. 3
- 6. 9
- 8. 6
- 7. 3
-13. 5 | 31.8
29.8
28.2
29.7
24.9 | 27. 8
26. 9
25. 0
26. 9
24. 0 | 6. 2
4. 7
5. 0
4. 5
1. 3 | 10. 1
10. 1
10. 5
11. 7
1. 9 | 2. 4
2. 3
1. 6
1. 9
0. 0 | 78
81
79
81
95 | 57. 5
55. 0
63. 3
63. 5
32. 0 | 22. 0
23. 2
25. 2
16. 8
11. 2 | 45. 7
45. 1
45. 0
44. 6
44. 3 | 0.000
0.000
0.004
0.000
0.000 | 1.6
3.6
3.9
2.6
0.0 | 8. 4
8. 4
8. 4
8. 5
8. 5 | | 21
22
23
24
25 | 30. 194
30. 043
29. 806
30. 127
30. 048 | 31. 0
35. 0
36. 6
41. 4
43. 1 | 22. 7
29. 4
31. 6
31. 8
36. 7 | 8. 3
5. 6
5. 0
9. 6
6. 4 | 27. 4
32. 7
33. 8
34. 7
41. 1 | -11. 4
- 6. 1
- 5. 1
- 4. 2
+ 2. 0 | 26. 6
31. 9
32. 5
33. 1
40. 1 | 25. 1
30. 7
30. 3
30. 3
38. 9 | 2. 3
2. 0
3. 5
4. 4
2. 2 | 3. 0
2. 5
6. 3
8. 7
2. 9 | 0. 0
0. 0
2. 0
2. 1
1. 3 | 90
91
86
83
91 | 33. 5
45. 4
42. 0
58. 4
48. 8 | 15. 8
20. 0
28. 5
25. 8
31. 5 | 44. 0
44. 0
43. 5
43. 4
43. 2 | 0.000
0.001*
0.000
0.000
0.002 |
0.0
0.0
0.0
1.8
0.0 | 8. 6
8. 6
8. 7
8. 7
8. 8 | | 26
27
28
29
30 | 29. 785
29. 808
29. 757
29. 393
29. 293 | 42. 6
42. 9
50. 2
53. 0
49. 0 | 39. 2
31. 5
37. 8
40. 8
34. 9 | 3. 4
11. 4
12. 4
12. 2
14. 1 | 40. 7
37. 3
43. 9
46. 1
40. 8 | + 1.4
- 2.2
+ 4.3
+ 6.4
+ 1.1 | 40. 1
36. 4
42. 4
43. 2
37. 7 | 39. 2
34. 9
40. 5
39. 5
32. 7 | 1. 5
2. 4
3. 4
6. 6
8. 1 | 2. 5
7. 9
7. 1
12. 6
10. 2 | 0.0
0.0
1.5
1.4
2.6 | 94
91
87
78
73 | 55. 3
65. 5
83. 7
64. 7
51. 5 | 38. 0
23. 9
32. 3
35. 3
30. 2 | 43. 2
43. 4
43. 5
43. 6
43. 4 | 0.020
0.009
0.095
0.263
0.040 | 0.0
3.5
2.6
0.1
0.4 | 8. 8
8. 9
8. 9
9. 0
9. 0 | | 31 | 29. 657 | 49.8 | 34. 7 | 15. 1 | 42. 1 | + 2.4 | 40.2 | 37. 5 | 4.6 | 10.9 | 0.4 | 84 | 59.0 | 30.0 | 43. 4 | 0.030 | 0.0 | 9.1 | | Means | 29. 942 | 42. 2 | 33.6 | 8. 5 | 38. 1 | - 0. 5 | 36.3 | 33. 5 | 4. 6 | 8. 1 | 1.7 | 83.0 | 57. 3 | 27. 2 | 44.8 | Sum
1.615 | 1.6 | 8,4 | | No. of
Col.for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.942 in., being 0.141 in. higher than the average for the 65 years, 1841-1905. * Rainfall (Column 16). The amount entered on January 22 is derived from wet fog. #### TEMPERATURE OF THE AIR. The highest in the month was 55°.5 on January 11; the lowest in the month was 20°.5 on January 20; and the range was 35°.0. The mean of all the highest daily readings in the month was 42°.2, being 0°.9 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 33°.6, being 0°.6 lower than the average for the 65 years, 1841-1905. The mean of all the daily ranges was 8°.5, being 0°.4 less than the average for the 65 years, 1841-1905. The mean for the month was 38°.1, being 0°.5 lower than the average for the 65 years, 1841-1905. | | | | | T | ABLE XVII | DAIL | Y RESU | LTS OF | THE ME | TEOROLOGIC | AL OBSERVATIONS | | | |----------------------------|--|---|--|---|---|---|---|---|--|--|--|---|--------------------------------------| | | | | OF THE
TSKY | | SE | WIND AS I
LF-REGISTE | DEDUCED
RING ANE | FROM
MOMETERS | | | | | | | Month | Pol | aris | δ t
MIN | TRSAE
ORIS | | OSLER | 'S | | Robin-
sons | | CLOUDS AND | WEATHER | | | and
Day | :1om | on of
sposure | lon | on of
toosure | General : | Direction | on | ssure
the
e Foot | ul Move-
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Jan. 1
2
3
4
5 | hours 4.6 6.0 8.1 3.6 5.8 | 0. 33
0. 44
0. 59
0. 26
0. 42 | hours 1.0 4.9 5.3 1.8 1.2 | 0. 07
0. 36
0. 39
0. 13
0. 09 | ESE
E
Calm: ESE
Calm: SSW
SSW: SW | E
E:ENE
Calm
SSW
SW | 1bs. 3.0 3.5 0.3 2.0 3.6 | 1bs.
0. 19
0. 40
0. 03
0. 18
0. 35 | miles
241
300
123
250
354 | bcx
c
cbxf
bccxf | bxcCiStcumo
cStcu
bxfm
bcfm
crocNbst | bc c Ci Steu mo
c Steu
b m
bc c Acu
c Nost | bc c
c
b bc
c
c bc | | 6
7
8
9
10 | 2. 1
2. 4
0. 0
5. 0
0. 0 | 0. 15
0. 17
0. 00
0. 36
0. 00 | 0.7
1.2
0.0
3.9
0.0 | 0. 05
0. 09
0. 00
0. 28
0. 00 | SW: SSW
S: SSW
SSW
SW: WSW | SSW
SSW
SSW: SW
SSW: SW | 2. 2
0. 4
6. 0
16. 5
6. 0 | 0. 22
0. 03
0. 55
2. 34
1. 58 | 282
179
340
573
512 | bc m bc x m c c dodo c | bc Cist Acu m c m bc Ci so-ha c Nbst 1 do do c Nbst ro p bc c Acu | c Stou m bc Ci Acu c c Ast Nost ro r c Nost ro q rr c Nost i ro d | cm
cbc
rr c
qrr c
1 rodc | | 11
12
13
14
15 | 4. 7
9. 5
12. 1
3. 7
12. 5 | 0. 34
0. 72
0. 91
0. 28
0. 94 | 4. 5
8. 1
12. 0
3. 7
11. 3 | 0. 33
0. 62
0. 90
0. 28
0. 86 | SW
WSW: N
NE: ENE
ENE: E: ESE | SW: WSW
W: WSW
N: NNE
ENE
E: NE | 13. 0
7. 2
2. 2
2. 2
1. 6 | 2.08
0.73
0.33
0.23
0.17 | 593
437
276
230
203 | c r b b bc b x c b x m | c rr d Nost q
b Cicu
c Stcu b Cu
c Stcu mo b
bc m b Cu | r d Nbst q b Freu be b b Cu b Steu b Freu | r c rr
b bc
b
b c
b c b | | 16
17
18
19
20 | 11. 4
4. 1
0. 9
12. 6
0. 9 | 0.86
0.31
0.07
0.97
0.07 | 9. 6
1. 9
0. 6
4. 3
0. 0 | 0. 72
0. 14
0. 04
0. 33
0. 00 | NE: ENE
NE: ENE
ESE
SE: S: Calm
Calm: WSW | ENE:NE
ENE
E
Calm
WSW:SW | 6. 2
3. 8
3. 0
1. 1
0. 2 | 0. 76
0. 53
0. 32
0. 03
0. 03 | 364
330
256
95
147 | bcbxm
bcbx
cx
cx
ffx | c m Steu b m be Steu c be Cist Cieu so-ha c b x m ff x | c Stcu bc Frcu b c Cicu Ast b c b m ff x | c bc bc c s c b m f x ff x | | 21
22
23
24
25 | 1.0
0.0
0.0
6.3
0.0 | 0.08
0.00
0.00
0.48
0.00 | 1.0
0.0
0.0
5.2
0.0 | 0.08
0.00
0.00
0.40
0.00 | WSW: Calm
SE: Calm
SE: Calm
Calm: SSW
SSW | Calm
Calm: SE
Calm
SSW: S
SSW: S | 0. 1
0. 4
0. 4
0. 6
3. 0 | 0.01
0.03
0.01
0.05
0.38 | 85
122
97
158
331 | ff x ff x c m c m c m | ff x b x Fe f c Stcu m mo c Stcu m c Nbst 1 do mo | ff x c Stcu f m c St m c Stcu b Ci do c Wbst m | ff x c m c m b c m c do mo | | 26
27
28
29
30 | 1. 2
8. 1
3. 3
4. 3
11. 5 | 0.09
0.63
0.26
0.33
0.91 | 0.0
6.5
1.3
4.0
11.3 | 0.00
0.51
0.10
0.31
0.88 | S
NW:W:SW
SW
WSW:W
WNW:W:WSW | S: SSW
Calm: W: SW
SSW: SW
SW: S: WSW
W | 2. 2
1. 0
10. 5
23. 0
26. 0 | 0.31
0.04
1.07
2.05
2.06 | 311
181
446
576
565 | dodo
c 1 do
c p b mo
r b bc
c gale b | c Nbst ro c mo b Fe bc Cist f bc Cist so-ha prhn bc Cicu Cist so-ha b c Nbst r | c Nbst 1 do mo bc Cist b m bc Acu c Nbst 1ro c Nbst 1 rro r c q r h c Acu | cido
bcm
croqir
qrc
b | | 31 | 0.0 | 0.00 | 0.0 | 0.00 | WSW | SSW: SW | 8.0 | 0.86 | 430 | bх | bc m c Cist Ast | c <i>Wbst</i> rcrdo | do c | | Means | 4.7 | 0. 35 | 3. 4 | 0. 26 | ••• | ••• | ••• | 0.58 | 303 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 36°.3, being 0°.9 lower than The mean Temperature of the Dew Point for the month was 33°.5, being 1°.6 lower than The mean Degree of Humidity for the month was 83.0, being 3.8 less than The mean Flastic Force of Vapour for the month was 0.192 in., being 0.013 in. less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.2. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.194. The maximum daily amount of Sunshine was 6.4 hours on January 12. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 83°.7 on January 28; and the lowest reading of the Terrestrial Radiation Thermometer was 9°.7 on January 3. The Proportions of Wind referred to the cardinal points were N.7, E.19, S.33, W.24, calm or nearly calm conditions 17, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 26.0 lbs. on the square foot on January 30. The mean daily Horizontal Movement of the Air for the month was 303 miles; the greatest daily value was 593 miles on January 11, and the least daily value was 85 miles on January 21. Rain (0.005 in. or over) fell on 11 days in the month, amounting to 1.615 in., as measured by gauge No.6 partly sunk below the ground; being 0.268 in. less than the average fall for the 65 years, 1841-1906. | | | | | TABLE | XVII. | - DAILY | RESULT | s of th | E METE | OROLOG | ICAL O | BSERV | ATIONS | | | | | | |----------------------------|---|---|--
---|---|--|---|--|---|---|--------------------------------------|--|---|---|---|---|--------------------------------------|--| | | BAROMETER | | | Т | EMPERATU | RE | | | | | | | T | EMPERATU | RE | 8 | | | | Month
and | Hourly
rrected
1 to 32
elt) | | (| Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
 Dew Poi
 mperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | collected in Gauge
6, whose receiving
rface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 32 ³
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Surs
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collections, 6, whose surface 1 above t | Sun-
shine | Horizon | | Feb. 1
2
3
4
5 | in. 29. 374 29. 226 29. 410 29. 445 29. 701 | 53. 9
50. 5
53. 6
49. 2
51. 9 | 0
43. 8
40. 9
44. 9
40. 1
40. 6 | 0
10. 1
9. 6
8. 7
9. 1
11. 3 | 48. 2
45. 4
49. 5
46. 0
45. 4 | + 8.6
+ 5.9
+10.0
+ 6.5
+ 5.8 | 45. 8
42. 8
47. 7
43. 1
41. 6 | o
43. 1
39. 3
45. 7
39. 3
36. 2 | 5. 1
6. 1
3. 8
6. 7
9. 2 | 0
13. 1
12. 5
6. 6
12. 6
16. 4 | 0
1.6
1.6
1.6
3.1
2.3 | 82
80
87
77
70 | 89. 1
83. 6
58. 0
60. 3
89. 9 | 38. 5
35. 4
42. 0
35. 7
34. 5 | 43. 6
43. 8
43. 9
44. 0
44. 3 | in. 0. 140 0. 135 0. 442 0. 079 0. 000 | hours 2.0 1.4 0.0 1.1 3.3 | 9. 1
9. 2
9. 2
9. 2
9. 3
9. 4 | | 6
7
8
9
10 | 29. 846
29. 841
29. 406
29. 750
29. 980 | 55. 5
55. 7
54. 8
45. 4
51. 0 | 40. 4
47. 6
35. 6
37. 1
38. 0 | 15. 1
8. 1
19. 2
8. 3
13. 0 | 47. 4
52. 9
51. 0
41. 5
44. 6 | + 7.8
+13.4
+11.7
+ 2.4
+ 5.7 | 45. 3
50. 3
48. 7
37. 4
42. 6 | 42.9
47.7
46.2
30.7
40.0 | 4. 5
5. 2
4. 8
10. 8
4. 6 | 12. 1
7. 3
8. 0
16. 9
8. 1 | 1. 0
2. 3
1. 7
3. 6
1. 7 | 84
82
84
65
84 | 65. 9
63. 2
61. 3
73. 9
61. 5 | 34. 2
45. 4
34. 6
30. 6
33. 0 | 44. 3
44. 4
44. 5
44. 5
44. 9 | 0. 125
0. 038
0. 198
0. 035
0. 134 | 0.0
0.0
0.0
6.2
0.8 | 9. 4
9. 5
9. 5
9. 6
9. 7 | | 11
12
13
14
15 | 30.053
30.102
30.252
30.433
30.516 | 49.9
49.9
49.9
49.1
47.5 | 39. 2
42. 5
44. 5
44. 3
44. 7 | 10.7
7.4
5.4
4.8
2.8 | 44. 5
46. 2
46. 9
47. 2
46. 5 | + 5. 7
+ 7. 4
+ 7. 9
+ 7. 9
+ 7. 1 | 41. 8
45. 0
46. 6
46. 7
44. 8 | 38. 1
43. 5
46. 2
46. 1
42. 7 | 6. 4
2. 7
0. 7
1. 1
3. 8 | 11. 6
5. 0
1. 8
2. 0
5. 9 | 2.5
0.0
0.0
0.0
1.0 | 78
91
97
96
87 | 75. 3
52. 0
54. 6
52. 2
49. 0 | 33. 4
38. 2
40. 0
38. 6
44. 0 | 45. 0
45. 0
45. 0
45. 0
45. 0 | 0.000
0.018
0.042
0.000
0.000 | 0.9
0.0
0.0
0.0
0.0 | 9. 7
9. 8
9. 8
9. 9
10. 0 | | 16
17
18
19
20 | 30. 336
30. 291
30. 100
29. 884
29. 692 | 52. 9
50. 5
51. 0
53. 8
46. 4 | 45. 2
39. 0
40. 2
43. 2
36. 0 | 7. 7
11. 5
10. 8
10. 6
10. 4 | 48. 5
44. 6
46. 8
48. 2
42. 6 | + 9.0
+ 5.0
+ 7.3
+ 8.7
+ 3.1 | 46. 0
41. 6
44. 5
45. 3
37. 9 | 43. 2
37. 4
41. 7
41. 7
30. 1 | 5. 3
7. 2
5. 1
6. 5
12. 5 | 9. 8
14. 2
6. 3
12. 6
19. 5 | 1. 9
2. 2
3. 3
1. 1
3. 6 | 81
76
82
78
61 | 73. 3
86. 5
53. 0
74. 6
91. 7 | 40.0
30.6
34.1
38.2
32.4 | 45. 3
45. 2
45. 2
45. 5
45. 5 | 0.040
0.000
0.000
0.090
0.083 | 0. 1
3. 7
0. 0
1. 5
6. 0 | 10. 0
10. 1
10. 1
10. 2
10. 3 | | 21
22
23
24
25 | 29. 882
29. 911
29. 388
29. 697
29. 710 | 40. 1
45. 4
49. 8
43. 9
42. 3 | 32. 8
27. 9
36. 3
32. 6
31. 9 | 7. 3
17. 5
13. 5
11. 3
10. 4 | 36. 7
37. 5
43. 6
37. 9
36. 5 | - 2.9
- 2.2
+ 3.8
- 2.1
- 3.6 | 32. 3
33. 8
40. 0
33. 9
33. 6 | 23. 9
27. 2
34. 6
26. 7
28. 5 | 12. 8
10. 3
9. 0
11. 2
8. 0 | 18. 7
15. 8
16. 6
17. 4
14. 7 | 8. 2
3. 0
3. 1
4. 3
1. 8 | 58
65
71
63
71 | 80. 2
88. 9
85. 3
88. 4
59. 6 | 27. 4
22. 5
30. 5
26. 8
23. 7 | 45. 5
45. 4
45. 1
45. 0
44. 7 | 0.000
0.000
0.246
0.000
0.013 | 4.6
1.2
4.0
7.7
0.0 | 10. 4
10. 4
10. 5
10. 5
10. 6 | | 26
27
28 | 29. 605
29. 612
29. 549 | 37. 9
38. 0
38. 3 | 31. 8
25. 5
20. 0 | 6. 1
12. 5
18. 3 | 35. 0
32. 1
29. 4 | - 5. 2
- 8. 2
-10. 9 | 34. 4
30. 1
27. 1 | 33. 3
26. 8
22. 7 | 1. 7
5. 3
6. 7 | 3.0
11.2
19.6 | 0.0
1.6
1.5 | 94
79
73 | 40.0
87.3
62.3 | 31. 8
21. 0
15. 3 | 44. 7
44. 3
44. 0 | 0.627
0.000
0.002* | 0.0
5.2
1.4 | 10.7
10.8
10.8 | | Means | 29.822 | 48. 5 | 38. 1 | 10.4 | 43. 7 | + 4. 1 | 41.1 | 37. 3 | 6. 3 | 11. 4 | 2. 1 | 78. 4 | 70.0 | 33. 3 | 44.7 | Sum
2.487 | 1. 8 | 9.9 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.822 in., being 0.013 in. higher than the average for the 65 years, 1841-1905. * Rainfall (Column 16). The amount entered on February 28 is derived from hoar frost. #### TEMPERATURE OF THE AIR. The highest in the month was 55°.7 on February 7; the lowest in the month was 20°.0 on February 28; and the range was 35°.7. The mean of all the highest daily readings in the month was 48°.5, being 3°.6 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 10°.4, being 0°.2 greater than the average for the 65 years, 1841-1905. The mean for the month was 43°.7, being 4°.1 higher than the average for the 65 years, 1841-1905. the average for the 65 years, 1841-1905. | | | | | T | ABLE XVII. | - DAILY R | ESULTS | OF THE | METE | ROLOGICAL | OBSERVATIONS | | | |--------------------------------------|-----------------------------------|---|---------------------------------------|---|---|--|--|---|--|------------------------------------|---|--|---------------------------------------| | | | RECORD
NIGH | OF THE
TSKY | | SEI | WIND AS DEL
LF-REGISTERII | DUCED FR
NG ANEMO | OM
METERS | | | | | | | | Pol | aris | δ U
MIN | RSAC
ORIS | | OSLER'S | | | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
19 4 6 | :1on | tion of
Exposure | 1on | tion of
Exposure | General I | Direction | on | ssure
the
e Foot | il Move-
the Air | | | | | | | Duration | Fracti
Total Ex | Duration | Fraction Total Ex | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Feb. 1
2
3
4
5 | hours 6.3 7.4 1.7 12.4 7.6 | 0. 49
0. 59
0. 14
0. 99
0. 61 | 5. 1
6. 9
0. 7
12. 4
5. 7 | 0. 40
0. 55
0. 07
0. 99
0. 45 | SW
SSM: SW
WSW: SW
WSW: SW
WSW: W | SW
SW: WSW
SW: WSW
WSW
WSW | 10. 0
10. 8
12. 3
22. 5
9. 0 | 1bs.
1. 73
1. 58
2. 29
1. 73
1. 58 | miles
541
528
593
526
495 | c 1 r
c r c
b c 1 do
c | 1 r c
bc Cu Cicu
c bc Ci Frcu q
rr Nbst
c r c Nbst Ast
b bc Ci Frcu q | c 1 r bc Acu
c Nbst Frst p q c b
rr Nbst
r bc Stcu Nbst p c q r
q bc CicFrcu y b | bc c r
b c b
r c r
b | | 6
7
8
9
10 | 0.0
0.0
4.6
4.8
11.7 | 0.00
0.00
0.37
0.40
0.97 | 0.0
0.0
4.6
4.7
11.5 | 0.00
0.00
0.37
0.39
0.96 | SW: SSW: WSW
WSW
WSW
NNW
WSW: W | WNW: WSW
WSW: NW
NNW: W
W: WNW | 4. 5
13. 0
20. 0
14. 0
2. 9 | 0. 43
1. 77
3. 70
2. 40
0. 38 | 296
551
737
523
335 | crd
crcd
crdq
rcbq
cdr | c Nost dd m
c Stcu mo
c Nost 1 do q
b bc Cu y
d c Ast Stcu | c Freu Cieu mo c Nost do c q c Nost i do r q be Freu b y c Acu b | c
c r gale
b c
b | | 11
12
13
14
15 | 3.5
0.0
0.0
0.0
0.0 | 0. 29
0. 00
0. 00
0. 00
0. 00 | 2. 7
0. 0
0. 0
0. 0
0. 0 | 0. 22
0. 00
0. 00
0. 00
0. 00 | WSW: W
WSW: Calm
Calm
Calm: N: NW | WNW: W: WSW
NW: Calm
Calm
Calm
NW: WNW | 2. 7
0. 6
0. 0
0. 0
0. 6 | 0. 26
0. 03
0. 00
0. 00
0. 06 | 316
152
82
91
171 | b
bcc
ddmf
off
cmmo | c Cicu Acu
c Nost d f m
o St f m
o c ff
c 1 do Nost m | c Stcu
c Stcu m
o St do f F g o f
c ff
c Stcu mo | c bc
c dd
o c ff
c m
c mo | | 16
17
18
19
20 | 2.8
7.1
0.0
7.8
10.9 | 0. 25
0. 62
0. 00
0. 68
0. 95 | 0.5
6.7
0.0
7.6
10.9 | 0.04
0.59
0.00
0.66
0.95 | W: WNW
NNW: N
W: WNW
WSW: W
WNW: NW | WNW: NW
N: WSW
NW
WNW
NW | 2. 7
0. 7
1. 7
8. 0
23. 5 | 0. 23
0. 09
0. 22
0. 72
3. 15 | 274
186
283
371
667 | cm
cb
bcm
c1r
bcc | c m c Cicu Cist
c m b Ci
c Stcu Nost do m
r c Stcu
c p q h b bc q y | so-ha c rr c Nbst b bc b mo c Stcu mo c Stcu Cicu b bc Frcu gale b y | c
b mo
c
b bc
b c p q b | | 21
22
23
24
25 | 11.0
1.4
10.2
3.5
0.0 | 0.95
0.12
0.92
0.32
0.00 | 10.7
0.9
9.7
2.2
0.0 | 0.93
0.08
0.88
0.20
0.00 | NW: NNW
NW: WSW
WSW: W
WNW
Calm | nnw: nw
W: WSW
NW
NNW: NW
Calm: E | 7.5
5.7
18.7
3.8
0.2 | 1. 11
0. 45
3. 15
0. 36
0. 01 | 443
349
689
285
89 | b
bx
crcq
bcbxm
bcbxm | b c Stcu Frst y c Stcu m ir gale c Frcu q b m c Cu Acu y c m c Stcu | c Steu be y be Ci Cist e y be Cu gale y b q c b e Steu y c Ast 1 roso | bc b
c
b
bc
c r c | | 26
27
28 | 3. 1
9. 9
9. 1 | 0. 28
0. 90
0. 82 | 2. 4
4. 9
5. 3 | 0. 22
0. 44
0. 48 | E
NNE:N
Calm | ENE: NE
NNE: Calm
NE: Calm | 3.7
1.5
0.2 | 0. 41
0. 06
0. 01 | 364
214
121 | cdrr
cbc
cbfx | rr Nost
c bc m b Cicu
b f b Cicu | Nost r rs s
b Cicu Cu bc
bc Cicu Cist so-ha y | ss
bc b f x
bc b m | | Means | 4.9 | 0. 42 | 4. 1 | 0.35 | ••• | ••• | ••• | 1. 00 | 367 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 41°.1, being 3°.4 higher than The mean Temperature of the Dew Point for the month was 37°.3, being 2°.3 higher than The mean Degree of Humidity for the month was 78.4, being 5.2 less than The mean Flastic Force of Vapour for the month was 0.223 in., being 0.019 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.4. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.183. The maximum daily amount of Sunshine was 7.7 hours on February 24. The highest reading of the Solar Radiation Thermometer was 91°.7 on February 20; and the lowest reading of the Terrestrial Radiation Thermometer was 15°.3 on February 28. The Proportions of Wind referred to the cardinal points were N.19, E.4, S.12, W.49, calm or nearly calm conditions 16, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 23.5 lbs. on the square foot on February 20. The mean daily Horizontal Movement of the Air for the month was 367 miles; the greatest daily value was 737 miles on February 8, and the least daily value was 82 miles on February 13. Rain (0.005 in. or over) fell on 17 days in the month, amounting to 2.487 in., as measured by gauge No.6 partly sunk below the ground; being 1.007 in. greater than the average for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLO | GICAL | OBSER | VATIONS | | | | | | |----------------------------|---|---|---|---|---|--|---|---|---------------------------------------|---|--------------------------------------|----------------------------|--|---|---|---|--------------------------------------|---| | | BAROMETER | | | Ti | MPERATUI | RE | | | | | | | TE | MPERATUR | Œ | 0) | | | | Month
and | Hourly
rrected
1 to 32°
e1t) | | 0 | f the Ai | r | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
Dew Poi
mperatur | ature
nt | of Humidity
tion = 100) | Of Rad: | lation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 329
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturatio | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, who surface above t | Sun-
shine | Hor1zon | | | in. | 0 | 0 | ۰ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ,o | 0 | 0 | in. | hours | hours | | Mar.1
2
3
4
5 | 29. 628
29. 550
29. 351
29. 425
29. 561 | 37. 2
35. 0
36. 8
35. 6
37. 8 | 28. 7
31. 6
29. 0
27. 9
34. 5 | 8. 5
3. 4
7. 8
7. 7
3. 3 | 32. 7
32. 7
33. 0
32. 3
36. 1 | -7.7
-7.7
-7.5
-8.4
-4.8 | 31. 1
31. 5
31. 9
31. 6
35. 5 | 28. 6
29. 6
30. 1
30. 5
34. 4 | 4. 1
3. 1
2. 9
1. 8
1. 7 | 9. 8
8. 2
5. 8
3. 3
2. 1 | 0.6
0.0
1.2
0.0
0.0 | 84
87
89
92
94 | 54. 2
49. 5
44. 0
35. 7
39. 3 | 19. 6
28. 8
23. 5
22. 1
32. 2 | 44. 0
43. 6
43. 6
43. 0
43. 1 | 0.002
0.150
0.096
0.135
0.248 | 0.0
0.0
0.0
0.0
0.0 | 10.9
10.9
11.0
11.1
11.1 | | 6
7
8
9
10 | 29. 680
29. 739
29. 690
29. 744
29. 853 | 35. 4
37. 8
35. 0
37. 4
44. 0 | 32. 5
31. 3
27. 3
28. 7
23. 5 | 2. 9
6. 5
7. 7
8. 7
20. 5 | 34. 2
35. 0
32. 0
33. 5
33. 6 | 76.8
76.0
79.1
77.5
77.3 | 32. 7
32. 1
29. 3
30. 4
30. 8 | 30. 2
27. 0
24. 6
25. 1
26. 1 | 4.0
8.0
7.4
8.4
7.5 | 6. 3
16. 3
12. 7
15. 7
16. 1 | 1. 3
4. 4
1. 8
2. 6
2. 5 | 84
70
71
69
72 | 37. 8
57. 0
50. 3
77. 3
89. 8 | 31. 8
26. 5
19. 8
21. 8
16. 2 | 42. 8
42. 6
42. 4
42. 3
42. 2 | 0.036
0.000
0.000
0.000
0.000 | 0.0
0.4
0.0
0.7
7.6 | 11. 2
11. 3
11. 3
11. 4
11. 5 | | 11
12
13
14
15 | 29. 752
29. 469
29. 394
29. 587
29. 844 | 42. 2
49. 9
41. 8
39. 1
39. 1 | 30. 0
35. 6
36. 8
35. 3
33. 4 | 12. 2
14. 3
5. 0
3. 8
5. 7 | 36. 1
42. 1
39. 9
37. 0
35. 9 | -4.9
+1.0
-1.4
-4.5
-5.8 | 34. 1
39. 4
38. 5
35. 0
33. 4 | 30. 5
35. 3
36. 5
31. 6
29. 1 | 5. 6
6. 8
3. 4
5. 4
6. 8 | 8. 1
14. 3
4. 1
7. 0
10. 9 | 3. 3
1. 1
2. 5
3. 6
4. 2 | 80
77
87
81
75 | 62. 8
88. 8
53. 0
46. 2
56. 6 | 22. 0
33. 8
35. 8
34. 8
32. 9 | 42. 1
42. 1
42. 1
42. 0
42. 2 | 0.005
0.000
0.007
0.000
0.000 | 0.0
0.5
0.0
0.0
0.0 | 11. 5
11. 6
11. 7
11. 7
11. 8 | | 16
17
18
19
20 | 30. 159
30. 234
30. 133
30. 088
29. 890 | 35. 0
44. 0
55. 5
59. 0
61. 1 | 27. 5
27. 0
40. 8
41. 7
40. 7 | 7. 5
17. 0
14. 7
17. 3
20. 4 | 33. 1
36. 5
48. 0
50. 9
51. 0 | -8.8
-5.5
+6.0
+9.0
+9.1 | 30. 5
33. 6
45. 7
46. 6
45. 3 | 26. 2
28. 5
43. 1
41. 6
37. 9 | 6. 9
8. 0
4. 9
9. 3
13. 1 | 8. 4
14. 1
8. 2
19. 4
23. 6 | 4. 6
4. 7
1. 9
2. 7
2. 9 | 73
71
83
70
61 | 42. 4
89. 8
90. 3
106. 9
111. 7 | 20. 0
19. 0
39. 2
34. 0
27. 9 | 42. 1
42. 4
42. 4
42. 4
42. 6 | 0.000
0.006
0.002
0.000
0.021 | 0.0
1.9
0.1
0.8
3.3 | 11. 8
11. 9
12. 0
12. 1
12. 1 | | 21
22
23
24
25 | 29. 843
29. 474
29. 822
29. 852
30. 052 | 58. 1
52. 9
56. 6
51. 3
59. 4 | 46. 7
42. 8
39. 0
40. 0
32.
8 | 11. 4
10. 1
17. 6
11. 3
26. 6 | 50. 5
48. 0
47. 1
45. 3
45. 9 | +8. 6
+6. 0
+4. 9
+2. 9
+3. 2 | 47. 0
46. 8
42. 9
43. 1
41. 7 | 42. 9
45. 4
37. 4
40. 2
35. 7 | 7. 6
2. 6
9. 7
5. 1
10. 2 | 17. 6
4. 1
23. 9
10. 5
21. 5 | 1. 2
1. 4
0. 7
1. 2
0. 0 | 75
91
68
83
67 | 103. 6
79. 2
117. 4
68. 3
92. 6 | 41. 8
37. 0
33. 2
32. 4
26. 0 | 43. 0
43. 1
43. 5
43. 5
43. 8 | 0. 260
0. 243
0. 000
0. 000
0. 000 | 1. 7
0. 0
8. 7
0. 0
6. 6 | 12. 2
12. 2
12. 3
12. 4
12. 5 | | 26
27
28
29
30 | 30. 149
30. 185
30. 120
30. 036
30. 166 | 63. 3
64. 0
62. 7
65. 6
61. 5 | 33. 9
36. 3
37. 8
43. 2
40. 6 | 29. 4
27. 7
24. 9
22. 4
20. 9 | 48. 1
48. 8
49. 0
51. 4
48. 9 | +5. 1
+5. 5
+5. 3
+7. 3
+4. 4 | 43. 1
44. 1
45. 8
47. 8
46. 4 | 36. 2
38. 0
41. 9
43. 7
43. 6 | 11.9
10.8
7.1
7.7
5.3 | 29. 2
21. 0
13. 6
15. 9
14. 2 | 1. 0
0. 8
1. 2
1. 7
0. 0 | 63
66
77
75
81 | 103. 8
106. 6
115. 9
117. 8
110. 0 | 24. 8
26. 8
26. 3
33. 8
36. 0 | 44. 0
44. 0
44. 1
44. 2
44. 4 | 0.000
0.000
0.000
0.000
0.002* | 7. 5
6. 0
7. 8
7. 7
5. 9 | 12. 5
12. 6
12. 6
12. 7
12. 8 | | 31 | 30. 135 | 60.3 | 40. 0 | 20.3 | 49.0 | +4. 1 | 44.7 | 39. 3 | 9.7 | 20.7 | 2. 2 | 69 | 114. 3 | 30. 5 | 44.7 | 0.000 | 9.8 | 12.8 | | Means | 29.826 | 48. 2 | 34.7 | 13.5 | 41. 2 | - 0.7 | 38. 5 | 34. 5 | 6.7 | 13. 1 | 1. 8 | 76.9 | 77.8 | 28. 7 | 43.0 | Sum
1. 213 | 2. 5 | 11.9 | | No.of
Col.for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.826 in., being 0.073 in. higher than the average for the 65 years, 1841-1905. * Rainfall (Column 16). The amount entered on March 30 is derived from wet fog. TEMPERATURE OF THE AIR. The highest in the month was 65°.6 on March 29; the lowest in the month was 23°.5 on March 10; and the range was 42°.1. The mean of all the highest daily readings in the month was 48°.2, being 1°.0 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 34°.7, being 0°.9 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 13°.5, being 0°.1 less than the average for the 65 years, 1841-1905. The mean for the month was 41°.2, being 0°.7 lower than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII | DAILY F | RESULT | rs of t | HE MET | EOROLOGICAL | OBSERVATIONS | | | |-----------------------------|-----------------------------------|---|--------------------------------------|---|---|--|--------------------------------------|---|--|--------------------------------------|--|--|------------------------------------| | | | RECORD
NIGH | OF THE
TSKY | | SEI | WIND AS DEDU
F-REGISTERING | CED FRO | OM
METERS | | | | | | | | Pol | aris | δ
MIN | URSAE
VORIS | | OSLER'S | | | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
1946 | 1on | n of
posure | 1on | n of
posure | General : | Direction | or | essure
n the
re Foot | 1 Move- | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Mar.1
2
3
4
5 | hours
8.0
0.0
6.9
0.0 | 0.73
0.00
0.64
0.00
0.00 | hours 3.8 0.0 4.6 0.0 0.0 | 0. 35
0. 00
0. 43
0. 00
0. 00 | N: NNE
N
NNW
Calm: N
NE | NNE: N
N: NNW
Calm
N: NE
NE | lbs. 2.2 8.0 6.4 0.6 2.0 | 1bs. 0.18 1.16 0.43 0.03 0.21 | miles
240
447
250
151
291 | bxm
bc
ss
bcm
idorrcm | c Nbst iso m
c so-ha Nbst so s
ss c s c Nbst
c Nbst ss f
c Nbst m rr | c Ast prha ps c mo
ss
c Stcu m
s c St do r f
Nbst rr c d mo | c b
ss
b
c 1 do
dd | | 6
7
8
9
10 | 0.0
6.8
3.5
7.5
7.4 | 0.00
0.63
0.33
0.73
0.72 | 0.0
6.0
2.3
7.0
6.2 | 0.00
0.56
0.22
0.68
0.60 | NE
NE
NE
Calm: NNE
Calm | NE
NE:Calm
NNE:Calm
NE:Calm | 4.8
4.1
1.3
0.6
0.2 | 0.80
0.65
0.07
0.05
0.02 | 448
379
190
143
109 | dd mo
c
c b x
c bc
b x f | c Nost iso
c Stcu
b x c Stcu
c Stcu Cu m
b f b zo y | c Nbst 1so
c Stcu y
c Stcu y
c Stcu y
b zo y | с
с
с р с
р с | | 11
12
13
14
15 | 0.0
2.9
0.0
0.0
0.0 | 0.00
0.28
0.00
0.00
0.00 | 0.0
2.7
0.0
0.0
0.0 | 0.00
0.26
0.00
0.00
0.00 | Calm: E
SE: E
E
ENE: NE
ENE: E | E
SE: ESE
ENE
NE: ENE
E: NE | 1. 1
3. 8
8. 0
4. 7
3. 3 | 0.06
0.23
1.13
0.59
0.33 | 158
216
486
401
304 | bccsoro
c
bccrc
cmo
cmo | c Stcu m c f c Stcu c Nost mo c Stcu mo c Stcu | c Stou m c Stou y c Mbst mo c Stou mo ro c Stou | C C DC C Tho C Tho | | 16
17
18
19
20 | 3.8
0.2
0.5
8.8
2.3 | 0.39
0.02
0.05
0.90
0.24 | 2. 7
0. 1
0. 3
8. 7
1. 8 | 0. 28
0. 01
0. 03
0. 89
0. 18 | NE
Calm: SW
SSW: SW
SW
SSW: SW | ENE: ESE: Calm
SSW: SW
SSW: SW
SW: SSW
SSW: SW | 1.5
0.6
4.0
4.0
6.0 | 0. 16
0. 09
0. 40
0. 39
0. 65 | 237
158
324
306
355 | с
ъс
с
с | c Nbst 1so c b c Acu y c Nbst 1ro c Acu Cist so-ha b bc c Ast Acu y | c Nbst
c Nbst ir c
c Nbst do c
c Acu Cist so-ha prhn y
c Ast Acu y | cb
cc
bcb
crdo | | 21
22
23
24
25 | 0.0
7.5
5.6
9.3
9.3 | 0.00
0.77
0.60
1.00 | 0.0
7.2
1.0
5.4
7.5 | 0.00
0.74
0.10
0.58
0.81 | WSW
SSW:SW
WSW:W
Calm
Calm | WSW: SW: SSW
WSW: WNW
W: SSW
Calm
W: Calm | 5.8
5.3
0.1
0.2 | 0.63
0.56
0.48
0.00
0.02 | 374
371
313
77
118 | do c
cror
b
bccw
bffx | c Ast Cist so-ha
ro r Nost
b be Cu y
c Ast Acu mo
b f m | c Cist y c iro rr c Nbst bc c Ci so-ha y c Ast Stcu m b zo y | rorr
crcb
bcc
cbf
bmf | | 26
27
28
29
30 | 8.6
9.3
8.0
3.4
8.7 | 0. 93
1.00
0. 86
0. 37
1.00 | 6. 3
9. 3
5. 3
2. 9
8. 7 | 0. 68
1. 00
0. 57
0. 31
1. 00 | SW: Calm
Calm: E
Calm: E
Calm: ENE | Calm
E
E
E
ENE:E | 0.0
0.6
2.7
1.0
0.7 | 0.00
0.05
0.26
0.08
0.04 | 94
107
220
152
152 | bfx
bxf
bxmo
bwf
fefe | bfzoy
bcfbzoy
bc <i>Ci</i> mo
bfb
feb | b zo y
b <i>Ci</i> zo y
b <i>Ci</i>
b y | bmf
b
b
bf
bm | | 31 | 8.7 | 1.00 | 8.7 | 1.00 | ENE: E | ENE: E | 2.6 | 0. 17 | 223 | b w | b | b | р | | Means | 4. 4 | 0.46 | 3.5 | 0. 36 | ••• | | ••• | 0.32 | 251 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 38°.5, being 0°.9 lower than The mean Temperature of the Dew Point for the month was $34^{\circ}.5$, being $1^{\circ}.1$ lower than The mean Degree of Humidity for the month was 76.9, being 1.2 less than The mean Elastic Force of Vapour for the month was 0.200 in., being 0.009 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.1. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.210. The maximum daily amount of Sunshine was 9.8 hours on March 31. The highest reading of the Solar Radiation Thermometer was 117°.8 on March 29; and the lowest reading of the Terrestrial Radiation Thermometer was 16°.2 on March 10. The Proportions of Wind referred to the cardinal points were N.20, E.32, S.12, W.13, calm or nearly calm conditions 23, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 8.0 lbs. on the square foot on March 2 and 13. The mean daily Horizontal Movement of the Air for the month was 251 miles; the greatest daily value was 486 miles on March 13, and the least daily value was 77 miles on March 24. Rain (0.005 in. or over) fell on 11 days in the month, amounting to 1.213 in., as measured
by gauge No.6 partly sunk below the ground; being 0.307 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAIL | r RESUL | TS OF T | HE MET | EOROLOG | GICAL | OBSER | VATIONS | | | | | | |----------------------------|--|----------------|----------------|----------------|-----------------------------------|--|-----------------------------------|-----------------------------------|----------------|---|--------------|--|-----------------------------|---------------------------|---|---|------------------------------|----------------| | | BAROMETER | | | r | EMPERATU | RE | | | | | | | TE | MPERATUR | E | o) | | | | Month
and | Hourly
rrected
1 to 32
e1t) | | (| Of the A | ir | - | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
r Temper
l Dew Poi
mperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 32
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collections, whose surface above t | Sun-
shine | Hor1zon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | ۰ | | ٥ | ٥ | ۰ | in. | hours | hours | | Apr.1 | 30.080
30.081 | 62. 4
68. 0 | 37. 3
40. 8 | 25. 1
27. 2 | 49. 1
52. 9 | + 3.8
+ 7.2 | 43. 1
47. 0 | 34. 7
39. 8 | 14 .4
13. 1 | 31. 2
30. 7 | 1. 0
1. 9 | 58
61 | 118. 3
118. 9 | 27. 8
30. 5 | 44. 9
45. 0 | 0.000 | 9. 6
9. 3 | 12.9
13.0 | | 3
4 | 29. 989
29. 842 | 76.8
79.7 | 44. 1
45. 7 | 32. 7
34. 0 | 59.9
61.0 | +13.9
+14.8 | 51. 2
52. 9 | 41.8
44.8 | 18. 1
16. 2 | 41.7
29.9 | 1. 1
3.0 | 51
55 | 127. 7
132. 1 | 32.9
34.3 | 45.3
45.6 | 0.000 | 9.6
9.2 | 13. 0
13. 1 | | 5 | 29.920 | 55.0 | 41.5 | 13.5 | 49.5 | + 3. 2 | 47. 4 | 45. 1 | 4. 4 | 9.4 | 0.0 | 85 | 62.3 | 36. 5 | 45.5 | 0.446 | 0.0 | 13. 2 | | 6
7 | 30. 270
30. 236 | 54.0
63.4 | 36.7
36.3 | 17. 3
27. 1 | 45. 2
49. 0 | - 1. 1
+ 2. 7 | 40.9
42.8 | 34. 6
34. 0 | 10.6
15.0 | 19. 4
26. 2 | 2.5 | 66
56 | 115. 5
120. 8 | 27.0
26.3 | 45. 9
46. 1 | 0.000 | 10. 4
9. 7 | 13. 2
13. 3 | | 8
9 | 29.987
30.080 | 57. 0
54. 7 | 40.3
39.0 | 16.7
15.7 | 49. 4
46. 4 | + 3. 3
+ 0. 4 | 45. 9
41. 2 | 41. 7
33. 4 | 7. 7
13. 0 | 13.0
23.5 | 2. 2
3. 6 | 75
60 | 114. 5
116. 9 | 34.0
27.0 | 46. 1
46. 2 | 0.000 | 0.6
6.9 | 13. 4
13. 4 | | 10 | 30. 234 | 49.0 | 31.4 | 17.6 | 41.0 | - 4.9 | 36.8 | 29. 8 | 11. 2 | 24. 1 | 1.6 | 64 | 105. 5 | 18. 8 | 46.1 | 0.000 | 6.8 | 13. 5 | | 11
12 | 30.084
29.859 | 56.3
59.9 | 27. I
38. 0 | 29.2
21.9 | 43.6
49.0 | - 2. 2
+ 3. 1 | 38. 1
44. 0 | 29. 1
37. 5 | 14. 5
11. 5 | 26. 4
21. 6 | 0.0
1.2 | 56
64 | 113. 1
112. 2 | 15. 5
29. 4 | 46. 4
46. 2 | 0.000 | 7. 1
10. 2 | 13. 5
13. 6 | | 13
14 | 29. 877
29. 892 | 63. 8
67. 2 | 36.6
40.9 | 27. 2
26. 3 | 52. 2
53. 9 | + 6. 1
+ 7. 5 | 47. 1
48. 3 | 41. 2
41. 9 | 11.0
12.0 | 19.3
22.9 | 0.0 | 66
64 | 106. 3
121. 6 | 25. 2
27. 1 | 46. 2
46. 6 | 0.000 | 8. 4
9. 6 | 13. 7
13. 7 | | 15 | 29. 855 | 67.0 | 40.9 | 26. 1 | 53.9 | + 7. 1 | 47.9 | 40.8 | 13. 1 | 25. 7 | 0.0 | 61 | 127. 3 | 26.8 | 46.5 | 0.000 | 9.6 | 13.8 | | 16
17 | 29. 887
29. 802 | 74.0
63.0 | 45. 4
48. 7 | 28.6
14.3 | 57. 9
55. 4 | +10.7
+ 7.8 | 50.7
50.8 | 42. 9
46. 1 | 15.0
9.3 | 28. 3
20. 3 | 3. 1
1. 6 | 58
71 | 127.0
103.9 | 33.0
46.3 | 46.6
46.8 | 0.000 | 10.5
0.2 | 13.9
14.0 | | 18
19 | 29. 944
30. 256 | 53. 0
58. 0 | 38. 8
33. 7 | 14. 2
24. 3 | 49. 1
46. 7 | + 1. 1
- 1. 6 | 45.7
41.5 | 41. 6
33. 7 | 7. 5
13. 0 | 17.9
24.1 | 1. 2 | 75
61 | 75. 4
120. 0 | 30.0
24.6 | 46.9
47.3 | 0.059 | 3. 1 | 14. 0 | | 20 | 30. 183 | 66. 4 | 35. 5 | 30 . 9 | 52.0 | + 3.5 | 45. 2 | 36. 3 | 15.7 | 28. 2 | 1. 4 | 55 | 119.5 | 24.5 | 47.5 | 0.000 | 11.6 | 14. 1 | | 21
22 | 30. 193
30. 282 | 59. 7
60. 2 | 45. 1
38. 6 | 14.6
21.6 | 52. 5
49. 1 | + 3.8
+ 0.4 | 45. 8
43. 5 | 37. 3
35. 9 | 15. 2
13. 2 | 26. 7
25. 5 | 5. 2
0. 9 | 56
60 | 122. 7
124. 2 | 33. 8
29. 0 | 47.4
47.4 | 0.000 | 8. 4
9. 9 | 14. 2
14. 3 | | 23
24 | 29. 997
29. 679 | 63. 5
56. 5 | 35.7
42.3 | 27. 8
14. 2 | 50. 1
49. 2 | + 1.5
+ 0.6 | 46. 4
45. 4 | 42.0
40.8 | 8. 1
8. 4 | 18. 4
18. 1 | 0.0
0.9 | 74
73 | 126. 8
108. 3 | 24. 2
31. 9 | 47.6
47.6 | 0. 130 | 6. 3 | 14. 3
14. 4 | | 25 | 29. 389 | 54.0 | 43.7 | 10.3 | 49.1 | + 0.5 | 48. 1 | 47. 2 | 1.9 | 4. 0 | 0.6 | 93 | 72. 1 | 35. 2 | 47.8 | 0. 182 | 0.0 | 14. 4 | | 26
27 | 29. 403
29. 411 | 59.0
64.2 | 47. 3
48. 9 | 11. 7
15. 3 | 52. 5
56. 5 | + 3.9
+ 7.8 | 50.0
52.6 | 47. 4
48. 8 | 5. 1
7. 7 | 10.7
13.3 | 0.0
2.6 | 83
76 | 104. 4
105. 3 | 45. 5
43. 9 | 47.9
48.0 | 0.082 | 0.4 | 14. 5
14. 6 | | 28
29 | 29. 432
29. 357 | 57. 7
50. 2 | 47. 5
45. 7 | 10.2
4.5 | 51. 3
48. 6 | + 2.5
- 0.4 | 49.8
48.2 | 48.3
47.8 | 3.0
0.8 | 6. 5
2. 0 | 1. 2
0. 0 | 89
97 | 87. 3
57. 4 | 46.6
40.6 | 48. 2
48. 2 | 0. 204
0. 418 | 0.1 | 14. 6
14. 7 | | 30 | 29. 633 | 65. 1 | 43.5 | 21. 6 | 54.0 | + 4.9 | 49.6 | 45.0 | 9.0 | 21. 2 | 0.0 | 71 | 130.5 | 38. 4 | 48.5 | 0.027 | 12. 3 | 14. 7 | | Means | 29.904 | 61. 3 | 40.6 | 20. 7 | 51. 0 | + 3. 7 | 46.3 | 40.4 | 10.6 | 21. 0 | 1. 3 | 67. 8 | 109.9 | 31.6 | 46.7 | Sum
1.703 | 6. 5 | 13. 8 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.904 in., being 0.149 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 79°.7 on April 4; the lowest in the month was 27°.1 on April 11; and the range was 52°.6. The mean of all the highest daily readings in the month was 61°.3, being 5°.2 higher than the average for the 65, years, 1841-1905. The mean of all the lowest daily readings in the month was 40°.6, being 1°.1 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 20°.7, being 4°.1 greater than the average for the 65 years, 1841-1905. The mean for the month was 51°.0, being 3°.7 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII. | - DAILY RES | ULTS | OF THE | METEOR | OLOGICAL | BSERVATIONS | | | |-----------------------------|---|---|--|---|---|---|--------------------------------------|--|--|---------------------------------------|---|--|---| | | | RECORD
NIGH | OF THE
TOSKY | | SEI | WIND AS DEDUC
F-REGISTERING | ED FROM | 1
ETERS | | | | | | | | Pol | aris | | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | UND WEATHER | | | Month
and
Day
1946 | 1on | on of
posure | :1on | on of
posure | General | Direction | on | ssure
the
re Foot | ontal Move-
of the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizonta
ment of t | O ^h to e ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Apr.1 2 3 4 5 | hours
8. 7
8. 3
8. 7
4. 1
6. 1 | 1.00
0.94
1.00
0.47
0.69 | hours
8.7
7.8
8.7
3.5
5.7 | 1.00
0.89
1.00
0.40
0.65 | ENE: Calm: E
Calm: ENE
Calm: SSE
Calm
SW: Calm: N |
E
E:ENE
SE:Calm
S:SSW
NNE | 1bs. 2.5 2.7 2.5 2.0 4.2 | 1bs.
0.09
0.08
0.07
0.10
0.36 | miles
181
180
135
166
273 | b
b
bw
bwz
cr | by bCizoy bzy bcAcubCiy rrWostm | b Ci y
b Ci zo y
b y
b Cicu y
rr Nost | b y b c c b | | 6
7
8
9 | 8. 3
8. 3
2. 5
7. 7
8. 3 | 1.00
1.00
0.30
0.93
1.00 | 8. 3
8. 3
2. 3
7. 5
8. 3 | 1.00
1.00
0.28
0.91
1.00 | n: nne
Sw
SSw: Sw
Nw: nne
Ne: nne | nne: Se
Sw: WSW
SW: NW
NNE: ENE
NE: E | 2. 7
2. 4
1. 8
2. 1
3. 4 | 0. 19
0. 16
0. 23
0. 17
0. 23 | 245
252
293
234
239 | b
bw
bcm
cb
bcbx | b bc Ci y bc Ci y c m c Stcu b Ci c Stcu y bc c Stcu Cu | be Ci so-ha y be Ci y c Steu be Steu Cu y c Steu b y | b
c
c
b | | 11
12
13
14
15 | 8. 3
8. 3
6. 2
7. 5
7. 5 | 1.00
1.00
0.82
1.00
1.00 | 8. 3
8. 1
5. 7
7. 5
7. 5 | 1.00
0.98
0.75
1.00
1.00 | Calm: SW
WSW: NW
Calm
Calm
Calm | W: WSW
NW: NNW: Calm
N: Calm
Calm: ESE
E: SE: SSW | 2. 1
2. 0
0. 3
0. 3
0. 6 | 0. 12
0. 07
0. 02
0. 01
0. 03 | 218
175
87
85
124 | р ж
р м
р ж
р х | b bc Cist y b bc Cu b y bc Acu Ci zo y b Frcu z y b f b Cu | bc Cist c y b y bc Cu zo c y b Cist zo y b y | bc b b c b b b | | 16
17
18
19
20 | 0.7
0.0
7.5
7.5
3.9 | 0. 09
0. 00
1. 00
1. 00
0. 55 | 0.6
0.0
7.5
7.5
3.9 | 0. 08
0. 00
1. 00
1. 00
0. 55 | SW: WSW
SW: W
Calm: NE
Calm
Calm: SW | SW
WSW: SW: Calm
NE
NE: Calm: S
W: SW: N | 3. 5
5. 4
4. 2
1. 1
0. 7 | 0. 19
0. 45
0. 40
0. 05
0. 07 | 256
332
286
138
167 | b
c ro c
b x
b x | bzy c Ci Cist y c Nost rogrc by bCi y | b zo c so-ha y c Ast Acu y c roro c bc Cu Acu b y b Frcu y b Acu bc y | c bc c
rr c
b
b | | 21
22
23
24
25 | 6.0
7.0
1.2
3.3
0.0 | 0. 86
1. 00
0. 17
0. 48
0. 00 | 5. 4
7. 0
1. 2
3. 2
0. 0 | 0.77
1.00
0.17
0.45
0.00 | n
n: nne
sw: wsw
calm: nw
ssw | N: NNW
N: Calm: SSW
WSW
SW
SSW | 3. 6
1. 2
3. 0
2. 3
5. 0 | 0. 33
0. 08
0. 30
0. 11
0. 76 | 291
177
275
172
366 | bc
bcb
bx
rbcc
bcr | c be Cu Cicu y b be Cu Freu y be b c Cu y c Nbst g c Acu rr ro Nbst | b bc Cu y bc Frou y bc Stou c c Stou y c Nbst iro do | bc ro b
b
c ro rr
c b
do r do | | 26
27
28
29
30 | 3.5
0.0
0.0
0.0
4.2 | 0.50
0.00
0.00
0.00
0.65 | 3. 4
0. 0
0. 0
0. 0
3. 4 | 0. 48
0. 00
0. 00
0. 00
0. 52 | S: Calm
NE
NNE
SW: Calm
Calm: ESE | Calm: ENE: NE
Calm: N: NNE
ENE
Calm: WSW: SSW
E | 1. 0
1. 5
2. 5
1. 4 | 0.07
0.11
0.21
0.06
0.08 | 168
191
254
175
167 | rr c
crdoc
rr
cdodom
rr c | c Nbst
c Acu Cist
r c r c Nbst mo
c Nbst do rr m
bc Frcu Ci y | c Stcu
c Cist so-ha prhn
c Nost t 1 r mo
Nost rr m f
b Ci Cu y | c b
c rr
c do mo
iro m
b c | | Means | 5. 1 | 0.65 | 5.0 | 0.63 | ••• | ••• | ••• | 0.17 | 210 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was $46^{\circ}.3$, being $2^{\circ}.4$ higher The mean Temperature of the Dew Point for the month was 40°.4, being 0°.8 higher than The mean Degree of Humidity for the month was 67.8, being 6.7 less than The mean Elastic Force of Vapour for the month was 0.252 in., being 0.008 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.0. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.466. The maximum daily amount of Sunshine was 12.3 hours on April 30. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 132°.1 on April 4; and the lowest reading of the Terrestrial Radiation Thermometer was 15°.5 on April 11. The Proportions of Wind referred to the cardinal points were N.20, E.17, S.19, W.18, calm or nearly calm conditions 26, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 5.4 lbs. on the square foot on April 17. The mean daily Horizontal Movement of the Air for the month was 210 miles; the greatest daily value was 366 miles on April 25, and the least daily value was 85 miles on April 14. Rain (0.005 in. or over) fell on 11 days in the month, amounting to 1.703 in., as measured by gauge No.6 partly sunk below the ground; being 0.137 in. greater than the average for the 65 years, 1841-1905. | | | | | TABLE | xvII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | GICAL | OBSER | VATIONS | | | | | | |----------------------------|---|---|---|---|---|--|---|---|--|---|--------------------------------------|--|--|---|---|--|--|---| | | BAROMETER | | | 7 | TEMPERATU | RE | | | | | | | TF | MPERATU | Œ | Φ | | | | Month
and | Howly
prected
of to 32 | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
ir Temper
1 Dew Poi
emperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No. 6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 322
Farrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, who
surface
above t | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | ٥ | o | 0 | 0 | 0 | 0 | 0 | | ٥ | 0 | 0 | in. | hours | hours | | May 1
2
3
4
5 | 29. 770
29. 766
29. 930
30. 045
29. 993 | 66. 4
62. 4
61. 3
58. 9
54. 0 | 43. 1
45. 4
43. 6
42. 7
38. 5 | 23. 3
17. 0
17. 7
16. 2
15. 5 | 55. 0
52. 5
51. 4
50. 5
45. 2 | + 5. 7
+ 3. 0
+ 1. 6
+ 0. 5
- 5. 1 | 49. 5
48. 6
47. 5
45. 9
42. 3 | 43. 5
44. 4
43. 0
40. 4
38. 3 | 11. 5
8. 1
8. 4
10. 1
6. 9 | 24. 2
19. 7
15. 5
17. 0
15. 5 | 0.0
2.7
2.1
1.8
0.7 | 65
74
73
68
77 | 126. 6
112. 8
120. 3
122. 0
113. 4 | 33. 6
43. 8
40. 7
36. 2
33. 0 | 48. 8
48. 8
49. 0
49. 2
49. 3 | 0.000
0.030
0.000
0.000
0.024 | 11. 3
0. 7
8. 3
11. 4
2. 5 | 14. 8
14. 9
14. 9
15. 0
15. 0 | | 6
7
8
9
10 | 29. 920
29. 881
29. 968
30. 005
29. 951 | 56. 6
63. 8
51. 1
59. 2
64. 9 | 37. 7
47. 0
42. 4
41. 9
41. 2 | 18. 9
16. 8
8. 7
17. 3
23. 7 | 47. 4
54. 1
47. 3
49. 5
53. 2 | - 3. 1
+ 3. 4
- 3. 7
- 1. 7
+ 1. 7 | 43.9
49.5
46.0
44.6
46.7 | 39. 5
44. 7
44. 5
38. 4
38. 7 | 7. 9
9. 4
2. 8
11. 1
14. 5 | 22. 3
17. 6
5. 6
19. 2
33. 1 | 2. 7
2. 0
0. 2
4. 6
0. 4 | 73
70
90
65
58 | 115. 7
121. 7
68. 7
121. 7
127. 4 | 32. 8
43. 4
40. 3
37. 7
34. 7 | 49. 3
49. 3
49. 3
49. 4
49. 5 | 0.008
0.000
0.998
0.000
0.000 | 2. 9
7. 0
0. 0
11. 5
13. 1 | 15. 1
15. 1
15. 2
15. 3
15. 3 | | 11
12
13
14
15 | 29. 944
29. 745
29. 642
29. 641
29. 734 | 58. 1
65. 0
57. 5
49. 2
55. 4 | 44. 2
43. 3
42. 6
39. 8
35. 0 | 13. 9
21. 7
14. 9
9. 4
20. 4 | 49. 0
52. 6
48. 8
44. 1
44. 8 | - 2. 8
+ 0. 5
- 3. 6
- 8. 5
- 8. 0 | 46. 0
48. 7
43. 7
40. 5
40. 4 | 42. 4
44. 5
37. 0
35. 2
33. 8 | 6. 6
8. 1
11. 8
8. 9
11. 0 | 12. 2
16. 5
21. 1
15. 2
26. 3 | 2. 2
2. 1
4. 1
3. 1
0. 0 | 78
74
63
71
65 | 121. 8
129. 6
128. 3
97. 3
122. 4 | 42. 2
42. 2
37. 0
32. 0
26. 0 | 49. 7
49. 6
49. 6
49. 6
50. 0 | 0.013
0.070
0.000
0.018
0.000 | 4. 5
8. 4
7. 1
2. 3
8. 2 | 15. 4
15. 4
15. 5
15. 5
15. 6 | | 16
17
18
19
20 | 29. 746
29. 767
29. 776
29. 736
29. 695 | 51. 7
59. 9
59. 4
62. 4
63. 5 | 35.0
35.5
44.7
40.6
40.7 | 16. 7
24. 4
14. 7
21. 8
22. 8 | 42. 4
49. 0
51. 8
51. 2
51. 7 | -10.6
- 4.1
- 1.5
- 2.3
- 2.1 | 40.5
44.4
48.3
48.9
49.0 | 37. 8
38. 5
44. 5
46. 5
46. 1 | 4. 6
10. 5
7. 3
4. 7
5. 6 | 13. 7
20. 6
14. 5
14. 6
14. 6 | 0.0
0.0
0.8
0.9
1.5 | 84
67
76
84
81 | 110.0
125.3
119.1
114.9
119.3 | 24. 5
27.
4
39. 0
30. 0
29. 9 | 49. 6
49. 8
49. 7
49. 7
49. 9 | 0. 236
0. 000
0. 127
0. 330
0. 102 | 2. 7
10. 5
5. 9
5. 2
6. 3 | 15. 6
15. 7
15. 7
15. 8
15. 8 | | 21
22
23
24
25 | 29. 736
29. 912
29. 925
29. 749
29. 602 | 62. 8
66. 8
67. 6
64. 8
61. 1 | 44. 4
41. 0
48. 5
49. 8
48. 0 | 18. 4
25. 8
19. 1
15. 0
13. 1 | 53. 4
54. 2
58. 3
55. 4
54. 6 | - 0.8
- 0.4
+ 3.4
+ 0.1
- 0.9 | 49. 4
49. 6
52. 4
52. 8
51. 5 | 45. 2
44. 7
46. 7
50. 5
48. 5 | 8. 2
9. 5
11. 6
4. 9
6. 1 | 19. 9
19. 7
23. 6
11. 6
13. 1 | 0. 4
0. 0
0. 6
2. 0
0. 4 | 74
70
65
84
80 | 118. 3
129. 9
135. 5
106. 7
114. 8 | 34. 6
29. 6
38. 1
43. 5
44. 3 | 50.0
50.0
50.4
50.2
50.5 | 0.000
0.000
0.000
0.003
0.000 | 8. 3
6. 2
7. 5
2. 3
1. 3 | 15. 9
16. 0
16. 0
16. 0
16. 0 | | 26
27
28
29
30 | 29. 462
29. 449
29. 577
29. 608
29. 562 | 58. 0
64. 3
66. 4
64. 6
70. 0 | 50. 0
49. 3
46. 5
46. 8
46. 5 | 8. 0
15. 0
19. 9
17. 8
23. 5 | 53. 9
55. 8
55. 9
55. 7
58. 4 | - 1.9
- 0.2
- 0.3
- 0.7
+ 1.7 | 53. 3
53. 3
52. 3
53. 4
53. 9 | 52. 7
51. 1
48. 8
51. 4
49. 8 | 1. 2
4. 7
7. 1
4. 3
8. 6 | 5. 1
14. 1
17. 9
10. 0
18. 0 | 0.0
0.0
1.2
2.0
0.7 | 96
84
77
85
73 | 73. 7
125. 3
130. 7
83. 2
124. 8 | 49. 2
40. 6
37. 8
36. 3
35. 8 | 50. 6
51. 0
51. 0
51. 0
51. 1 | 0. 690
0. 112
0. 093
0. 105
0. 0 10 | 0. 0
3. 4
7. 5
1. 2
5. 7 | 16. 1
16. 1
16. 2
16. 2
16. 2 | | 31 | 29. 388 | 59. 5 | 47.3 | 12. 2 | 53.0 | - 4. 1 | 50.5 | 48.0 | 5.0 | 12. 8 | 1. 8 | 83 | 99. 2 | 41. 5 | 51, 1 | 0. 183 | 6.0 | 16. 3 | | Means | 29. 762 | 60.9 | 43. 3 | 17. 5 | 51.6 | - 1.4 | 48.0 | 43. 8 | 7. 8 | 16. 9 | 1. 3 | 75. 1 | 115. 5 | 36. 7 | 49.9 | Sum
3. 152 | 5.8 | 15.6 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | . 7 | . 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.762 in., being 0.039 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 70°.0 on May 30; the lowest in the month was 35°.0 on May 15 and 16; and the range was 35°.0. The mean of all the highest daily readings in the month was 60°.9, being 1°.3 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 43°.3, being 0°.9 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 17°.5, being 0°.5 less than the average for the 65 years, 1841-1905. The mean for the month was 51°.6, being 1°.4 lower than the average for the 65 years, 1841-1905. | | | | | | TABLE XVI | DAILY | RESULTS | of th | Е МЕТЕ | OROLOGICA | L OBSERVATIONS | | | |-----------------------------|--------------------------------------|---|--|---|--|---|--|--|--|----------------------------------|---|---|--| | | | RÉCORI
NICH | OF THE | | SE | WIND AS DEDI
LF-REGISTERING | UCED FRO
G ANEMOM | m
ETERS | | | | | | | W | Pol | aris | δ
MI | URSÆ
NORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | ND WEATHER | | | Month
and
Day
1946 | 1on | n of
posure | lon | n of
posure | General | Direction | on | ssure
the
e Foot | 1 Move-
the Air | , | | | | | | Durat1on | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 1≳ ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | May 1
2
3
4
5 | hours 0.5 0.0 3.2 5.6 3.8 | 0. 07
0. 00
0. 50
0. 93
0. 63 | hours
0.0
0.0
3.1
5.5
3.8 | 0.00
0.00
0.48
0.91
0.63 | NE:E
ENE:NE
NE
NE:ENE
NE:NNE | E:ENE
ENE:NE
ENE:NE
NE
NNE:N | lbs. 2. 2 4. 9 3. 9 4. 3 11. 6 | lbs.
0.17
0.43
0.44
0.61
1.04 | miles
220
308
339
380
415 | b w c c c c b c b | b Ci y c Stcu c Stcu St c bc Stcu y c Stcu p | b Cist Cu so-ha be y c Steu Acu y c be Ci Freu y be b Freu y be Cu Nbst p | bc c
c r c
b
b
bc b | | 6
7
8
9
10 | 1.0
1.8
2.1
6.0
2.0 | 0. 17
0. 29
0. 35
1. 00
0. 33 | 0. 5
1. 8
1. 3
6. 0
1. 9 | 0. 08
0. 29
0. 22
1. 00
0. 32 | n: ne
ne: ene
ne: calm
ne: ene
ne: ene | ENE: NE
ENE: NE
Calm: ESE: NE
E
ENE: NE | 6. 7
12. 7
3. 2
6. 2
10. 0 | 1. 07
1. 19
0. 19
0. 53
0. 70 | 438
465
208
357
367 | bc
c
tlRR
c
b | c Stcu Nost p
c bc c Acu y
RR r Nost f
c b Frcu y
bc Cist so-ha b y | bc Acu Cicu c y bc Acu c y c Nbst ir c mo b Frcu y b Ci y | c c b c c b c b c | | 11
12
13
14
15 | 0.0
0.0
3.4
2.4
4.6 | 0.00
0.00
0.61
0.44
0.83 | 0.0
0.0
3.3
2.2
4.6 | 0.00
0.00
0.60
0.39
0.83 | ENE
NE: NNE
NE: NNE
NNE: N
Calm: N: NE | ENE: NE
E: NE
NE: NNE
NNW: N: Calm
Var: NE: Calm | 5. 4
3. 9
6. 0
4. 5
1. 0 | 0. 46
0. 35
0. 93
0. 56
0. 05 | 360
314
453
333
142 | c id r c
c b c
c b | c Stou c be Acu Cicu y c Stou y c be do c Stou y b be Ci Cu y | bc Ci so-ha c bc Acu y c bc Stcu Ci c y c Nbst ro c y bc Ci Acu c y | b c id
b c
c
c ro do c
c b | | 16
17
18
19
20 | 2. 2
4. 4
1. 3
5. 3
4. 3 | 0. 39
0. 79
0. 24
0. 96
0. 77 | 2. 0
4. 4
1. 3
5. 2
4. 1 | 0. 37
0. 79
0. 24
0. 95
0. 76 | Calm
Calm:S
E:ESE:SE
ENE:E
Calm:SSE | Calm: SW
SSW: SE: ESE
ESE: ENE
SE: SSW: Calm
S: SSW | 2. 1
1. 9
3. 2
2. 7
2. 1 | 0.05
0.12
0.27
0.26
0.13 | 128
164
234
244
187 | bc c b x bc bc c r b bc p | c Nbst rr G c mo bc c Cu Ci y c t l r R r c Frcu Nbst rRr bc p c Nbst | c p bc Acu c mo
c Cu Cist so-ha b y
bc c Frcu Ci
Nbst r c b
c Nbst P c po c | crc
cbc
cbc
cbc
cprhnbc | | 21
22
23
24
25 | 5. 5
2. 6
2. 1
3. 2
0. 1 | 1.00
0.48
0.38
0.57
0.01 | 5. 5
2. 4
2. 0
3. 1
0. 0 | 1. 00
0. 43
0. 37
0. 56
0. 00 | Calm: SSW
Calm: Var
Calm: NE
N: NNE
NE | SSW
Var:Calm
'NNE:N
NNE:ENE
NE | 4. 1
0. 6
2. 0
1. 2
3. 0 | 0. 23
0. 03
0. 14
0. 16
0. 31 | 233
98
162
213
323 | cb
bwc
bcw
c1do
bcc | c Steu Freu c b c Ci Cu y c Ci Cicu y c 1do c St c Steu | c Ci Cu b y c Cu Ci y c Freu Cu b y c Steu bc c Steu | b
bc b
bc b c
bc
c iro | | 26
27
28
29
30 | 0.0
4.8
3.6
5.0
1.2 | 0.00
0.97
0.73
1.00
0.24 | 0. 0
4. 8
3. 5
5. 0
1. 0 | 0.00
0.97
0.70
1.00
0.20 | NE: NNE
SW: SSW
Calm: ESE: SE
Calm
Calm: S | NNE: N: W
SSW: SSE
SSW: Calm
Calm: SSW
SSW | 1. 8
5. 0
2. 6
0. 1
2. 4 | 0. 14
0. 43
0. 14
0. 00
0. 13 | 235
307
206
95
198 | odom
redo
be
ebe
be | o c Nbst
c Stcu Nbst 1do
c rr c Ci Frcu so-ha
c Nbst r ro
c po c Acu Cicu | c Nbst ro c
c Cu Frcu Ci
bc Cu Cicu b y
r ro c Nbst
c Cu Cunb b y | c RR bc b b bc c r c | | 31 | 2.8 | 0.56 | 2. 7 | 0.54 | SW:SSW | S:WSW:SW | 9.0 | 0.71 | 368 | със | c What ro | Wbst rr bc | bc b c r | | Means | 2.7 | 0.49 | 2. 6 | 0. 47 | | ••• | ••• | 0. 39 | 274 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 48°.0, being 1°.0 lower than The mean Temperature of the Dew Point for the month was 43°.8, being 1°.0 lower than The mean Degree of Humidity for the month was 75.1, being 1.2 greater than The mean Flastic Force of Vapour for the month was 0.287 in., being 0.011 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10 was 6.6. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.371. The maximum daily amount of Sunshine was 13.1 hours on May 10. The highest reading of the Solar Radiation
Thermometer was 135°.5 on May 23; and the lowest reading of the Terrestrial Radiation Thermometer was 24°.5 on May 16. The Proportions of Wind referred to the cardinal points were N.28, E.35, S.16, W.6, calm or nearly calm conditions 15, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 12.7 lbs. on the square fool on May 7. The mean daily Horizontal Movement of the Air for the month was 274 miles; the greatest daily value was 465 miles on May 7, and the least daily value was 95 miles on May 29. Rain (0.005 in. or over) fell on 17 days in the month, amounting to 3.152 in., as measured by gauge No.6 partly sunk below the ground; being 1.237 in. greater than the average for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAIL | Y RESUI | LTS OF | THE ME | reorolo | GICAL | OBSEF | RVATIONS | 1 | | | | | |----------------------------|---|----------------------|----------------------|-------------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|------------------------|---|-------------------|--|-----------------------------|---------------------------|---|---|------------------------------|-------------------------| | | BAROMETER | | | Т | EMPERATU | RE | | | | | | | TE | MPERATUR | Œ | ου | | | | Month
and | Hourly
rrected
1 to 329
elt) | | C | of the Ai | r | | Of
Evapo-
ration | Of the
Dew
Point | the Ai | rence be
ir Temper
1 Dew Poi
emperatur | ature
Int | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 322
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No. 6, who surface above t | Sun-
shine | Horizon | | | in. | ٥ | 0 | ۰ | 0 | 0 | 0 | ٥ | ٥ | 0 | 0 | | 0 | 0 | 0 | in. | hours | hours | | June 1
2 | 29. 160
29. 238 | 63.0
62.1 | 47. 2
47. 7 | 15. 8
14. 4 | 53. 5
54. 5 | -3.9
-3.3 | 50.6 | 47.7
46.0 | 5.8
8.5 | 13. 2
16. 4 | 1.4 | 80
73 | 129. 4 | 41. 4 | 51.7 | 0. 410
0. 125
0. 184 | 6.7
5.2
7.7 | 16. 3
16. 3
16. 4 | | 3 4 | 29. 626
29. 795 | 63.8 | 48. 4
45. 3 | 15. 4
15. 7 | 55. 1
53. 1
57. 7 | -3.0
-5.2
-0.7 | 50. 3
50. 2
53. 8 | 45. 3
47. 2
50. 3 | 9.8
5.9
7.4 | 19.6
11.7
26.8 | 0.8
1.7
2.4 | 70
80
76 | 130.0
101.3
121.9 | 41.0
35.9
47.0 | 51.7
52.0
52.0 | 0.040 | 0.7
4.3 | 16. 4
16. 4 | | 6 | 29. 588 | 66. 2
68. 0 | 52.3 | 13.9 | 58.4 | +0.1 | 53. 2 | 48. 3 | 10. 1 | 17.0 | 4. 2 | 69 | 136. 3 | 41.0 | 52. 1 | 0.000 | 9.3 | 16. 4 | | 7 8 | 29. 899
29. 699 | 70.9
64.9 | 44. 3 | 26. 6
10. 6 | 58. 3
58. 2 | +0.1
+0.1 | 52. I
55. 4 | 45.9
53.0 | 12. 4
5. 2 | 22. 6
10. 0 | 1.4 | 63
83 | 131. 2
100. 5 | 32. 7
51. 6 | 52. 3
52. 3 | 0.008
0.278 | 9.8
0.0 | 16. 5
16. 5 | | 9 | 29. 703
29. 463 | 62. 7
63. 6 | 49.5
47.7 | 13. 2
15. 9 | 55. 8
55. 6 | -2. 2
-2. 5 | 52. 2
52. 1 | 48.7
48.7 | 7. 1
6. 9 | 13. 7
13. 7 | 2. 0
3. 1 | 77
77 | 119.9
124. 2 | 46. 2
42. 1 | 52. 6
52. 8 | 0.013
0.106 | 3.6
2.3 | 16. 5
16. 5 | | 11 | 29.721 | 63.0 | 44.8 | 18. 2 | 51.9 | 6.3 | 48. 7 | 45.3 | 6.6 | 15.7 | 0.8 | 78
82 | 130.0
112.2 | 36. 0
35. 5 | 53.0
52.8 | 0.005
0.054 | 4.3
2.0 | 16. 6
16. 6 | | 12
13
14 | 29.802
30.018
29.951 | 59.6
67.4
68.4 | 45.1
45.9
47.6 | 14. 5
21. 5
20. 8 | 52. 3
55. 1
57. 3 | -6. 1
-3. 4
-1. 4 | 49.6
50.4
52.3 | 46. 8
45. 5
47. 4 | 5. 5
9. 6
9. 9 | 13. 6
25. 3
22. 6 | 0.0 | 70
70 | 124. 5
134. 0 | 36. 5
40. 4 | 53.0 | 0.054 | 8. 8
5. 4 | 16. 6
16. 6 | | 15 | 29. 747 | 66.3 | 52.7 | 13.6 | 56.8 | -2.0 | 53.9 | 51.3 | 5.5 | 15. 1 | 1.7 | 82 | 131.0 | 50.8 | 53. 3 | 0.328 | 2.8 | 16.6 | | 16
17 | 29. 707
29. 737 | 67.8
63.9 | 50.3
51.8 | 17. 5
12. 1 | 56.6
57.0 | -2.3
-2.0 | 53. 3
53. 1 | 50.3
49.4 | 6.3
7.6 | 16. 8
18. 1 | 0.8
0.8 | 79
76 | 140. 1
123. 4 | 49.2
50.6 | 53. 3
53. 5 | 0.046
0.020 | 5. 2
4. 0 | 16.6
16.6 | | 18
19 | 29. 682
29. 733 | 65.0
58.3 | 49.6
47.1 | 15. 4
11. 2 | 56.6
51.4 | -2.6
-8.1 | 51. 7
48. 9 | 46. 8
46. 2 | 9. 8
5. 2 | 21. 0
12. 8 | 0.0 | 70
82 | 132. 5
96. 1 | 43.7 | 53.8 | 0. 125 | 8. 3
1. 6 | 16. 6
16. 6 | | 20 | 29.910 | 65.8 | 45.7 | 20. 1 | 54.5 | -5.4 | 50.5 | 46.5 | 8.0 | 18. 1 | 0.7 | 74 | 134.5 | 40. 2 | 54.0 | 0.007 | 7.6 | 16.6 | | 21
22 | 30. 137
30. 211 | 69.3 | 45.0
48.9 | 24. 3 | 56. 5 | -3.8
-0.4 | 52. 3
54. 8 | 48. 2
50. 0 | 8. 3
10. 2
11. 5 | 19. 3
20. 3
22. 9 | 0.0
0.0
1.2 | 69
66 | 133. 3
132. 0
134. 2 | 38. 0
46. 6 | 54. 2
54. 3 | 0.000 | 4.8 | 16. 6
16. 6 | | 23
24
25 | 30.050
29.842
29.798 | 75.3
72.2
70.5 | 53.5
57.1
49.8 | 21.8
15.1
20.7 | 63.7
63.0
59.4 | +2. 8
+1. 8
-2. 0 | 57. 4
58. 7
54. 3 | 52. 2
55. 4
49. 6 | 7.6
9.8 | 14.9 | 2. 3 | 76
70 | 132.8 | 49.3 | 54. 2
54. 6 | 0.078 | 3. 5 | 16.6
16.6 | | 26 | 29. 699 | 71.4 | 53.3 | 18. 1 | 61.0 | -0.5 | 57.6 | 54.9 | 6. 1 | 12.9 | 1.0 | 81 | 125.9 | 52. 5 | 54.6 | 0. 131 | 3. 2 | 16.6 | | 27
28 | 29. 868
29. 839 | 66.4 | 49.4 | 17.0
17.0 | 58. 4
60. 7 | -3. 2
-0. 9 | 54. 3
55. 7 | 50.7
51.4 | 7. 7
9. 3 | 15.6
20.5 | 0. 4
1. 8 | 76
71 | 127. 4
136. 1 | 41. 4
47. 5 | 55.0
55.1 | 0.060
0.200 | 4. 3
8. 5 | 16. 6
16. 6 | | 29
30 | 29. 978
30. 052 | 69.0
73.3 | 53. 4
57. 5 | 15. 6
15. 8 | 60. 2
64. 1 | -1. 4
+2. 6 | 55. 0
60. 4 | 50. 4
57. 7 | 9.8
6.4 | 15. 2
10. 8 | 3.9
1.7 | 70
80 | 127. 4
126. 9 | 45. 8
53. 0 | 55. 2
55. 4 | 0.000 | 6.6
5.8 | 16.6
16.6 | | Means | 29. 779 | 66.6 | 49.6 | 17. 0 | 57.2 | -2. 2 | 53. 1 | 49. 2 | 8.0 | 17. 2 | 1. 4 | 74.8 | 126. 1 | 43.3 | 53. 4 | Sum
2. 517 | 5. 4 | 16.5 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.779 in., being 0.043 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 75°.3 on June 23; the lowest in the month was 44°.3 on June 7; and the range was 31°.0. The mean of all the highest daily readings in the month was 66° .6, being 2° .3 lower than the average for the 65 years, 1841-1906. The mean of all the lowest daily readings in the month was 49°.6, being 0°.8 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was $17^{\circ}.0$, being $1^{\circ}.5$ less than the average for the 65 years, 1841-1905. The mean for the month was $57^{\circ}.2$, being $2^{\circ}.2$ lower than the average for the 65 years, 1841-1905. the average for the 65 years, 1841-1905. | | | | | | TABLE XVII | DAILY | RESULT | s of T | HE METI | EOROLOGICA | AL OBSERVATIONS | | | |-----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|--|---|---------------------------------|------------------------------------|--|---|---------------------------------------| | | | | OF THE
TSKY | | SE | WIND AS DEI
LF-REGISTERIN | DUCED FR
IG ANEMO | OM
METERS | | | | | | | | Pol | aris | δ
MIN | URSÆ
IORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | AND WEATHER | | | Month
and
Day
1946 | 1on | on of
posure | lon | n of
posure | General | Direction | on | sure
the
e Foot | contal
Move-
of the Air | | | | | | · | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizonta
ment of t | O ^h to G ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | | hours | | hours | | | | lbs. | lbs. | miles | | W - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Was a base | | | June 1
2
3
4
5 | 0.5
3.5
4.3
0.0
3.4 | 0. 10
0. 77
0. 96
0. 00
0. 75 | 0. 4
3. 4
4. 3
0. 0
3. 1 | 0.09
0.75
0.96
0.00
0.68 | SW
Calm: WSW
SW: W
SW
SW | SSW: S
WSW: SW
W: WSW
SW
SW | 7. 7
12. 5
5. 0
7. 5
11. 5 | 0. 64
1. 05
0. 46
0: 60
1. 30 | 344
403
338
326
489 | bc ir
ir c
bc ir
b c
c | bc c Nbst ir
c Acu Nbst p
ir c Ci Cu y
c Ast Nbst
c Nbst ro c | c Nbst p bc c
c Cunb p bc c
c Stcu Cu bc y
c Nbst iro r
c b Cicu | cir
cb
bcb
rorc
bc | | 6
7
8
9
10 | 4.5
0.0
0.5
0.0
4.5 | 1.00
0.00
0.09
0.00
1.00 | 4. 5
0. 0
0. 5
0. 0
4. 5 | 1.00
0.00
0.09
0.00
1.00 | SW:WSW
WSW:Calm
ENE
W:WSW:SW
SSW:SW | SW: WSW
Calm: SE
Calm: NW: WNW
SSW: SSE
W: WSW | 4.0
0.8
1.2
3.6
10.8 | 0.52
0.03
0.08
0.24
0.99 | 331
116
169
253
391 | b
bw
cmo
cb
cirro | b bc Cu Cicu c bc Cu Ci c Ast ro b c Acu Cu c Nost ir R | c ro bc Cu Acu
b c Stcu
rr ro Nbst
c Nbst ro c
c Nbst ir | b
croc
roc
cir
cb | | 11
12
13
14
15 | 3. 9
3. 4
1. 9
0. 0
0. 0 | 0. 87
0. 76
0. 43
0. 00
0. 00 | 3. 8
3. 4
1. 9
0. 0
0. 0 | 0.85
0.76
0.43
0.00
0.00 | WSW
SSW: Calm
Calm: N
Calm: W
Calm: WSW | SW: WSW: Calm
Var: Calm
N: Calm
W: WSW
SW: WSW | 3. 2
0. 5
2. 2
1. 4
1. 5 | 0. 21
0. 02
0. 11
0. 13
0. 14 | 248
122
181
188
200 | bc
bcc
bwc
c | c so-ha c Stcu
c Acu Cunb t p
c Cu
c Cist so-ha y
c r c Cu Cicu | c Stcu Cunb p t c
c Nbst po
bc Cu c y
c Ast Stcu y
c Cu Cunb p c | cbc
cb
ctlrbc
cro
cRc | | 16
17
18
19
20 | 0. 0
0. 0
3. 9
4. 5
4. 3 | 0.00
0.00
0.87
1.00
0.96 | 0.0
0.0
3.9
4.5
4.1 | 0.00
0.00
0.86
1.00
0.92 | WSW: SW
WSW: W
Calm: W
SW: SSW
SW: WSW | SW: SSW
WSW: SW
WNW: WSW
NW: Calm: WSW
WSW | 2. 0
4. 5
8. 6
10. 0
5. 2 | 0. 19
0. 30
0. 63
0. 14
0. 18 | 243
289
362
219
267 | c b
b c
dd c
b c
b bc | b c Cu Acu
c Stcu Acu y
c bc Cu Frcu y
c Ast Nost rr
bc c Cu Ci Cist | c Acu y c Nost r
c Acu Frst po c
be Cu c Nost p be
Nost roro c P t c
be Cu Cist c pt be | r do d
c d
bc b
c b
bc b | | 21
22
23
24
25 | 4.5

1.5
1.6
0.0 | 1.00

0.34
0.36
0.00 | 4. 5

1. 5
1. 3
0. 0 | 1.00

0.34
0.30
0.00 | Calm: NW
Calm
Calm
WSW: W
Calm | NNW: Calm
NNW: Calm
Calm: SSW
WSW: SW: NW
SSW | 4. 7
0. 4
0. 6
1. 7
3. 0 | 0. 10
0. 02
0. 03
0. 15
0. 11 | 158
103
112
213
177 | b
bw
cb
c | b bc Frcu y bc Cist so-ha zo y b Ci y zo c Cicu Frcu c Cunb Cist so-ha y | bc Cu c P c
c Stcu Prcu y
bc Acu y
c Cist Stcu
bc c Cu Ast y | bc b
c
b prhn bc
c p
c rr | | 26
27
28
29
30 | 2. 5
0. 0

1. 7
0. 5 | 0. 55
0. 00

0. 37
0. 11 | 2. 5
0. 0

1. 5
0. 4 | 0. 55
0. 00

0. 34
0. 10 | SSE: SW
WSW: SW
SSW: W
SW
SW | WSW: W
SW: SSW
WSW: SW
SW
SW | 2. 6
4. 2
3. 1
5. 2
3. 0 | 0. 20
0. 35
0. 29
0. 43
0. 32 | 229
281
292
316
297 | rr c d
b
rr
b c
c b | c Nbst 1d c b c Acu Ci Nbst r d bc Frcu c Acu Cu ro c c Stcu | c Steu be e
c Nbst ro e Acu
be Cu Ci e y
e Cicu Acu be e
e Steu be | cb
crcr
cb
cb | | Means | 2. 0 | 0. 44 | 1.9 | 0. 43 | ••• | ••• | ••• | 0.33 | 255 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 53°.1, being 1°.8 lower than The mean Temperature of the Dew Point for the month was $49^{\circ}.2$, being $1^{\circ}.6$ lower than The mean Degree of Humidity for the month was 74.8, being 1.6 greater than The mean Elastic Force of Vapour for the month was 0.352 in., being 0.023 in. less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.4 The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.329. The maximum daily amount of Sunshine was 11.7 hours on June 23. The highest reading of the Solar Radiation Thermometer was 140° .1 on June 16; and the lowest reading of the Terrestrial Radiation Thermometer was 32° .7 on June 7. The Proportions of Wind referred to the cardinal points were N.6, E.2, S.29, W.44, calm or nearly calm conditions 19, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 12.5 lbs. on the square foot on June 2. The mean daily Horizontal Movement of the Air for the month was 255 miles; the greatest daily value was 489 miles on June 5, and the least daily value was 103 miles on June 22. Rain (0.005 in. or over) fell on 24 days in the month, amounting to 2.517 in., as measured by gauge No.6 partly sunk below the ground; being 0.479 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | GICAL (| OBSER | RIOITAV | | | | | | |--------------------------|---|----------------|----------------|----------------|-----------------------------------|--|-----------------------------------|-----------------------------------|---------------------|---|--------------|--|-----------------------------|---------------------------|---|--|------------------------------|----------------| | | BAROMETER | | | 1 | EMPERATU | RE | | | | | | | TE | MPERATUR | Œ | a) | | | | Month
and | Hourly
prected
a to 32 | | ı | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Ai
and | rence be
r Temper
Dew Poi
mperatur | ature
Int | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | In collected in Gauge
o.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sum | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 322
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collections of whose surface above t | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | ۰ | 0 | in. | hours | hours | | July 1 | 30. 112
29. 884 | 80. 3
86. 4 | 59.8
58.2 | 20. 5
28. 2 | 68. 6
73. 3 | + 7. 1
+11. 7 | 64. 4
67. 1 | 61. 7
63. 4 | 6.9
9.9 | 16. 1
18. 9 | 1. 4 | 79
71 | 133. 3
144. 3 | 53. 5
46. 3 | 55. 6
56. 0 | 0.000 | 6. 5
10. 5 | 16. 6
16. 6 | | 3 | 29. 762 | 82. 2
70. 1 | 57.7 | 24. 5
16. 8 | 71. 5
63. 4 | + 9.7
+ 1.3 | 65. 4
60. 0 | 61. 5
57. 5 | 10.0
5.9 | 16. 5
13. 3 | 1.3 | 71
81 | 145. 2
130. 3 | 45.8
46.1 | 56. 1
56. 3 | 0.000
0.253 | 11.3
2.0 | 16. 5
16. 5 | | 4 5 | 29. 599
29. 808 | 66.5 | 53. 3
53. 3 | 13. 2 | 59.6 | - 2.7 | 54.7 | 50.3 | 9.3 | 19. 1 | 3. 1 | 71 | 112.2 | 46. 1 | 56.5 | 0.000 | 1.5 | 16.5 | | 6 | 30. 143 | 70. 5 | 50.3 | 20. 2 | 61.0 | - 1.4 | 54. 4 | 48. 3 | 12. 7 | 22.0 | 1.0 | 63 | 136.0 | 40.7 | 56.9 | 0.000 | 11.9 | 16. 5 | | 7
8 | 30. 300
30. 276 | 73. 0
73. 3 | 50.9
49.4 | 22. 1
23. 9 | 61. 5
61. 1 | - 0.9
- 1.3 | 54. 9
55. 0 | 48.8
49.5 | 12.7
11.6 | 23. 9
25. 6 | 2.8 | 63
66 | 140.7
113.8 | 40.6
37.2 | 57.0
57.0 | 0.000
0.000 | 12. 4
3. 5 | 16. 4
16. 4 | | 9
10 | 30. 234
30. 203 | 78. 5
78. 7 | 50. 2
52. 3 | 28. 3
26. 4 | 66.0
65.7 | + 3.6
+ 3.2 | 58. 9
59. 7 | 53. 2
55. 1 | 12. 8
10. 6 | 21. 4 | 1. 8
1. 2 | 63 | 134. 4
140. 3 | 38.3
40.3 | 57. 0
57. 1 | 0.000 | 13. 4
13. 6 | 16. 4
16. 4 | | | | | | l | 69. 6 | + 6.9 | 63. 3 | 59.0 | 10.6 | 20.9 | 1.1 | 69 | 143. 1 | 42.6 | 57.1 | 0.000 | 9.0 | 16. 3 | | 11
12 | 30.056
29.885 | 83. 9
85. 4 | 54. 4
58. 7 | 29.5
26.7 | 71.7 | + 8.8 | 64. 1 | 59.0 | 12. 7 | 24. 4 | 1.4 | 64 | 144. 4 | 46.0 | 57.4 | 0.000 | 9.1 | 16. 3 | | 13
14 | 29. 682
29. 609 | 83. 7
68. 2 | 59. 3
52. 4 | 24. 4
15. 8 | 71.8
61.0 | + 8.7
- 2.3 | 63. 6
54. 8 | 57. 9
49. 1 | 13. 9
11. 9 | 26. 4
21. 4 | 1.3 | 62
65 | 138. 3
132. 3 | 45. 4
47. 0 | 57. 5
57. 6 | 0.000 | 6. 3
5. 3 | 16. 3
16. 2 | | 15 | 29.642 | 69. 1 | 48. 1 | 21.0 | 57. 7 | - 5. 7 | 50.4 | 42. 4 | 15. 3 | 34. 7 | 4.7 | 57 | 140.6 | 39.8 | 57.6 | 0.005 | 10.8 | 16. 2 | | 16 | 29. 385 | 56.8 | 48.6 | 8. 2 | 52. 6 | -10.8 | 50.8 | 49. 1 | 3. 5 | 7.4 | 0.9 | 87 | 71.5 | 43.8 | 57.4
57.6 | 0. 296
0. 040 | 0. 1
3. 8 | 16. 2
16. 2 | | 17
18 | 29. 490
29. 538 | 68.
0
66. 4 | 43.8
55.6 | 24. 2
10. 8 | 54.4
60.2 | - 9.0
- 3.1 | 51. 2
56. 5 | 48. 1
53. 4 | 6. 3
6. 8 | 20.9
12.8 | 0.9
3.3 | 79
79 | 129.3
115.2 | 34. 8
51. 9 | 57.4 | 0.008 | 1.0 | 16. 1 | | 19
20 | 29. 661
29. 773 | 68. 6
68. 4 | 55. 3
55. 7 | 13. 3
12. 7 | 60.0
60.2 | - 3. 2
- 3. 0 | 56. 6
55. 1 | 53.7
50.5 | 6. 3
9. 7 | 12. 9
17. 8 | 2. 6 | 80
71 | 131.7 | 48. 8
52. 8 | 57. 3
57. 4 | 0.014 | 1. 4
3. 5 | 16. 1
16. 0 | | ŀ | |] | | | | _ | | | 8.6 | 18. 5 | 1. 3 | 73 | 126. 5 | 50.2 | 57.4 | 0.040 | 0.5 | 16.0 | | 21
22 | 29. 845
29. 808 | 69. 9
78. 4 | 54. 1
55. 3 | 15. 8
23. 1 | 60. 4
65. 4 | - 2.8
+ 2.3 | 55. 8
61. 4 | 51. 8
58. 5 | 6.9 | 17. 1 | 1. 1 | 79 | 137.0 | 53.9 | 57.4 | 0.000 | 4. 2 | 15.9 | | 23
24 | 29.926
29.727 | 78.6
87.0 | 58. 9
58. 4 | 19.7
28.6 | 68. 3
72. 4 | + 5.3
+ 9.5 | 62. 8
65. 4 | 59. 1
60. 9 | 9. 2
11. 5 | 19.0
19.8 | 2.1 | 73
67 | 140.9
143.4 | 49. 2
48. 4 | 57.5 | 0.000 | 9.9
10.6 | 15.9
15.9 | | 25 | 29.942 | 78.0 | 54. 3 | 23. 7 | 65. 2 | + 2.5 | 57. 5 | 50.9 | 14. 3 | 26. 4 | 2.9 | 60 | 138. 3 | 43. 1 | 57.7 | 0.000 | 13. 2 | 15.8 | | 26 | 29.733 | 77. 2 | 51.3 | 25.9 | 63. 4 | + 0.9 | 59.6 | 56.8 | 6.6 | 16.9 | 1.0 | 79 | 130.8 | 38.6 | 58. 0
58. 2 | 1.446
0.095 | 4. 6
10. 6 | 15. 8
15. 7 | | 27
28 | 29. 785
29. 933 | 69.0
69.9 | 53.0
48.6 | 16.0
21.3 | 60.4
59.1 | - 2.0
- 3.2 | 56. 4
54. 4 | 53.0
50.1 | 7. 4
9. 0 | 18. 3
23. 0 | 1. 2
0. 6 | 77
72 | 132.9
140.5 | 43.0
37.8 | 58. 2 | 0.150 | 8.3 | 15.7 | | 29 | 29. 785 | 73.6 | 55.0 | 18.6 | 62. 9 | + 0.6 | 57. 0
59. 0 | 52.0
56.0 | 10.9
7.0 | 23. 1
10. 8 | 0.7 | 68
77 | 134. 3
131. 3 | 49.3
48.2 | 58. 3
58. 1 | 0.021 | 10.7
3.1 | 15. 6
15. 6 | | 30
31 | 29. 767
29. 869 | 72.0
67.8 | 55. 7
52. 5 | 16. 3
15. 3 | 63.0 | - 1.8 | 54.3 | 48.7 | 11.7 | 24.9 | 1.4 | 65 | 126.7 | 44.0 | 58. 2 | 0.000 | 5.5 | 15.5 | | 31 | 27. 809 | 07.8 | 72.) | 17.5 | 00.4 | 1. 0 | 74. 5 | 40. / | | | | | | | - | Sum | | ļ | | Means | 29.844 | 74. 2 | 53. 7 | 20.5 | 63. 6 | + 1.0 | 58. 2 | 53.8 | 9.8 | 19.8 | 1.9 | 71.0 | 132. 2 | 45.0 | 57.3 | 2. 393 | 7.0 | 16. 1 | | No.of
Col.for
Ref. | 1 ' | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry, The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.844 in., being 0.038 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 87°.0 on July 24; the lowest in the month was 43°.8 on July 17; and the range was 43°.2. The mean of all the highest daily readings in the month was 74°.2, being 2°.1 higher than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 53°.7, being 0°.1 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 20°.5, being 2°.2 greater than the average for the 65 years, 1841-1905. The mean for the month was 63°.6, being 1°.0 higher than the average for the 65 years, 1841-1905. | | | | | | TABLE XVII | DAILY | RESUL | TS OF | THE ME | TEOROLOGICA | L OBSERVATIONS | | | |-----------------------------|--------------------------------------|---|--------------------------------------|---|---|---|--------------------------------------|---|--|--|--|---|------------------------------------| | | | RECORD
NIGH | OF THE
TSKY | | SEI | WIND AS DED
F-REGISTERIN | | | | | | | | | , was to | Pol | laris | δ
MIN | URSÆ
VORIS | | OSLER'S | | | Robin-
son's | | CLOUDS AN | D WEATHER | | | Month
and
Day
1946 | :1on | on of
sposure | :1on | on of posure | General 1 | Direction | on | ssure
the
e Foot | il Move-
the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Howrly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | July 1
2
3
4
5 | hours 4.5 4.2 1.2 3.3 4.3 | 1. 00
0. 93
0. 27
0. 74
0. 96 | hours 4.5 4.0 1.2 3.2 4.2 | 1.00
0.90
0.27
0.71
0.94 | SW
Calm: SSE
W: Calm
Var: SSW
SW: WSW | SW:Calm
SW:WnW:W
SSE:E
SSW:SW
W | 1bs. 0.8 1.8 1.0 5.0 3.5 | 1bs. 0.07 0.11 0.07 0.33 0.33 | miles
179
195
144
289
308 | c
bw
bbc
bcctlrr | c Stcu
c Stcu Acu
bc Ci Cu y
rr c Ast Nost
c Nost ro c | c bc Freu Cu
c bc Cu Ci y
bc Freu y
c Ast Acu
c Steu Acu y | bc b bc b bc 1 c b c c b | | 6
7
8
9
10 | 4. 7
4. 6
4. 7
4. 1
4. 6 | 1.00
0.98
1.00
0.86
0.96 | 4. 7
4. 6
4. 7
4. 1
4. 0 | 1.00
0.98
1.00
0.86
0.84 | WSW: WNW
NNW: Calm
Calm
Calm
Calm: E | NW: NNW
N: E: Calm
NE: Calm
ESE: Calm
E: Calm | 2. 4
1. 1
1. 0
0. 3
1. 8 | 0. 20
0. 07
0. 02
0. 01
0. 07 | 253
167
92
104
154 | b bc
b
b c
b
b | bc Cu Frcu y b bc Frcu Cist y c Stcu b Frcu Zo y b Ci y | bc Cu b y bc Cu b y c Acu Cu b zo c y b bc Frcu zo y b Frcu y | b
c b
c b
bc
b bc | | 11
12
13
14
15 | 2. 9
4. 7
1. 3
4. 9
0. 0 | 0.60
1.00
0.24
0.92
0.00 | 2. 9
4. 7
1. 0
4. 8
0. 0 | 0.60
1.00
0.19
0.91
0.00 | Calm
Calm
Calm: SSE
NW: W: WSW
WSW: W | SSW
SSE: Calm
SSW: W: NNW
NNW: NW: W
WSW: SSW | 0. 4
0. 5
3. 5
7. 0
4. 0 | 0.04
0.02
0.14
0.52
0.31 | 122
118
192
346
305 | b
c b
b bc
c
b bc | b zo be Freu y
so-ha b Freu zo y
be Acu Cist so-ha y
c Cunb p
be e Cieu Cu y | bc c Cu y bc c Cu Ci zo y c Cist so-ha b y c Cu Cunb y bc Cicu b y | c
b
b c
po c b
b c ro | | 16
17
18
19
20 | 3. 3
0. 0
0. 5
0. 0
0. 0 | 0. 64
0. 00
0. 09
0. 00
0. 00 | 3. 1
0. 0
0. 3
0. 0
0. 0 | 0.59
0.00
0.07
0.00
0.00 | Var: NNW
Calm
SSW
SW
SW | NNW: Calm
SW: SSW
SSW: SW
SW
WSW | 4. 5
4. 8
6. 5
4. 3
2. 9 | 0. 14
0. 11
0. 64
0. 28
0. 17 | 218
181
351
289
258 | rr dodo m
bc c m
c
bc c
c | c Nost ro do mo
c Ast m b
c Ast Nost p
c Ast Nost p
c bc c Ci Acu y | c Nost Cu y b c Nost r c c Nost p c Acu Cuno p c Acu Stcu | c
crc
crodo
c | | 21
22
23
24
25 | 0.0

5.3
2.9
3.9 | 0.00

0.93
0.50
0.67 | 0. 0

4. 8
2. 7
3. 8 | 0.00

0.83
0.46
0.66 | WSW
SSW: SW
SW
Calm: SSW
W: WSW | SW: SSW
SW: S
WSW: WINW
SW: SSW | 2. 5
2. 7
2. 9
2. 7
1. 3 | 0. 16
0. 27
0. 18
0. 17
0. 12 | 236
304
238
225
207 | c
d _o c
b c
b
b c b | c Stcu
c bc Stcu Cicu
c bc Cicu Ci
b bc Frcu y
b Cu Frcu y | c Stcu be Stcu c y be Cicu Freu b be Freu c p y b be Cist so-ha c y | crocr
cb
b
cb
bbc | | 26
27
28
29
30 | 3. 9
6. 3
1. 1
4. 5
2. 7 | 0. 68
1. 00
0. 18
0. 73
0. 44 | 3. 9
6. 3
1. 0
4. 3
2. 5 | 0. 68
1. 00
0. 15
0. 68
0. 40 | Calm: E
SW: SSW
SW
WSW: WNW
WSW: SW | E: Calm: WSW
SW
WSW: SW
W: WSW
SW: WSW | 8. 0
6. 3
4. 0
3. 4
9. 7 | 0. 26
0. 63
0. 18
0. 34
0. 93 | 215
352
276
349
426 | b c b bc b w r c b bc c | c be Cieu Acu y
be Cunb p
b be e Acu Nbst p
b be Cieu Acu y
c Cieu Steu y | ctrGRt1r
cFrcu Cunb p bc b
cCicu Nbsty
bcAcu Ciy
cStcu Nbst | rcb
b
rocrr
cb | | 31 | 6. 1 | 0.97 | 5. 9 | 0.94 | WSW: W | W | 4. 7 | 0. 30 | 320 | сb | b c Cicu Cu | c Stcu | сb | | Means | 3. 1 | 0.61 | 3.0 | 0. 59 | • • • | ••• | • • • | 0. 23 | 239 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 58°.2, being 0°.3 higher than The mean Temperature of the Dew Point for the month was 53°.8, being 0°.3 lower than The mean Degree of Humidity for the month was 71.0, being 2.2 less than The mean Elastic Force of Vapour for the month was 0.417 in., being 0.004 in. less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.4. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.436. The
maximum daily amount of Sunshine was 13.6 hours on July 10. the average for the 65 years, 1841-1905. The highest reading of the Solar Radiation Thermometer was 145°.2 on July 3; and the lowest reading of the Terrestrial Radiation Thermometer was 34°.8 on July 17. The Proportions of Wind referred to the cardinal points were N.7, E.6, S.29, W.38, calm or nearly calm conditions 20, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 9.7 lbs. on the square foot on July 30. The mean daily Horizontal Movement of the Air for the month was 239 miles; the greatest daily value was 426 miles on July 30, and the least daily value was 92 miles on July 8. Rain (0.005 in. or over) fell on 13 days in the month, amounting to 2.393 in., as measured by gauge No.6 partly sunk below the ground; being 0.006 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAIL | Y RESU | LTS OF | THE ME | reorolo | GICAL | OBSEF | RVATIONS | | | | | | |----------------------------|---|---|---|---|---|--|---|---|--|---|--------------------------------------|--|--|---|---|--|---------------------------------------|---| | | BAROMETER | | | Т | EMPERATU | RE | | | | | | | TE | MPERATUR | Æ | | | | | Month
and | Hourly
prected
d to 32
helt) | | C | Of the Ai | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Af | rence bet
r Temper
Dew Poi
emperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Radi | lation | Of the
Earth
4 ft. | Rain collected in Gauge
No. 6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
19 4 6 | Mean of 24 Hourly
Values (corrected
and reduced to 322
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, whose surface is above ti | Sun-
shine | Horizon | | | in. | ۰ | 0 | 0 | ٥ | 0 | 0 | 0 | 0 | ۰ | ٥ | | o | 0 | 0 | in. | hours | hours | | Aug. 1
2
3
4
5 | 29. 982
29. 837
29. 827
29. 809
29. 690 | 73. 1
74. 5
76. 0
82. 7
83. 3 | 48. 6
57. 4
58. 0
51. 9
57. 3 | 24. 5
17. 1
18. 0
30. 8
26. 0 | 61. 2
65. 1
65. 5
68. 0
70. 3 | -1.0
+3.0
+3.4
+5.9
+8.2 | 55. 2
60. 8
59. 5
61. 8
63. 6 | 49. 8
57. 7
54. 9
57. 4
59. 0 | 11. 4
7. 4
10. 6
10. 6
11. 3 | 24. 0
12. 0
19. 9
22. 1
28. 9 | 0. 6
3. 3
3. 1
1. 0
1. 2 | 66
77
69
69
68 | 142. 3
121. 2
137. 2
141. 9
141. 9 | 36. 9
55. 9
51. 2
40. 2
43. 6 | 58. 4
58. 3
58. 5
58. 7
58. 7 | 0.000
0.010
0.000
0.000
0.000 | 7. 3
0. 3
6. 8
12. 9
6. 5 | 15. 4
15. 4
15. 4
15. 3
15. 2 | | 6
7
8
9
10 | 29. 791
29. 751
29. 579
29. 542
29. 310 | 75. 4
72. 0
69. 5
70. 1
69. 4 | 58. 1
54. 0
52. 9
50. 6
53. 3 | 17. 3
18. 0
16. 6
19. 5
16. 1 | 65. 0
62. 2
59. 1
58. 9
59. 8 | +2. 8
-0. 0
-3. 2
-3. 4
-2. 5 | 59. 7
57. 9
55. 2
55. 0
57. 0 | 55. 7
54. 5
51. 9
51. 6
54. 7 | 9. 3
7. 7
7. 2
7. 3
5. 1 | 19. 9
16. 0
18. 2
19. 7
12. 8 | 2.0
3.5
1.8
0.9
1.0 | 72
76
77
77
83 | 137. 8
125. 3
121. 9
133. 3
126. 3 | 50. 1
45. 0
44. 5
44. 0
45. 5 | 58. 6
58. 6
58. 7
58. 6
58. 8 | 0.000
0.180
0.170
0.863
0.237 | 5. 4
4. 2
4. 5
3. 9
4. 4 | 15. 2
15. 1
15. 1
15. 0
15. 0 | | 11
12
13
14
15 | 29. 739
29. 492
29. 681
29. 831
29. 792 | 71. 2
68. 0
68. 7
71. 1
66. 2 | 49. 8
55. 1
54. 6
52. 8
49. 5 | 21. 4
12. 9
14. 1
18. 3
16. 7 | 60. 1
60. 1
60. 5
58. 3
57. 4 | -2. 3
-2. 4
-2. 0
-4. 2
-5. 0 | 54.9
56.3
54.6
54.9
52.5 | 50. 4
53. 1
49. 3
51. 9
47. 8 | 9. 7
7. 0
11. 2
6. 4
9. 6 | 19. 8
15. 1
21. 8
19. 9
22. 5 | 1. 4
2. 0
1. 3
0. 8
0. 4 | 70
78
66
79
70 | 137. 7
119. 6
130. 3
123. 9
123. 3 | 41. 8
51. 4
50. 8
46. 4
39. 5 | 58. 7
58. 5
58. 6
58. 4
58. 4 | 0.020
0.149
0.063
0.419
0.000 | 10. 3
4. 2
5. 7
4. 9
7. 0 | 14. 9
14. 8
14. 8
14. 7
14. 7 | | 16
17
18
19
20 | 29. 644
29. 614
29. 791
29. 688
29. 723 | 63. 2
59. 3
70, 2
64. 0
62. 2 | 45. 3
51. 1
44. 8
50. 3
53. 0 | 17. 9
8. 2
25. 4
13. 7
9. 2 | 55. 0
55. 5
57. 1
57. 2
57. 5 | -7. 3
-6. 6
-4. 8
-4. 5
-4. 0 | 51. 6
53. 3
52. 7
55. 5
55. 5 | 48. 3
51. 4
48. 5
54. 1
53. 8 | 6. 7
4. 1
8. 6
3. 1
3. 7 | 14. 7
8. 7
21. 1
7. 8
9. 2 | 1.0
0.0
0.6
0.0
0.0 | 78
86
73
89
88 | 110. 5
80. 0
125. 1
105. 5
91. 5 | 32. 9
37. 0
31. 8
42. 6
45. 0 | 58. 2
58. 2
58. 0
58. 0
57. 8 | 0. 695
0. 636
0. 000
0. 045
0. 083 | 3. 4
0. 0
8. 7
0. 5
0. 1 | 14. 6
14. 6
14. 5
14. 4
14. 4 | | 21
22
23
24
25 | 29. 861
29. 936
29. 885
29. 722
29. 633 | 68. 4
65. 0
71. 4
72. 7
72. 0 | 48. 7
52. 1
54. 1
57. 3
55. 0 | 19. 7
12. 9
17. 3
15. 4
17. 0 | 58. 2
58. 2
63. 0
63. 1
61. 4 | -3. 1
-2. 9
+2. 1
+2. 3
+0. 7 | 53. 2
56. 3
60. 2
60. 4
58. 0 | 48. 5
54. 7
58. 1
58. 5
55. 3 | 9. 7
3. 5
4. 9
4. 6
6. 1 | 21. 1
10. 9
12. 2
14. 1
13. 9 | 1.0
1.2
0.0
0.3
0.5 | 70
89
85
85
85 | 127. 3
107. 4
122. 5
128. 3
127. 2 | 41. 4
44. 6
44. 6
46. 5
48. 0 | 58. 0
57. 9
57. 9
58. 0
58. 0 | 0.002
0.021
0.000
0.060
0.002 | 7. 5
0. 1
2. 6
2. 1
3. 2 | 14. 3
14. 3
14. 2
14. 1
14. 1 | | 26
27
28
29
30 | 29. 685
29. 659
29. 274
29. 344
29. 551 | 68. 6
68. 4
67. 1
66. 6
66. 5 | 51. 1
47. 5
53. 7
52. 0
49. 9 | 17. 5
20. 9
13. 4
14. 6
16. 6 | 59. 0
57. 1
59. 6
57. 2
56. 4 | -1. 7
-3. 5
-0. 8
-3. 1
-3. 7 | 54. 4
53. 0
55. 6
53. 4
53. 0 | 50. 3
49. 0
52. 2
49. 8
49. 8 | 8. 7
8. 1
7. 4
7. 4
6. 6 | 17. 6
15. 4
17. 8
17. 7
17. 9 | 0.8
1.3
2.7
2.0
0.0 | 73
75
77
77
77
78 | 124. 6
127. 5
124. 1
126. 3
127. 0 | 42. 8
34. 7
50. 2
46. 0
44. 5 | 58. 0
58. 0
58. 1
58. 0
58. 0 | 0.000
0.000
0.498
0.001
0.018 | 7. 0
5. 3
7. 4
6. 7
9. 9 | 14.0
13.9
13.9
13.8
13.8 | | 31 | 29. 656 | 63. 8 | 54. 8 | 9.0 | 57. 2 | -2. 7 | 54. 1 | 51. 3 | 5. 9 | 11. 7 | 0.0 | 81 | 121.9 | 44. 9 | 58.0 | 0.060 | 4. 3 | 13. 7 | | Means | 29. 688 | 69. 7 | 52. 4 | 17. 3 | 60. 1 | -1. 5 | 56.1 | 52. 7 | 7. 4 | 16.9 | 1. 2 | 76.8 | 123.9 | 44.0 | 58. 3 | Sum
4.232 | 5. 1 | 14. 6 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.688 in., being 0.102 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 83°.3 on August 5; the lowest in the month was 44°.8 on August 18; and the range was 38°.5. The mean of all the highest daily readings in the month was 69°.7, being 1°.1 lower than the average for the 65 years, 1841-1906. The mean of all the lowest daily readings in the month was $52^{\circ}.4$, being $1^{\circ}.2$ lower than the average for the 65 years, 1841-1906. The mean of the daily ranges was 17°.3, being 0°.1 greater than the average for the 65 years, 1841-1905. The mean for the month was 60°.1, being 1°.5 lower than the average for the 65 years, 1841-1905. the average for the 65 years,
1841-1905. | | | | | | TABLE XVI | I DAILY | RESUL | TS OF | THE ME | TE OR OLOGI | CAL OBSERVATIONS | | | |-------------------------------|--|---|--|---|--|--|--|---|--|----------------------------------|--|---|---| | | | | OF THE
TSKY | | SE | WIND AS DET
LF-REGISTERIN | | | | | | | | | WX | Pol | aris | | URSÆ
KORIS | | OSLER'S | | | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
1946 | 1on | n of
posure | 100 | tion of
Exposure | General 1 | Direction | on | sure
the
e Foot | contal Move-
of the Air | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fractic
Total Ex | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizonta
ment of t | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Aug. 1
2
3
4
5 | hours
0.0
3.0
4.7
4.4
5.0 | 0.00
0.49
0.69
0.66
0.74 | hours
0.0
2.3
4.4
3.6
4.8 | 0.00
0.38
0.65
0.54
0.71 | WSW: W
SW
WSW: W
Calm
Calm | WSW: SW
SW: WSW
WSW: NE
SW
Calm: W: WSW | lbs. 1.7 3.8 1.3 0.6 2.9 | 1bs. 0.10 0.33 0.11 0.03 0.15 | miles
226
327
205
119
191 | bwcdroc
bcc
bw
bbc | bc Cu Ci y c Ast Nbst ro bc c Acu Frou y b Frou y c Ast Cu mo | c Cicu Acu Cu y c Nbst 1ro c Stcu y b Ci y c bc Ci Acu y | c
rocbc
cb
bcdo
cb | | 6
7
8
9
10 | 2. 0
4. 0
6. 7
0. 0
7. 1 | 0. 30
0. 59
1. 00
0. 00
0. 98 | 1. 5
3. 4
6. 7
0. 0
6. 8 | 0. 22
0. 51
1.00
0.00
0. 94 | WSW: SW
SW: SSW
SW: Calm: SE
SW
SSW | SW
SW: WSW
WSW
SSW: SE: Calm
SSW: W: SW | 3. 5
4. 1
8. 3
4. 6
16. 7 | 0.30
0.37
0.43
0.31
1.29 | 294
322
269
273
399 | b
c
bccro
bbcc
rRc | c ro c Ci Frcu
c Nost iro
c Nost rr
c Stcu Nost p
c Nost p c | c Cicu Cist so-ha
c R bc Stcu
ir t b c Cunb
c bc Ci Frcu y c r
c Stcu q b | c bc
b
b
r R
b | | 11
12
13
14
15 | 0.0
0.8
1.0
5.6
7.0 | 0.00
0.11
0.14
0.77
0.97 | 0.0
0.7
0.9
4.7
6.9 | 0.00
0.10
0.13
0.65
0.95 | SW
SE:S:SSW
WSW:W:WNW
SW:WSW
Calm:NW | SSW: SSE
SSW
WNW: WSW
SW
WNW: Calm | 2. 4
14. 3
17. 0
3. 0
1. 5 | 0. 16
1. 33
1. 52
0. 19
0. 07 | 232
422
492
236
154 | b
crrd
cir
crc
bc | b bc Ci so-ha
d c ro c Acu
c Stcu Cu y
c Acu Frcu
b c Acu y | c bc Cumb Frou y
c bc Frou Ciou y
bc Frou y
c Nost Cumb p c t 1 R
c bc Acu Cu y | crc bccir bcc tliRbc bcb | | 16
17
18
19
20 | 0. 0
7. 0
5. 2
0. 0
1. 9 | 0.00
0.90
0.67
0.00
0.25 | 0.0
6.8
5.2
0.0
1.8 | 0.00
0.88
0.67
0.00
0.23 | Calm: ENE
N: NNW
Calm
SSW: S
Calm: NW | ENE: NNE
NNW
Calm: SW: SSW
S: SSW
NNW: NW | 4. 5
7. 2
1. 3
2. 7
1. 6 | 0. 25
0. 75
0. 09
0. 21
0. 19 | 246
394
138
217
207 | bw
rR
bw
bcir
cirro | bc Cist so-ha c Ast
r R ro Nost
b bc Cu y
c Nost iro
c ro c Nost | c Nost do RR c Ast bc Cu y c c Stcu c Acu Stcu | rR cb cb cirro crcb | | 21
22
23
24
25 | 0.0
1.8
0.4
0.4
5.1 | 0.00
0.23
0.05
0.05
0.64 | 0.0
1.8
0.3
0.0
4.3 | 0.00
0.23
0.03
0.00
0.54 | NW: WSW: WNW
SW: WSW
NNW: Calm: W
Calm: SW
Calm: WSW | NW: WSW
SW: SSW: Calm
WSW: SW: Calm
Calm
WSW | 1. 0
2. 0
0. 6
0. 4
4. 0 | 0. 14
0. 12
0. 05
0. 01
0. 06 | 196
195
135
117
153 | рс
срс
сж
с | c bc Steu Acu
c r c Nost
b w m c Acu
c Cu Cicu
c Steu | bc Steu Freu y c Nbst r c c Ast Cumb bc Cu Cieu e ro c c Acu Ci e t l | bc c
c ro c
c
c r c
c ro bc b | | 26
27
28
29
30 | 7. 1
0. 2
2. 1
8. 0
4. 7 | 0. 89
0. 03
0. 26
1. 00
0. 58 | 5. 4
0. 0
1. 4
8. 0
4. 5 | 0. 67
0. 00
0. 17
1. 00
0. 56 | WSW: Calm
Calm: WSW
SE: SSW
SW
SSW | NW: Calm
SSW: S: SE
SSW
SW: SSW
SW: SSW | 0.3
0.9
31.0
13.6
6.0 | 0.02
0.04
1.96
1.52
0.65 | 140
153
498
464
373 | bwc
bw
cir
c
bw | c Frcu y
b c Acu Cu
bc Cu Acu p
bc c Ci Nbst p
bc p c Cist so-ha | bc Cunb y c Acu Cunb c Nost p q b c Cu Cicu y bc c p Cicu Stcu Ci | bc b
c
c q ir
c b
c | | 31 | 3. 5 | 0.42 | 2. 8 | 0.33 | SW: SSW | SW: SSW | 3. 6 | 0.34 | 313 | със | c Freu p | c Stcu p | bc c | | Means | 3. 2 | 0. 43 | 2. 9 | 0. 39 | ••• | ••• | ••• | 0.42 | 261 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 56°.1, being 1°.4 lower than The mean Temberature of the Dew Point for the month was 52°.7, being 1°.8 lower than The mean Degree of Humidity for the month was 76.8, being the same as The mean Elastic Force of Vapour for the month was 0.400 in., being 0.024 in. less than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.2. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.347. The maximum daily amount of Sunshine was 12.9 hours on August 4. The highest reading of the Solar Radiation Thermometer was 142°.3 on August 1; and the lowest reading of the Terrestrial Radiation Thermometer was 31 .8 on August 18. The Proportions of Wind referred to the cardinal points were N.8, E.3, S.35, W.37, calm or nearly calm conditions 17, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 31.0 lbs. on the aquare foot on August 28. The mean daily Horizontal Movement of the Air for the month was 261 miles; the greatest daily value was 498 miles on August 28, and the least daily value was 117 miles on August 24. Rain (0.005 in. or over) fell on 18 days in the month, amounting to 4.232 in., as measured by gauge No.6 partly sunk below the ground; being 1.888 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | CAL (| OBSER | RIOITAV | | | | | | |----------------------------|--|---|---|---|---|--|---|---|--------------------------------------|--|--------------------------------------|----------------------------|--|---|---|---|--------------------------------------|---| | | BAROMETER | | | ī | EMPERATU | RE | | | | | | | TE | MPERATUR | Œ | a) | | | | Month
and | Hourly
mrected
1 to 32
left) | | C | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the Af | rence be
r Temper
Dew Poi
emperatur | ature
nt | f Humidity
ion = 100) | Of Rad | iation | Of the
Earth
4 ft. | collected in Gauge
6, whose receiving
rface is 5 inches
above the Ground | Daily
Dura-
tion | Sun
above | | Day
1946 | Mean of 24 Hourly
Values (corrected
and reduced to 32
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree of
(Saturation | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collection No.6, whose surface above t | of
Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | in. | hours | hours | | Sept.1 | 29.610
29.597 | 70. 5
66. 4 | 49.9
51.2 | 20.6 | 57. 1
57. 2 | -2. 7
-2. 5 | 53. 9
53. 8 | 51.0
50.7 | 6. 1 | 19. 4
13. 9 | 0.0 | 80
79
89 | 141. 1
122. 0
97. 1 | 41. 9
46. 8
48. 7 | 58.0
58.0
57.9 | 0. 166
0. 075
0. 190 | 7. 5
3. 6
0. 0 | 13. 6
13. 6
13. 5 | | 3
4
5 | 29. 384
29. 221
29. 421 | 62. 5
60. 8
66. 8 | 53. 3
56. 0
52. 6 | 9. 2
4. 8
14. 2 | 56. 9
57. 9
58. 5 | -2.7
-1.6
-0.9 | 55. 2
56. 1
55. 1 | 53. 8
54. 6
52. 2 | 3. 1
3. 3
6. 3 | 7. 8
5. 6
13. 5 | 1.0
1.8
2.3 | 89
89
79 | 97. 1
92. 2
124. 2 | 52. 1
46. 0 | 57.9
57.9 | 0. 190
0. 294
0. 000 | 0. 0
0. 2
5. 1 | 13. 4
13. 4 | | 6
7
8
9 | 29. 571
29. 665
29. 600
29. 889
29. 960 | 63. 0
65. 4
60. 7
63. 8
67. 0 | 50. 2
47. 2
54. 9
51. 9
50. 7 | 12. 8
18. 2
5. 8
11. 9
16. 3 | 55. 0
57. 5
57. 7
57. 1
57. 8 | -4. 2
-1. 5
-1. 1
-1. 5
-0. 6 | 53. 0
54. 7
57. 0
53. 2
53. 8 | 51. 1
52. 3
56.
5
49. 5
50. 2 | 3. 9
5. 2
1. 2
7. 6
7. 6 | 9. 6
10. 9
2. 3
15. 6
16. 5 | 1. 8
0. 3
0. 3
2. 2
1. 2 | 87
83
95
76
76 | 105. 3
118. 5
83. 2
114. 5
134. 4 | 43. 1
37. 6
49. 9
48. 2
44. 8 | 57. 7
57. 7
57. 7
57. 6
57. 6 | 0. 105
0. 065
0. 575
0. 000
0. 000 | 0. 2
4. 4
0. 1
5. 4
5. 2 | 13. 3
13. 2
13. 1
13. 1
13. 0 | | 11 | 29. 776 | 63.0 | 55.8 | 7. 2 | 59.4 | +1.3 | 55.8 | 52.8 | 6.6 | 11. 1 | 3. 7 | 79 | 113. 3 | 51.9 | 57.4 | 0.005 | 1.6 | 13.0 | | 12
13
14
15 | 29. 924
29. 741
29. 718
29. 855 | 67. 5
61. 9
60. 8
66. 9 | 49. 7
48. 6
46. 3
50. 6 | 17. 8
13. 3
14. 5
16. 3 | 58. 6
55. 7
55. 2
58. 7 | +0.6
-2.1
-2.5
+1.1 | 54. 7
51. 9
53. 3
53. 5 | 51. 3
48. 2
51. 6
48. 6 | 7. 3
7. 5
3. 6
10. 1 | 15. 3
17. 3
7. 5
21. 5 | 1. 4
2. 0
1. 2
1. 6 | 77
76
87
69 | 117. 1
112. 5
85. 9
122. 7 | 39.8
41.8
39.5
43.0 | 57. 5
57. 4
57. 4
57. 7 | 0.000
0.098
0.038
0.000 | 5. 3
2. 8
0. 2
11. 3 | 12.9
12.9
12.8
12.7 | | 16
17
18
19
20 | 29. 906
29. 724
29. 548
29. 660
29. 246 | 63. 9
64. 8
60. 4
61. 1
63. 6 | 44. 7
51. 3
52. 4
49. 4
47. 7 | 19. 2
13. 5
8. 0
11. 7
15. 9 | 54. 2
56. 4
56. 5
54. 8
57. 7 | -3.3
-0.8
-0.4
-1.7
+1.5 | 50.9
53.5
54.8
51.3
55.2 | 47. 7
50. 9
53. 4
47. 8
53. 1 | 6. 5
5. 5
3. 1
7. 0
4. 6 | 14. 2
12. 6
9. 7
13. 7
8. 9 | 0.0
2.7
0.8
0.6
1.9 | 79
82
89
77
85 | 126. 8
115. 4
71. 4
115. 1
95. 3 | 35. 8
45. 1
44. 7
46. 1
44. 5 | 57. 4
57. 3
57. 1
57. 1
57. 0 | 0.000
0.012
0.193
0.068
0.356 | 5.2
1.6
0.0
0.3
0.3 | 12. 7
12. 6
12. 5
12. 5
12. 4 | | 21
22
23
24
25 | 30. 002
29. 950
29. 784
29. 872
29. 949 | 62. 9
65. 2
64. 7
65. 5
70. 0 | 45. 3
53. 2
50. 6
50. 4
53. 5 | 17. 6
12. 0
14. 1
15. 1
16. 5 | 54. 4
57. 6
58. 8
56. 3
61. 8 | -1. 5
+2. 0
+3. 4
+1. 0
+6. 6 | 50. 6
54. 9
56. 3
53. 0
59. 4 | 46. 8
52. 6
54. 3
49. 9
57. 7 | 7. 6
5. 0
4. 5
6. 4
4. 1 | 16. 3
11. 4
13. 6
12. 7
8. 3 | 1. 5
1. 9
1. 9
2. 0
1. 5 | 75
83
85
79
86 | 113. 0
118. 3
105. 3
119. 8
114. 6 | 38. 2
47. 8
45. 0
43. 9
46. 5 | 57. 0
57. 0
57. 0
57. 0
57. 0 | 0. 000
0. 105
0. 091
0. 000
0. 000 | 8. 0
1. 9
2. 5
4. 1
1. 4 | 12. 3
12. 3
12. 2
12. 1
12. 1 | | 26
27
28
29
30 | 29. 945
29. 949
30. 001
29. 825
29. 909 | 71. 0
77. 1
73. 3
64. 2
71. 0 | 58. 3
57. 6
56. 1
58. 0
51. 2 | 12. 7
19. 5
17. 2
6. 2
19. 8 | 63. 3
64. 9
63. 4
61. 2
59. 6 | +8. 1
+9. 8
+8. 5
+6. 5
+5. 2 | 60. 9
61. 6
60. 2
59. 9
56. 0 | 59. 2
59. 3
57. 9
59. 0
53. 0 | 4. 1
5. 6
5. 5
2. 2
6. 6 | 8. 6
14. 7
11. 4
5. 1
17. 9 | 1. 1
1. 1
0. 7
1. 1
0. 8 | 87
82
82
93
79 | 122. 1
135. 1
120. 5
108. 5
133. 5 | 49. 8
48. 4
46. 1
51. 0
39. 8 | 57. 0
57. 1
57. 3
57. 2
57. 4 | 0.003
0.009
0.001*
0.000
0.022 | 0.5
8.0
8.1
0.5
7.6 | 12.0
11.9
11.9
11.8
11.7 | | Means | 29. 740 | 65. 5 | 51.6 | 13. 9 | 58.0 | +0.8 | 55. 1 | 52. 6 | 5. 5 | 12. 2 | 1. 4 | 82. 1 | 113. 3 | 44.9 | 57. 4 | Sum
2.471 | 3. 4 | 12. 7 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.740 in., being 0.078 in. lower than the average for the 65 years, 1841-1905. st Rainfall (Column 16). The amount entered on September 28 is derived from dew. #### TEMPERATURE OF THE AIR. The highest in the month was 77°.1 on September 27; the lowest in the month was 44°.7 on September 16; and the range was 32°.4. The mean of all the highest daily readings in the month was 65°.5, being 0°.7 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 51°.6, being 1°.9 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 13°.9, being 2°.6 less than the average for the 65 years, 1841-1905. The mean for the month was 58° .0, being 0° .8 higher than the average for the 65 years, 1841-1905. the average for the 65 years, 1841-1905. | | | | | | TABLE XVII | DAILY R | ESULTS | OF TH | E METE | OROLOGICA | L OBSERVATIONS | | | |-----------------------------|---------------------------------------|---|---------------------------------------|---|--|---|--|---|--|---|--|---|------------------------------------| | . • | | | OF THE
T SKY | | SE | WIND AS DEDU
LF-REGISTERING | ICED FRO
3 ANEMOM | m
Eters | | | | | | | | Pol | aris | δ
MIN | URSÆ
VORIS | · | OSLER'S | | | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
1946 | .1on | on of posure | .1on | on of | General | Direction | on | sure
the
e Foot | .1 Move-
the Air | | | | | | , | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to G ^h | e ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^l | | Sept.1 2 3 4 5 | hours 3.5 0.3 0.9 0.1 8.2 | 0. 42
0.04
0. 10
0. 01
0. 97 | hours 2.6 0.3 0.7 0.0 7.9 | 0. 31
0. 03
0. 08
0. 00
0. 94 | SSW: WSW
WSW
S
S: SSW
SSW | SSW: WSW
SW
SSE: S
SSW
SSW | lbs. 2.0 2.6 6.3 13.3 4.8 | 1bs. 0. 10 0. 22 0. 52 1. 67 0. 50 | miles
219
268
294
503
324 | c b
c
ir do
c ir
c b | b bc Acu c Stcu c Nbst iro c Nbst ir b c Ast Nbst po | bc c Cunb t 1 R it ro
c p c Acu Ci
c Nbst iro
c Nbst iro
c bc Cu Cicu c | bc c
bc c r
c ir
c do c | | 6
7
8
9
10 | 4. 7
0. 6
2. 7
3. 0
0. 5 | 0. 56
0. 06
0. 29
0. 33
0. 05 | 4. 4
0. 2
2. 4
2. 3
0. 3 | 0. 51
0. 02
0. 26
0. 25
0. 03 | SSW: S
SSW: SW
Calm: S
W: WNW
WSW | S: SSW
SSW: S
Calm: WSW: WNW
W: WSW
SW: SSW | 1. 8
2. 0
1. 6
3. 2
2. 8 | 0.09
0.12
0.05
0.23
0.27 | 195
204
155
277
275 | b c do
c b w
rr bc c
c bc
c w | c so-ha c Ast
c Acu Cu
c Nbst r R
bc c Stcu Ci
c Ci b so-ha | c Nost ir
c Steu Acu
r R c Nost r c
c Nost po be Acu
be e Acu Freu | bc c
c rr
c
bc c | | 11
12
13
14
15 | 2. 2
1. 4
9. 3
4. 2
8. 4 | 0. 24
0. 15
1. 00
0. 43
0. 86 | 2. 1
0. 9
9. 3
3. 6
7. 3 | 0. 23
0. 10
1. 00
0. 37
0. 75 | SW: WSW
NNW: Calm
SW: WSW: W
WSW: SW
WSW: W: WNW | WSW: W
SSW: SW
WSW
SW: WSW
W: WSW: SW | 5. 0
1. 8
4. 6
6. 5
5. 0 | 0. 45
0. 09
0. 32
0. 48
0. 34 | 326
161
298
345
300 | crc
cbwcm
c
bwc
b | bc Acu Cicu c c m b c Acu rr c Ast c Nbst b Prcu y | c Steu
c Steu Acu b
c be Freu y
dd c Nost
b Ci y | c
b c
b c
b b | | 16
17
18
19
20 | 2. 7
6. 3
2. 8
0. 1
7. 6 | 0. 28
0. 65
0. 28
0. 01
0. 78 | 1.0
5.9
2.2
0.0
7.6 | 0. 10
0. 61
0. 23
0. 00
0. 78 | SSW: SW
SSW: SW
SW: Calm
W: WSW
SW | SW: SSW
SW
SW: WSW: NW
WSW: S: SW
SSW: NW | 1. 4
5. 0
13. 0
4. 2
27. 0 | 0. 11
0. 27
0. 87
0. 33
2. 40 | 195
258
334
291
558 | bwbccrcbcd | bc c Cicu Ci
c so-ha c Ast
c Nbst 1r d
c Ci Cicu so-ha
c Nbst 1d | c Acu Cicu
c bc Acu Frcu c
1d r c Nbst
c Cu Nbst ro
c Nbst 1r q | c bc c b c q r c r o r c gale rr b | | 21
22
23
24
25 | 1. 1
0. 0
4. 6
4. 4
0. 5 | 0. 11
0.00
0. 45
0. 43
0. 05 | 0.9
0.0
4.3
3.9
0.5 | 0.09
0.00
0.41
0.39
0.05 | nw: wsw: w
sw: wsw
sw: wsw
wsw
ssw: sw | WSW: SW
SW
W: WSW
SW
SW | 3. 7
5. 0
3. 0
1. 6
2. 0 | 0. 32
0. 51
0. 23
0. 14
0. 17 | 280
361
277
234
223 | b
iro c
c ir c
c bc w
c | b bc Ci so-ha c
c Ast
Nbst
c Nbst r c
bc Frcu Cist so-ha
c Stcu | c bc Cist c y c bc Acu c y c bc Acu Cicu b c Ast Cist so-ha c Stcu | c c r c b c w c | | 26
27
28
29
30 | 4. 4
10. 3
6. 5
1. 7
6. 6 | 0. 43
1. 00
0. 60
0. 16
0. 61 | 4. 0
10. 3
6. 4
1. 4
5. 6 | 0. 39
1. 00
0. 60
0. 13
0. 52 | Calm: SE
SSE: SW
Calm: E
ENE: E
Calm: SW | S:Calm
SW:S:Calm
E:ENE
E:Calm:WSW
SSW:S | 1. 0
1. 5
3. 7
3. 2
2. 5 | 0.04
0.09
0.24
0.30
0.07 | 141
176
220
233
180 | c
cpb
bwf
bcm
crcb | c ro c Acu be b Freu f mo be Acu e Steu mo b be Freu Ci | c p c Acu Ci
b Frcu
bc Acu b
c Stcu mo fe
b c Frcu Cicu | b c b fe c b w c | | Means | 3. 7 | 0. 38 | 3. 3 | 0. 34 | ••• | ••• | ••• | 0. 38 | 270 | | | | | | No. of
Col. for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 55°.1, being 1°.0 higher than The mean Temperature of the Dew Point for the month was 52°.6, being 1°.5 higher than The mean Degree of Humidity for the month was 82.1, being 2.2 greater than The mean Elastic Force of Vapour for the month was 0.399 in., being 0.020 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.4. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.270. The maximum daily amount of Sunshine was 11.3 hours on September 15. The highest reading of the Solar Radiation Thermometer was 141°.1 on September 1; and the lowest reading of the Terrestrial Radiation Thermometer was 35°.8 on September 16. The Proportions of Wind referred to the cardinal points were N.3, E.6, S.42, W.40, calm or nearly calm conditions 9, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 27.0 lbs. on the square foot on September 20. The mean daily Horizontal Movement of the Air for the month was 270 miles; the greatest daily value was 558 miles on September 20, and the least daily value was 141 miles on September 26. Rain (0.005 in. or over) fell on 18 days in the month, amounting to 2.471 in., as measured by gauge No.6 partly sunk below the ground; being 0.323 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAIL | Y RESUL | TS OF 1 | HE MET | EOROLOG | BICAL | OBSER | VATIONS | | | | | | |----------------------------|--|---|---|--|---|--|---|---|---------------------------------------|---|--------------------------------------|--|---|---|---|--|--------------------------------------|---| | | BAROMETER | | | 7 | EMPERATU | TRE . | | | | | | | TE | MPERATUR | Œ | g ₂ | | | | Month
and | Hourly
rected
to 32 | | | Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the A1
and | rence be
r Temper
Dew Poi
mperatur | ature
nt | Degree of Humidity
(Saturation = 100) | Of Radi | lation | Of the
Earth
4 ft. | lected in Gauge
hose receiving
e is 5 inches
the Ground | Daily
Dura-
tion | Sun
above | | Day
19 46 | Mean of 24 Hourly
Values (corrected
and reduced to 32
Fahrenheit) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain collected
No.6, whose re
surface is 5
above the 0 | of
Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | ٥ | 0 | in. | hours | hours | | Oct.1
2
3
4
5 | 29. 850
29. 894
29. 812
29. 846
29. 802 | 70.0
71.0
69.8
63.1
60.8 | 52. 5
50. 5
52. 4
50. 3
53. 3 | 17. 5
20. 5
17. 4
12. 8
7. 5 | 60. 1
59. 7
61. 9
55. 9
56. 7 | + 6.0
+ 6.0
+ 8.6
+ 2.9
+ 3.9 | 56.0
56.7
59.5
53.1
53.2 | 52. 5
54. 2
57. 8
50. 6
49. 9 | 7. 6
5. 5
4. 1
5. 3
6. 8 | 16. 0
13. 8
8. 3
10. 2
11. 2 | 1. 6
1. 0
1. 5
1. 0
3. 6 | 76
82
86
82
78 | 129. 7
127. 8
92. 6
100. 6
98. 0 | 42. 7
39. 4
45. 5
43. 0
49. 9 | 57. 4
57. 4
57. 4
57. 4
57. 2 | 0.000
0.000
0.042
0.000
0.000 | 6.9
5.4
0.0
1.3
0.2 | 11. 7
11. 6
11. 5
11. 5
11. 4 | | 6
7
8
9
10 | 29. 859
30. 006
30. 151
30. 193
30. 219 | 59. 3
61. 7
59. 9
56. 1
58. 1 | 46.0
37.9
44.1
47.1
49.3 | 13. 3
23. 8
15. 8
9. 0
8. 8 | 54. 1
50. 0
52. 0
51. 9
53. 3 | + 1.6
- 2.3
- 0.0
+ 0.3
+ 2.0 | 49. 4
46. 4
49. 0
48. 7
48. 4 | 44. 4
42. 1
45. 8
45. 3
42. 9 | 9. 7
7. 9
6. 2
6. 6
10. 4 | 18. 2
18. 9
14. 8
10. 1
17. 5 | 2.8
0.7
0.6
3.7
3.2 | 70
74
79
78
68 | 117. 5
117. 2
107. 3
94. 6
114. 7 | 38. 0
27. 4
31. 8
39. 3
43. 8 | 57. 4
57. 1
57. 1
57. 0
56. 9 | 0.040
0.000
0.000
0.003
0.000 | 7.8
4.6
2.1
2.5
7.3 | 11. 4
11. 3
11. 2
11. 2
11. 1 | | 11
12
13
14
15 | 30. 160
30. 061
29. 955
29. 961
30. 015 | 61. 4
54. 8
54. 6
52. 8
50. 3 | 46. 1
46. 5
50. 0
48. 4
45. 5 | 15. 3
8. 3
4. 6
4. 4
4. 8 | 52. 7
51. 3
52. 0
50. 3
48. 0 | + 1.8
+ 0.7
+ 1.7
+ 0.2
- 1.9 | 47. 1
48. 5
49. 4
47. 4
45. 0 | 40. 3
45. 5
46. 6
44. 1
41. 2 | 12. 4
5. 8
5. 4
6. 2
6. 8 | 28. 7
10. 3
8. 3
8. 4
13. 2 | 0.9
1.4
1.6
3.4
2.2 | 63
81
82
80
77 | 115. 4
70. 0
69. 1
65. 3
59. 5 | 40. 1
44. 0
47. 8
46. 6
34. 6 | 56. 5
56. 3
56. 3
56. 0
55. 8 | 0.000
0.000
0.000
0.000
0.000 | 8. 1
0. 0
0. 0
0. 0
0. 0 | 11.0
11.0
10.9
10.8
10.8 | | 16
17
18
19
20 | 30.068
30.013
29.884
29.595
29.403 | 53. 3
55. 4
55. 2
62. 0
63. 9 | 45. 6
47. 1
45. 9
48. 8
52. 1 | 7. 7
8. 3
9. 3
13. 2
11. 8 | 49. 3
50. 9
50. 6
54. 3
57. 7 | - 0.5
+ 1.3
+ 1.3
+ 5.2
+ 8.9 | 46. 3
47. 8
47. 3
52. 5
56. 3 | 42. 7
44. 4
43. 6
50. 8
55. 1 | 6. 6
6. 5
7. 0
3. 5
2. 6 | 11. 2
10. 5
12. 4
8. 8
7. 7 | 3.6
2.0
1.4
0.8
0.8 | 78
78
77
88
91 | 71.8
76.4
95.3
109.2
92.2 | 43. 0
42. 0
37. 3
41. 0
39. 9 | 55. 8
55. 7
55. 4
55. 6
55. 2 | 0.000
0.002
0.000
0.021
0.057 | 0.1
0.0
0.4
2.0
0.7 | 10. 7
10. 7
10. 6
10. 5
10. 5 | | 21
22
23
24
25 | 29. 469
29. 681
29. 888
30. 018
29. 986 | 61. 3
58. 1
54. 3
48. 3
44. 8 | 52. 1
50. 6
42. 2
35. 3
32. 5 | 9. 2
7. 5
12. 1
13. 0
12. 3 | 56. 0
54. 6
49. 5
43. 9
37. 7 | + 7.4
+ 6.3
+ 1.4
- 4.0
-10.0 | 54.9
54.1
47.5
39.7
34.5 | 53. 9
53. 7
45. 3
33. 2
29. 0 | 2. 1
0. 9
4. 2
10. 7
8. 7 | 6. 3
2. 8
8. 4
20. 1
14. 6 | 0.0
0.0
0.0
5.8
3.2 | 93
97
86
66
70 | 82. 1
68. 5
77. 3
99. 5
98. 1 | 39. 4
46. 0
34. 6
28. 0
22. 6 | 55. 3
55. 2
55. 1
55. 0
54. 8 | 0.045
0.108
0.001
0.000
0.000 | 1. 2
0. 0
0. 0
6. 7
5. 9 | 10. 4
10. 3
10. 3
10. 2
10. 1 | | 26
27
28
29
30 | 29. 726
29. 574
29. 860
30. 063
29. 991 | 49. 4
48. 8
51. 0
49. 4
52. 6 | 37. 2
39. 9
38. 2
29. 6
42. 0 | 12. 2
8. 9
12. 8
19. 8
10. 6 | 44. 3
45. 6
44. 3
39. 8
45. 9 | - 3. 3
- 1. 9
- 3. 1
- 7. 5
- 1. 3 | 43.0
44.5
41.3
37.7
42.9 | 41. 4
43. 2
37. 1
34. 5
39. 0 | 2. 9
2. 4
7. 2
5. 3
6. 9 | 5. 1
5. 8
13. 3
12. 9
11. 9 | 0.7
0.0
1.7
0.0
2.8 | 89
91
75
81
77 | 66. 3
50. 6
95. 0
87. 9
99. 2 | 27. 8
27. 8
32. 2
20. 5
32. 5 | 54. 7
54. 3
54. 0
53. 7
53. 4 | 0. 270
0. 060
0. 000
0. 000
0. 003 | 0.2
0.0
4.6
3.6
1.1 | 10. 1
10. 0
9. 9
9. 9
9. 8 | | 31 | 29. 966 | 48. 7 | 41. 4 | 7. 3 | 44. 6 | - 2.5 | 42.5 | 3 9. 7 | 4.9 | 9.5 | 1.6 | 83 | 76. 1 | 30.8 | 53. 3 | 0.055 | 0.3 | 9.8 | | Means | 29. 902 | 56. 8 | 45. 2 | 11.6 | 50.9 | + 0.9 | 48. 1 | 44. 8 | 6. 1 | 11.9 | 1. 7 | 79.9 | 91. 1 | 37.4 | 55. 8 | Sum
0.707 | 2.3 | 10.7 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means
of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.902 in., being 0.174 in. higher than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 71°.0 on October 2; the lowest in the month was 29°.6 on October 29; and the range was 41°.4. The mean of all the highest daily readings in the month was 56°.8, being 0°.2 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 45°.2, being 1°.4 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 11°.6, being 1°.6 less than the average for the 65 years, 1841-1905. The mean for the month was $50^{\circ}.9$, being $0^{\circ}.9$ higher than the average for the 65 years, 1841-1905. | | | | | | GREEN | WICH METE | OROLO | GICAL | OBSE | ERVATIONS, | 1946. | <u>.</u> | 81 | |-----------------------------|---------------------------------------|---|---------------------------------------|---|---|---|---------------------------------------|---|-------------------------------------|---|--|---|---------------------------------------| | | | | | | TABLE XVII. | - DAILY RE | ESULTS | OF TH | E METE | OROLOGICAL | OBSERVATIONS | | | | | | | OF THE
TISKY | | SEI | WIND AS DEDU
F-REGISTERING | | | | | | | | | W | Po1 | aris | | URSÆ
VORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | VD WEATHER | | | Month
and
Day
1946 | 10m | on of
posure | 1on | n of
posure | General : | Direction | on | ssure
the
e Foot | 1 Move- | | | | | | | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposure | A. M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Oct.1 | hours
6.7 | 0. 63 | hours
6.1 | 0. 57 | SSE:Calm | SE:ESE:Calm | 1bs. | lbs. | miles | b w c | c Cist so-ha be y | be Cicu Freu y c | 0 + 1 = 5 | | 2
3
4
5 | 6. 7
4. 8
7. 1
0. 0
0. 0 | 0. 63
0. 45
0. 67
0. 00
0. 00 | 3. 6
6. 8
0. 0
0. 0 | 0. 37
0. 33
0. 63
0. 00
0. 00 | Calm: SSW
Calm: S
WSW: W
W: WNW: NW | Calm
SW:W
WSW:WNW
NW:WNW | 1. 9
0. 2
1. 7
3. 4
3. 0 | 0.09
0.02
0.09
0.22
0.27 | 128
197
282
279 | bwbc.
rtlcbc
bwbc | bc Ci Freu c Nost ir so-ha c Nost c Nost c Acu Cicu | be Cist so-ha c c Cist Acu so-ha c c Stcu c Ast Frst ro do | ctlpob
bccr
clrb
c | | 6
7
8
9
10 | 10. 7
9. 2
7. 6
0. 7
3. 9 | 0. 98
0. 84
0. 69
0. 06
0. 36 | 10. 6
8. 8
7. 1
0. 4
3. 2 | 0. 96
0. 80
0. 64
0. 04
0. 29 | nw: nne
Calm
Calm
NE: E
Ene: ne | n: nne: ne
Calm: E
Ene
E: Ene
Ene: ne | 2. 5
0. 3
2. 5
4. 2
10. 2 | 0. 17
0. 02
0. 10
0. 29
0. 99 | 221
111
178
276
402 | crrc
bmx
bwbc
bccdoc | c be Acu y b m b Frcu y bc m c Acu c Frcu bc Frcu b Ci y | bc Frcu y b y bc Frcu b c Stcu y c ro c Stcu Ci b Ci y c | b
bc
crc | | 11
12
13
14
15 | 5. 3
0. 0
0. 0
0. 0
0. 6 | 0. 48
0. 00
0. 00
0. 00
0. 05 | 4.5
0.0
0.0
.0.0
0.6 | 0. 41
0. 00
0. 00
0. 00
0. 05 | NE: ENE
NE: NE
N: NNE
N: NNE
N: NNE | ENE: NE
NE: NNE
NE
N
NNE: Calm | 7.0
1.8
1.7
0.7
0.8 | 0. 77
0. 17
0. 16
0. 06
0. 05 | 361
259
242
179
164 | c bc
c
c
c | bc Freu b y c Steu c Steu c Steu c Steu c mo Steu | b y c Stcu c Stcu c Stcu c Stcu c Stcu | bc
c
c
c
c m | | 16
17
18
19
20 | 0.0
5.7
2.0
8.1
2.7 | 0. 00
0. 50
0. 17
0. 68
0. 23 | 0.0
4.3
1.5
7.9
2.0 | 0.00
0.38
0.13
0.66
0.17 | Calm
ENE: E
ESE
ENE: E
SE: E | NE:ENE
E:ESE
E
E:Calm
S:SSE:Calm | 0. 7
2. 7
3. 6
1. 2
1. 3 | 0.03
0.17
0.35
0.06
0.04 | 144
227
270
156
163 | cm
c
bcb
cm
bcm _o | c Stcu mo c ro c Stcu mo c Ci Cicu so-ha bc m c Acu c St do mo | c Stou mo
c Stou
c Ci Aou
c Aou Ciou c r
c Stou mo | c
c
c m
c b mo
c ir | | 21
22
23
24
25 | 2. 1
0. 0
2. 9
11. 9
8. 6 | 0. 17
0. 00
0. 24
0. 99
0. 72 | 0.8
0.0
2.9
11.8
6.3 | 0.07
0.00
0.24
0.99
0.52 | S:Calm
Calm: NE
NNE: NE
NE: E
ESE: SE | Calm
NNE
ENE: NE
E: ESE
SE: ESE | 0.0
2.0
4.0
4.7
1.4 | 0.00
0.06
0.20
0.56
0.10 | 109
176
271
331
192 | c mo
o ff
c mo
c
b x | c Freu mo o ff c Steu mo c Steu c be Freu Cu be Ci so-ha y | c Nost r g ro c mo
c Nost r iro m
c ro c Acu b
b Ci y
bc Cist Acu so-ha c | bc off
iroc mo
bc
b
c b m | | 26
27
28
29
30 | 3. 1
5. 7
12. 5
5. 5
1. 9 | 0. 25
0. 46
1. 00
0. 44
0. 15 | 1.9
4.8
12.5
4.8
1.7 | 0, 15
0, 38
1, 00
0, 38
0, 13 | ESE: SE
Calm: W: WNW
W: NW: N
Calm
Calm: NE | SE: Calm
NW
N
NE
E: NE | 1.0
6.5
3.6
0.7
2.7 | 0.06
0.40
0.28
0.03
0.10 | 163
279
273
141
186 | bcm
bcf
bcm _o
bx
cm _o | c Acu m c r f c Nbst do m c bc Frcu Cu mo b f b Cu mo c b c Stcu | c Nost r c m f
c St mo
bc Frcu b
b bc c Stcu Cu
c ro c Acu | crrf
cb
b
cbcmo
cdoc | | 31 | 0.0 | 0.00 | 0.0 | 0.00 | NE | NE:ENE | 4.7 | 0.34 | 304 | c mo | c Stcu mo | c Nost rorc | c ido | | Means | 4. 2 | 0. 36 | 3. 7 | 0. 32 | ••• | | | 0. 20 | 220 | | | | | The mean Temperature of Evaporation for the month was 48°.1, being 0°.2 higher than 24 The mean Temperature of the Dew Point for the month was $44^{\circ}.8$, being $0^{\circ}.8$ lower than The mean Degree of Humidity for the month was 79.9, being 5.0 less than 23 19 20 No. of Col.for Ref. 21 22 The mean Elastic Force of Vapour for the month was 0.298 in., being 0.010 in. less than the average for the 65 years, 1841-1905. 29 28 30 31 The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.5. 25 The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.220. The maximum daily amount of Sunshine was 8.1 hours on October 11. 26 27 The highest reading of the Solar Radiation Thermometer was 129°.7 on October 1; and the lowest reading of the Terrestrial Radiation Thermometer was 20°.5 on October 29. The Proportions of Wind referred to the cardinal points were N.25, E.37, S.8, W.9, calm or nearly calm conditions 21, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 10.2 lbs. on the square foot on October 10. The mean daily Horizontal Movement of the Mir for the month was 220 miles; the greatest daily value was 402 miles on October 10, and the least daily value was 111 miles on October 7. Rain (0.005 in. or over) fell on 9 days in the month, amounting to 0.707 in., as measured by gauge No.6 partly sunk below the ground; being 2.075 in. less than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESUL | TS OF T | HE MET | EOROLOG | ICAL | OBSER' | VATIONS | | | | | | |----------------------------|---|-------------------------|-------------------------|----------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|---------------|---|----------------------|--|-----------------------------|---------------------------|---|---|------------------------------|----------------------| | | BAROMETER | | | 7 | EMPERATU | IRE | | | | | | | TE | MPERATUF | Œ | o) | | | | Month
and | Hourly
Frected
d to 320 | | (| Of the A | ir | | 0f
∉Evapo-
ration | Of the
Dew
Point | the Ai
and | rence be
r Temper
Dew Poi
mperatur | ature
.nt | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1946 | Mean of 24 Hourly
Values (corrected
and reduced to 329
Fahrenhelt) | Highest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No. 6, who
surface
above t | Sun-
shine | Horizon | | | in. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | o
| 0 | in. | hours | hours | | Nov.1 | 29. 742
29. 824 | 43. 8
48. 5 | 37. 0
36. 3 | 6. 8
12. 2 | 41. 1
42. 7 | - 5. 9
- 4. 1 | 40.1
41.4 | 38. 9
39. 6 | 2. 2
3. 1 | 6. 2
5. 7 | 0. 0
0. 0 | 91
89 | 64. 7
66. 9 | 33. 0
29. 1 | 52. 8
52. 8 | 0.028
0.076 | 0. 5
0. 6 | 9.7
9.7 | | 3
4 | 29. 974
30. 154 | 57. 4
66. 4 | 48. 0
43. 8 | 9. 4
22. 6 | 53. 4
54. 1 | + 6.8
+ 7.7 | 51.6
50.6 | 49. 9
47. 2 | 3. 5
6. 9 | 5. 4
16. 9 | 1. 7
0. 8 | 88
77 | 73. 1
111. 5 | 45. 5
35. 8 | 52. 8
52. 7 | 0.000 | 0.0
7.8 | 9.6
9.5 | | 5 | 30. 315 | 59. 1 | 38. 3 | 20.8 | 47.6 | + 1.5 | 45.8 | 43. 7 | 3 . 9 | 12.9 | 0.0 | 86 | 105.9 | 27. 4 | 52.5 | 0.000 | 5.3 | 9.5 | | 6
7 | 30.347
30.038 | 51. 3
48. 0 | 40.0
39.4 | 11. 3
8. 6 | 45. 6
43. 6 | - 0. 2
- 1. 8 | 44. 0
42. 7 | 42.0
41.6 | 3. 6
2. 0 | 8.6 | 0.0 | 92
92 | 90.9
53.7 | 26. 9
35. 5 | 52.6
52.2
52.1 | 0.000
0.083
0.043 | 4.0
0.0
1.5 | 9.4
9.4
9.3 | | 8 9 | 29. 779
29. 771 | 49. 4
46. 8 | 42. 3
42. 2 | 7. 1
4. 6 | 45. 7
44. 7 | + 0.7 | 43. 7
42. 6 | 41. 2
39. 8 | 4.5 | 8. 2
6. 8 | 3. 0
2. 3 | 84
83
83 | 72. 5
58. 2
87. 0 | 37. 3
36. 5
35. 7 | 51. 9
51. 8 | 0.066 | 0. 0
3. 8 | 9. 2
9. 2
9. 2 | | 10 | 29.908 | 48. 8 | 41. 4 | 7. 4 | 45. 1 | + 0.8 | 42.9 | 40.0 | 5. 1
5. 1 | 9. 2
6. 5 | 2. 3 | 82 | 52. 7 | 39. 8 | 51. 7 | 0.003 | 0.0 | 9.2 | | 11
12
13 | 30.023
29.821
29.624 | 47. 6
50. 8
51. 6 | 44. 3
44. 5
42. 4 | 3. 3
6. 3
9. 2 | 46. 4
48. 0
47. 9 | + 2.4
+ 4.3
+ 4.4 | 44. 1
44. 9
44. 6 | 41.3
41.0
40.4 | 7. 0
7. 5 | 8. 4
14. 6 | 2.7 | 77 | 58.0
78.6 | 42. 8
32. 6 | 51.6
51.4 | 0.000 | 0. 0
4. 8 | 9.1 | | 14
14 | 29. 624
29. 426
29. 311 | 49.7
49.0 | 42. 4
42. 8
44. 9 | 6. 9
4. 1 | 47. 4
46. 9 | + 4. 1
+ 3. 8 | 46. 6
46. 3 | 45. 7
45. 5 | 1.7
1.4 | 4.7 | 0.0 | 94
95 | 55. 7
55. 4 | 38. 8
42. 4 | 51.3 | 0. 540
0. 120 | 0.0 | 9.0
8.9 | | 16 | 29. 429 | 48. 7 | 40.5 | 8. 2 | 46.0 | + 3. 2 | 44.7 | 43.0 | 3.0 | 5.8 | 0.5 | 90 | 67. 6 | 35, 5 | 51. 2 | 0.045 | 0. 1 | 8.9 | | 17
18 | 29. 137
29. 042 | 49. 3
48. 8 | 38. 1
42. 0 | 11. 2
6. 8 | 44. 5
45. 1 | + 1.9
+ 2.7 | 43.7 | 42. 8
35. 1 | 1.7 | 4. 4
15. 5 | 0.0
4.1 | 93
69 | 51.0
70.2 | 27. 8
34. 7 | 51. 2
51. 1 | 0. 174
0. 000 | 0.0
1.6 | 8. 8
8. 8 | | 19
20 | 29. 143
28. 992 | 54. 2
56. 0 | 42. 2
49. 0 | 12. 0
7. 0 | 46. 8
53. 3 | + 4.5
+11.1 | 46.0
51.8 | 45.0
50.4 | 1.8
2.9 | 5. 4
5. 8 | 0.4
1.2 | 94
90 | 51. 2
74. 8 | 34. 9
41. 8 | 51 0
51.0 | 0. 330
0. 050 | 0.0
0.5 | 8. 7
8. 7 | | 21 | 29. 105 | 53. 2 | 41. 4 | 11.8 | 48. 3 | + 6, 2 | 45. 5 | 42.0 | 6. 3 | 10. 7 | 1. 8 | 79 | 72. 5 | 37. 0 | 50.8 | 0. 220 | 1. 3 | 8.6 | | 22
23 | 29. 352
29. 770 | 51.0
53.0 | 39.6
34.3 | 11. 4
18. 7 | 46. 2
46. 2 | + 4.1
+ 4.2 | 43. 1
44. 8 | 39. 1
43. 1 | 7. 1
3. 1 | 13. 2
6. 2 | 2. 3
0. 8 | 76
89 | 66. 9
61. 3 | 33.0
25.6 | 50.8
50.8 | 0. 115
0. 126 | 0.8 | 8. 6
8. 5 | | 24
25 | 29. 450
29. 374 | 53. 1
54. 4 | 49. 2
47. 2 | 3. 9
7. 2 | 51.0
50.9 | + 9.0
+ 9.0 | 49. 4
48. 3 | 47. 8
45. 5 | 3. 2
5. 4 | 6.0
9.4 | 1. 8
3. 0 | 89
81 | 57. 5
81. 5 | 43. 5
42. 0 | 50.8
50.7 | 0. 317
0. 050 | 0.0
0.9 | 8. 5
8. 4 | | 26 | 29. 458 | 51.3 | 42. 2 | 9. 1 | 46.7 | + 4.9 | 43.9 | 40.5 | 6. 2 | 12. 5 | 2.6 | 78 | 84.9 | 32. 7 | 50.5
50.5 | 0.000 | 4.8
0.1 | 8. 4
8. 4 | | 27
28 | 29. 521
29. 411 | 54.9
51.6 | 42. 4
47. 7 | 12. 5
3. 9 | 51. 3
50. 1 | + 9.6
+ 8.6 | 49.3
48.2 | 47. 2
46. 1 | 4. 1 | 7. 2
6. 7
5. 2 | 1. 3
1. 7
1. 8 | 86
87
88 | 69.0
59.0
91.3 | 33.0
44.0
41.8 | 50.5
50.6 | 0.049
0.030
0.343 | 0. 0 | 8. 3
8. 3 | | 29
30 | 29. 260
29. 440 | 50. 4
51. 7 | 45.6
41.3 | 4. 8
10. 4 | 48. 5
45. 9 | + 7.3
+ 4.9 | 46. 9
44. 5 | 45. 1
42. 7 | 3. 4
3. 2 | 3. 2
4. 8 | 1. 8 | 89 | 57.0 | 35.6 | 50.5 | 0. 150 | 0.0 | 8. 2 | | Means | 29. 598 | 51. 7 | 42. 3 | 9. 3 | 47. 4 | + 3.9 | 45. 4 | 43. 1 | 4. 3 | 7.9 | 1. 5 | 85. 4 | 70.0 | 36. 1 | 51. 5 | Sum
2.966 | 1. 3 | 8.9 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer (Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.598 in., being 0.167 in. lower than the average for the 65 years, 1841-1905. TEMPERATURE OF THE AIR. The highest in the month was 66°.4 on November 4; the lowest in the month was 34°.3 on November 23; and the range was 32°.1. The mean of all the highest daily readings in the month was 51°.7, being 2°.8 higher than the average for the 65 years, 1841-1905. The mean of the daily ranges was 9°.3, being 1°.2 less than the average for the 65 years, 1841-1905. The mean for the month was 47°.4, being 3°.9 higher than the average for the 65 years, 1841-1905. the average for the 65 years, 1841-1905. | | | | | T | ABLE XVII. | - DAILY RES | BULTS C | F THE | METE OR | OLOGICAL | OBSERVATIONS | | | |-----------------------------|---|---|---|---|--|---|---|--|---|---|--|--|--| | | | RECORI
NICE | OF THE
TSKY | | SE | WIND AS DED
LF-REGISTERIN | UCED FROM | m
Eters | | <u>.</u> | | | | | Mainte | Pol | aris | δ t
MIN | TRSAE
ORIS | | OSLER'SS | | | Robin-
son's | | CLOUDS | AND WEATHER | | | Month
and
Day
1946 | 10m | n of
posure | 1om | n of
posure | General I | Direction | on | sure
the
e Foot | ontal Move-
of the Air | | | | | | ; | Duration | Fraction of
Total Exposure | Duration | Fraction of
Total Exposur | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizonta
ment of t | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 ^h | | Nov. 1 2 3 4 5 | hours
0.0
0.0
4.1
12.5
2.7 | 0.00
0.00
0.33
1.00
0.22 | hours 0.0 0.0 1.6 12.5 1.6 | 0.00
0.00
0.13
1.00
0.13 | NE: Calm
Calm
SSW: SW
SSW: SW
Calm | ESE: Calm
Calm: S
SSW: SW
SSW
Calm: ESE | 1bs.
1.2
0.2
2.0
0.9
0.6 | 1bs.
0.06
0.00
0.20
0.06
0.02 | miles
161
111
266
179
92 | c ido
c rr do c
c mo
bc w
b f x | dd ro c Ast c b f c Acu m c Stcu Ast mo bc b Ci mo b f m | crocAcu cAcu mo cAcu mo bCi y bm f | c ir mo c bc b f b c fe | | 6
7
8
9
10 | 4. 1
5. 3
0. 0
7. 5
0. 0 | 0. 33
0. 43
0. 00
0. 57
0. 00 | 3.7
3.9
0.0
5.2
0.0 | 0. 30
0. 31
0. 00
0. 40
0. 00 | Calm
Calm: NNE
N: NNE
NE: NNE
NNE: NE | e
nne: n
nne: ne
nne
nne: n | 0. 5
4. 8
9. 0
5. 2
3. 6 | 0.03
0.32
1.37
0.45
0.30 | 137
239
475
357
299 | bccf
ccrc
crc | c b Ci mo
c St m f
c Cicu Frst
iro c Acu
b mo be Frcu | bc Frcu Ci b mo c Nbst ro r f c po c Stcu c ir c Ast r c c po c Stcu | b c
c
ir c
r c | | 11
12
13
14
15 | 0.0
1.5
1.2
0.0
0.0 | 0.00
0.11
0.09
0.00
0.00 | 0.0
0.3
0.6
0.0
0.0 | 0.00
0.02
0.05
0.00
0.00 | NNW: N
WSW
WSW: W: WNW
S: SSE: SE
Calm | N: NNW
WSW
W: SW: SSW
SE: Calm
Calm: E | 0.7
5.3
2.3
0.9
0.1 | 0. 04
0. 50
0. 15
0. 05
0. 00 | 170
351
253
165
100 | c m c r c m c iro c rro f | c Stcu m c Stcu m c Stcu m c m b Cu m c Nbst rorr m c rofc Stcu m | c Stou m c Ast mo bc c Ci Stou mo rr Nost m c Nost r mo | c m
c mo
c
rr do c ro i
c do | | 16
17
18
19
20 | 2. 0
6. 6
5. 5
0. 1
9. 2 | 0. 15
0. 50
0. 41
0. 01
0. 69 | 0. 1
5. 5
4. 9
0. 1
8. 4 | 0.01
0.41
0.37
0.01
0.64 | NE
Calm: SSW: S
WSW: W
SW: Calm: SSE
SSW | n: Calm
S: WSW
W: WSW
SE: SW
SSW: SW | 1. 0
6. 3
7. 2
1. 8
6. 3 | 0.06
0.40
1.03
0.06
0.47 | 172
322
475
177
367 | c do do
c f w
bc c
b c do
c ido | crcStcumo cNbstrcro bccStcuy cNbstrrmo cNbstiro | c Steu mo m rro e Nost r c Steu y rr m c Nost c p c Nost Ci | c m f
r bc
c b
c ido
c r c b | |
21
22
23
24
25 | 3.7
12.0
0.0
11.1
12.0 | 0. 28
0. 91
0. 00
0. 82
0. 89 | 3. 2
10. 5
0. 0
10. 5
11. 4 | 0. 24
0. 80
0. 00
0. 78
0. 84 | SW
SW: WSW
SSW: S
SSW
SW:SSW | SW: SSW
W: WSW
SSW: SW
SSW: SW
SSW: SW | 10.6
10.5
10.3
12.0
11.5 | 1. 33
1. 46
1. 04
1. 92
1. 75 | 484
502
403
562
529 | b
cir
bx
rr cq
bc | b c R be Acu
c Stcu
c Ast Frst do
c Nost iro
c q Frcu | bc c Cumb 1
c ro c Cumb b
c Ast dd
r c Nbst rro
c Nbst iro q r b | c ir
b
d rr q c
b
b c po | | 26
27
28
29
30 | 9. 1
0. 0
1. 9
3. 1
11. 3 | 0.68
0.00
0.14
0.23
0.82 | 7. 1
0. 0
1. 4
0. 9
9. 8 | 0.53
0.00
0.10
0.07
0.71 | SW: WSW
SSW: SW
SSW
SSW
W: WSW: SW | WSW: SW
SSW: SW
SSW: NW
WSW | 5. 2
14. 0
6. 6
4. 6
5. 7 | 0. 57
2. 33
0. 83
0. 43
0. 40 | 393
583
381
339
344 | b
bwc
c
crc
cbc | b c b Cu
c ro c Stcu q
c St iro
c ir c Acu Frcu
c Nost rr ro | bebCuCi cNbstroroq cirocStcu cso-haprhnpcr circAcub | b
roroqc
c
r R c
b c | | Means | 4. 2 | 0.32 | 3. 4 | 0. 26 | ••• | | | 0. 59 | 313 | | | | | | No. of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 45°.4, being 3°.5 higher than The mean Temperature of the Dew Point for the month was 43°.1, being 3°.4 higher than The mean Degree of Humidity for the month was 85.4, being 1.2 less than The mean Flastic Force of Vapour for the month was 0.280 in., being 0.034 in. greater than The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.7. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.146. The maximum daily amount of Sunshine was 7.8 hours on November 4. The highest reading of the Solar Radiation Thermometer was 111°.5 on November 4; and the lowest reading of the Terrestrial Radiation Thermometer was 25°.6 on November 23. The Proportions of Wind referred to the cardinal points were N.14, E.8, S.35, W.27, calm or nearly calm conditions 16, the whole being represented by 100. The Greatest Pressure of the Wind in the month was 14.0 lbs. on the square foot on November 27. The mean daily Horizontal Movement of the Air for the month was 313 miles; the greatest daily value was 583 miles on November 27, and the least daily value was 92 miles on November 5. Rain (0.005 in. or over) fell on 22 days in the month, amounting to 2.966 in., as measured by gauge No.6 partly sunk below the ground; being 0.746 in. greater than the average fall for the 65 years, 1841-1905. | | | | | TABLE | XVII. | - DAILY | RESULT | s of th | E MET | EOROLOG | CAL | OBSER | VATIONS | | | | | | |----------------------------|--|---|---|--|---|--|---|---|--------------------------------------|--|--------------------------------------|--|---|---|---|---|---------------------------------|--------------------------------------| | | BAROMETER | | | 7 | EMPERATU | RE | | | | | | | Ti | EMPERATU | Æ | m | | | | Month
and | Hourly
rrected
1 to 320
elt | | (| Of the A | ir | | Of
Evapo-
ration | Of the
Dew
Point | the A | rence be
ir Tempe
i Dew Po
emperatu | rature
int | Degree of Humidity
(Saturation = 100) | Of Rad | iation | Of the
Earth
4 ft. | Rain collected in Gauge
No.6, whose receiving
surface is 5 inches
above the Ground | Daily
Dura-
tion
of | Sun
above | | Day
1946 | Mean of 24 Hourly
Values (corrected
and reduced to 322
Fahrenheit | H1ghest | Lowest | Daily
Range | Mean
of 24
Hourly
Values | Excess
above
Average
of 65
Years | Mean
of 24
Hourly
Values | Deduced
Mean
Daily
Value | Mean | Great-
est | Least | Degree o
(Saturat | Highest
in Sun's
Rays | Lowest
on the
Grass | below
the
surface
of the
Soil | Rain colle
No.6, who
surface
above t | Sun-
shine | Horizon | | | in. | ۰ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | | 0 | ٥ | ٥ | in. | hours | hours | | Dec.1 2 3 4 5 | 29. 654
29. 528
29. 277
29. 523
29. 741 | 51. 0
48. 8
45. 0
43. 7
40. 1 | 38. 9
38. 0
36. 5
35. 1
28. 9 | 12. 1
10. 8
8. 5
8. 6
11. 2 | 44. 3
44. 9
41. 0
39. 4
36. 4 | + 3. 4
+ 4.0
- 0.1
- 1.9
- 5.1 | 41. 6
41. 9
38. 6
37. 3
35. 1 | 37. 9
37. 7
34. 9
34. 0
32. 9 | 6. 4
7. 2
6. 1
5. 4
3. 5 | 12. 4
11. 0
12. 0
8. 7
6. 3 | 1.9
3.5
2.0
1.7
0.0 | 78
76
79
81
87 | 68. 9
61. 7
59. 2
65. 0
50. 7 | 31. 5
32. 0
30. 8
27. 6
20. 6 | 50. 4
50. 4
50. 1
49. 8
49. 7 | 0. 217
0. 000
0. 393
0. 000
0. 110 | 4.7
0.1
2.2
2.9
0.0 | 8. 2
8. 2
8. 2
8. 1
8. 1 | | 6
7
8
9
10 | 29. 739
29. 414
28. 891
28. 969
29. 651 | 43. 6
44. 4
43. 0
41. 9
40. 9 | 32. 7
28. 6
33. 9
39. 0
29. 3 | 10.9
15.8
9.1
2.9
11.6 | 39. 0
37. 2
38. 8
40. 7
36. 1 | - 2.5
- 4.1
- 2.2
+ 0.1
- 4.3 | 37. 8
36. 2
38. 0
39. 4
35. 1 | 36. 0
34. 5
36. 8
37. 7
33. 3 | 3. 0
2. 7
2. 0
3. 0
2. 8 | 6. 8
3. 5
4. 4
4. 5
4. 5 | 0.0
0.8
0.0
0.9
0.0 | 89
91
92
88
90 | 53. 7
56. 9
46. 1
47. 4
46. 6 | 25. 5
20. 0
26. 7
33. 4
23. 6 | 49. 5
49. 0
48. 7
48. 6
48. 2 | 0.000
0.130
0.481
0.020
0.000 | 0.8
0.2
0.0
0.0
0.5 | 8. 1
8. 0
8. 0
8. 0
8. 0 | | 11
12
13
14
15 | 29. 551
29. 876
30. 154
30. 318
30. 523 | 47. 7
41. 0
40. 8
43. 6
38. 0 | 33. 5
28. 1
24. 1
37. 5
27. 8 | 14. 2
12. 9
16. 7
6. 1
10. 2 | 41. 6
35. 5
32. 8
41. 0
32. 3 | + 1.4
- 4.8
- 7.7
+ 0.3
- 8.5 | 40. 8
34. 7
31. 9
40. 1
29. 7 | 39. 8
33. 3
30. 4
39. 0
25. 3 | 1. 8
2. 2
2. 4
2. 0
7. 0 | 3. 4
5. 1
8. 6
4. 2
12. 2 | 0.0
0.0
0.0
0.5
3.1 | 93
92
90
92
72 | 49.0
41.0
44.6
47.6
48.6 | 30. 5
23. 7
18. 8
35. 4
21. 3 | 47.9
47.6
47.3
47.1
47.0 | 0.090
0.000
0.000
0.007
0.000 | 0.0
0.4
1.1
0.0
2.8 | 7.9
7.9
7.9
7.9
7.9 | | 16
17
18
19
20 | 30. 517
30. 420
30. 400
30. 154
30. 083 | 33. 0
35. 8
34. 9
34. 9
33. 6 | 26. 2
30. 0
27. 1
29. 4
26. 2 | 6. 8
5. 8
7. 8
5. 5
7. 4 | 30. 1
32. 8
31. 1
32. 2
29. 9 | -10.6
- 7.6
- 8.9
- 7.3
- 9.1 | 27. 9
31. 1
29. 5
31. 5
28. 7 | 23. 9
28. 4
26. 9
30. 4
26. 6 | 6. 2
4. 4
4. 2
1. 8
3. 3 | 8. 1
7. 8
7. 3
2. 7
5. 6 | 3. 7
2. 5
1. 8
0. 0
2. 2 | 75
83
82
92
86 | 33.8
47.2
51.7
34.6
44.2 | 20.6
21.0
14.6
23.7
19.6 | 46. 7
46. 7
46. 3
46. 0
45. 8 | 0.000
0.000
0.000
0.163
0.000 | 0.0
0.7
2.1
0.0
3.4 | 7.8
7.8
7.8
7.8
7.8 | | 21
22
23
24
25 | 30.049
29.810
29.550
29.728
29.649 | 27. 0
42. 6
41. 0
40. 7
46. 3 | 19. 0
27. 0
35. 5
29. 7
29. 5 | 8. 0
15. 6
5. 5
11. 0
16. 8 | 24. 0
38. 2
38. 2
36. 9
41. 1 | -14.7
- 0.2
0.0
- 1.3
+ 2.7 | 23. 3
37. 0
37. 0
36. 0
40. 0 | 21. 7
35. 1
35. 1
34. 4
38. 6 | 2. 3
3. 1
3. 1
2. 5
2. 5 | 3. 3
3. 6
5. 4
4. 4
4. 0 | 1. 0
0. 6
1. 1
0. 0
0. 0 | 90
89
89
91
90 | 30. 0
48. 9
45. 0
46. 5
52. 2 | 13. 8
24. 0
34. 5
20. 0
19. 6 | 45. 4
45. 2
45. 0
44. 8
44. 9 | 0.004*
0.016
0.025
0.069
0.048 | 0.0
0.0
0.0
0.0
0.0 | 7. 8
7. 8
7. 8
7. 8
7. 8 | | 26
27
28
29
30 | 29. 458
29. 469
29. 877
30. 032
29. 820 | 45. 7
45. 3
45. 6
41. 5
46. 0 | 38. 0
36. 2
38. 5
36. 3
32. 2 | 7. 7
9. 1
7. 1
5. 2
13. 8 | 42. 2
41. 6
41. 8
38. 9
41. 7 | + 3.6
+ 2.8
+ 2.9
- 0.1
+ 2.8 | 40. 3
39. 7
40. 0
38. 2
40. 5 | 37. 6
37. 0
37. 5
37. 2
38. 9 | 4.6
4.6
4.3
1.7
2.8 | 8. 4
8. 4
7. 0
4. I
5. 9 | 1. 8
1. 1
2. 0
0. 0
0. 7 | 84
83
84
93
90 | 64. 1
52. 3
55. 9
45. 7
55. 0 | 31. 4
29. 4
32. 6
28. 5
25. 3 | 44. 8
44. 7
44. 7
44. 7
44. 8 | 0. 282
0. 000
0. 000
0. 000
0. 042 | 3.5
0.0
0.4
0.0
0.0 | 7. 8
7. 9
7. 9
7. 9
7. 9 | | 31 | 29. 547 | 44. 8 | 31.9 | 12. 9 | 39.4 | + 0.7 | 37.9 | 35. 8 | 3.6 | 10.2 | 0.0 | 86 | 54. 3 | 25.0 | 44. 8 | 0. 168 | 0.9 | 7.9 | | Means | 29.786 | 41. 7 | 31. 8 | 9.9 | 37. 5 | - 2.5 | 36. 0 | 33. 8 | 3.6 | 6. 6 | 1. 1 | 86. 4 | 49.9 | 25. 3 | 47.0 | Sum
2. 265 | 0.9 | 7. 9 | | No. of
Col. for
Ref. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | -8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | The mean reading of the Barometer
(Column 1) and the mean temperatures of the Air and Evaporation (Columns 5 and 7) are deduced from the autographic records. The average temperature (Column 6) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 8) and the Degree of Humidity (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Hygrometrical Tables, published by the Meteorological Office, Air Ministry. The mean difference between the Air and Dew Point Temperatures (Column 9) is the difference between the numbers in Columns 5 and 8, and the Greatest and Least Differences (Columns 10 and 11) are deduced from the 24 hourly autographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 15 are taken daily at noon. The values given in Columns 2, 3, 4, 13 and 14 are derived from eye-readings of self-registering thermometers. The mean reading of the Barometer for the month was 29.786 in., being 0.006 in. lower than the average for the 65 years, 1841-1905. * Rainfall (Column 16). The amount entered on December 21 is derived from hoar frost. #### TEMPERATURE OF THE AIR. The highest in the month was 51°.0 on December 1; the lowest in the month was 19°.0 on December 21; and the range was 32°.0. The mean of all the highest daily readings in the month was 41°.7, being 2°.5 lower than the average for the 65 years, 1841-1905. The mean of all the lowest daily readings in the month was 31°.8, being 3°.7 lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was 9°.9, being 1°.2 greater than the average for the 65 years, 1841-1905. The mean for the month was 37°.5, being 2°.5 lower than the average for the 65 years, 1841-1905. | | | | OF THE
TSKY | | SEI | WIND AS DEDUC
F-REGISTERING | | | | | | | | |-----------------------------|--|---|---------------------------------------|---|---|--|--|---|--|---------------------------------------|--|---|------------------------------------| | | Pol | aris | | RSÆE
ORIS | | OSLER'S | | | Robin-
son's | | CLOUDS A | ND WEATHER | | | Month
and
Day
1946 | noi | tion of
Exposure | lon | n of
posure | General 1 | Direction | on | ssure
the
e Foot | 1 Move-
the Air | | | | | | | Duration | Fractic
Total Exp | Duration | Fraction of
Total Exposure | A.M. | P.M. | Greatest | Mean of
24 Hourly
Measures | Horizontal Move-
ment of the Air | O ^h to 6 ^h | 6 ^h to 12 ^h | 12 ^h to 18 ^h | 18 ^h to 24 | | Dec. 1 2 3 4 5 | hours
8. 2
4. 7
9. 3
12. 8
6. 1 | 0. 60
0. 34
0. 68
0. 93
0. 45 | hours 7. 4 3. 1 4. 1 12. 5 5. 4 | 0. 54
0. 22
0. 29
0. 91
0. 39 | WSW
WSW: SW
SSM: WSW
WNW: NNW
Calm: WSW | WSW: SSW
WSW: SW
WSW: W
NNW
Calm: SW | 1bs.
15.0
5.3
7.0
3.7
0.5 | lbs. 0.91 0.74 0.48 0.28 0.02 | miles
412
408
318
316
144 | cbm
b
cRRbmo
bxcmo
bmfx | b Ci m c Ast Stcu bc Acu mo c Cist Frcu b mo b c Acu ff | bc Cist so-ha c r
c Ast Stcu mo
c Stcu b f
b Frcu mo m
c Ast ff | rqRb
bccmo
bfmo
bm
crr | | 6
7
8
9
10 | 12. 0
10. 5
1. 2
5. 5
2. 2 | 0. 87
0. 76
0. 08
0. 40
0. 16 | 10. 1
8. 6
1. 0
3. 7
0. 0 | 0.74
0.63
0.07
0.27
0.00 | WSW
SW: SSE
SSW: SSE: SE
NE: NW
NW | WNW:WSW
SW
SE:E
NW
Calm | 3. 0
3. 2
5. 7
3. 7
1. 6 | 0. 13
0. 17
0. 35
0. 58
0. 07 | 260
253
294
386
168 | c b x
b x c
b x
c
c b x | bc Cist Cicu f m
c Nbst rr
c r c St
c Stcu
b c Acu ff | bc Acu Cicu m
r c Stcu
c Nbst ro RR
c ir c Stcu
b ff | bmfb
crob
rcdo
c
bxfF | | 11
12
13
14
15 | 12. 3
6. 1
2. 6
0. 0
9. 0 | 0.90
0.44
0.19
0.00
0.64 | 11. 7
1. 9
0. 0
0. 0
6. 6 | 0.85
0.14
0.00
0.00
0.47 | SE
W:WSW
Calm
Calm
E | S:SW:W
Calm
Calm:SW
Calm:E
E:NE | 4.5
0.3
0.0
1.7
5.5 | 0.38
0.02
0.02
0.03
0.51 | 295
153
111
118
313 | f c b m x f F x c iro | crorcWbst bffx Fbfx irocAcuff cStcu | crc/bstb
bffx
bcCistso-hacf
cfFgcf
bcAcub | bm bfFx fc cdoc bcb | | 16
17
18
19
20 | 0.7
12.5
6.1
8.9
11.5 | 0.05
0.89
0.43
0.64
0.82 | 0. 2
12. 0
5. 5
8. 1
9. 6 | 0.01
0.86
0.39
0.57
0.69 | ne: ene
ne
ne: nw
ne: nw | NE
NE
NE
WSW: Calm: NE
NNE | 6. 7
4. 5
5. 0
1. 4
0. 6 | 0.68
0.59
0.47
0.05
0.08 | 409
400
343
183
235 | bc c c x b x mo b x c b x m | c Nbst 1so
c Frcu Stcu
b Ci x
c Nbst ss ff
b Ci x mo | c Steu
c b Freu be
b Freu c x
sso f F m
b Ci x mo | c bc b c b x c c b x mo | | 21
22
23
24
25 | 5. 1
0. 0
0. 0
10. 8
11. 3 | 0. 36
0. 00
0. 00
0. 77
0. 81 | 1. 3
0. 0
0. 0
7. 1
6. 8 | 0.09
0.00
0.00
0.51
0.48 | NE: Calm
SSW
SSW: S
Calm: NW
SSW: SW | Calm: SW
SSW
S: SSE
W: SW
SW: WSW | 0. 2
4. 0
2. 8
1. 0
10. 5 | 0.01
0.37
0.25
0.05
1.16 | 124
369
309
162
451 | bcfx
cm
c
rrfm
bxc | c b ff x
c Cicu m
c Stcu
c Stcu m
c Ast Frst | b ff x c St do c Stcu do c Frcu b m f c Nbst ro r c | bfxc
ddoc
dorcr
bfx
cb | | 26
27
28
29
30 | 7. 3
2. 7
5. 0
0. 0
6. 7 | 0. 52
0. 20
0. 36
0. 00
0. 49 | 7. 0
0. 9
4. 0
0. 0
0. 9 | 0.50
0.07
0.29
0.00
0.06 | SW: WSW
WSW: W
WNW: W
N: Calm
SSW: NNW | SW: SSW
NW: WNW
W: NNW
Calm: SSW
NNW: Calm | 6. 4
1. 3
2. 8
0. 2
1. 6 | 0. 34
0. 13
0. 12
0. 02
0. 06 | 366
264
242
113
184 | b
cbc
cbc
crd _o m | b x c Ci Cicu
c do c Stcu ff
c bc Acu ff
c Frcu Cist ff
c Nost f m | c Nbst R
c Stcu f m do
c b c f m
f FF
P bc Acu m | RR b c do c c ro c b F c m ff x | | 31 | 13. 7 | 0.99 | 13. 6 | 0.99 | SSW: W | WNW: W | 2. 3 | 0. 16 | 288 | fxbc | c rr c Stcu | c Stou be b | þ | | Means | 6.6 | 0.48 | 4. 9 | 0.36 | ••• | ••• | | 0. 30 | 271 | | | | | | No.of
Col.for
Ref. | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | The mean Temperature of Evaporation for the month was 36°.0, being 2°.5 lower than The mean Temperature of the Dew Point for the month was 33°.8, being 2°.6 lower than The mean Degree of Humidity for the month was 86.4, being 1.1 less than The mean Elastic Force of Vapour for the month was 0.194 in., being 0.022 in. less than the average for the 65 years, 1841-1905. The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.2. The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.109. The maximum daily amount of Sunshine was 4.7 hours on December 1. The highest reading of the Solar Radiation Thermometer was 68°.9 on December 1; and the lowest reading of the Terrestrial Radiation Thermometer was 13°.8 on December 21. The Proportions of Wind referred to the cardinal points were N.17, E.14, S.22, W.32, calm or nearly calm conditions 15, the whole month being represented by 100. The Greatest Pressure of the Wind in the month was 15.0 lbs. on the square foot on December 1. The mean daily Horizontal Movement of the Air for the month was 271 miles; the greatest daily value was 451 miles on December 25, and the least daily value was 111 miles on December 13. Rain (0.005 in. or over) fell on 16 days in the month, amounting to 2.265 in., as measured by gauge No.6 partly sunk below the ground; being 0.438 in. greater than the average fall for the 65 years, 1841-1905. TABLE XVIII(A). - HIGHEST AND LOWEST READINGS OF THE BAROMETER, REDUCED TO 32° FAHRENHEIT, AS EXTRACTED FROM THE PHOTOGRAPHIC RECORDS | MAXIMA | | MINIMA | | MAXIMA | | MINIMA | | MAXIMA | | MINIMA | · | |---|--|--|---|---|---|--|---|---|--|--|---| | U.T., 1946. | Reading | U.T., 1946. | Reading | U.T., 1946. | Reading | U.T., 1946. | Reading | U.T., 1946. | Reading | U.T., 1946. | Reading | | d. h. m.
January | in. | d. h. m.
January | in. | d. h. m.
May | in.
 d. h. m. | in. | d. h. m.
September | in. | d. h. m.
September | in. | | 3. 10. 0
11. 2. 45
15. 18. 45
21. 23. 30
24. 10. 15
27. 23. 20
29. 11. 30
31. 10. 40 | 30. 391
29. 579
30. 698
30. 240
30. 185
29. 893
29. 588
29. 766 | 9. 20. 25
11. 22. 0
18. 23. 0
23. 5. 0
26. 23. 15
28. 23. 57
30. 0. 35 | 29. 009
29. 444
29. 694
29. 722
29. 713
29. 399
28. 997 | 4. 9. 0
9. 0. 15
17. 22. 40
22. 22. 15
29. 22. 45 | 30.072
30.063
29.807
29.974
29.640 | 7. 17. 25
14. 1. 15
20. 18. 0
27. 3. 15 | 29. 830
29. 588
29. 660
29. 301 | 7. 20. 35
10. 7. 40
12. 10. 0
15. 22. 25
19. 10. 30
21. 20. 0
25. 22. 15
28. 1. 0
30. 19. 0 | 29. 70 5
30. 024
29. 975
29. 958
29. 755
30. 100
30. 026
30. 044
29. 948 | 4. 3. 45
8. 16. 0
11. 5. 0
14. 21. 0
18. 17. 35
20. 15. 40
23. 15. 25
27. 2. 45
29. 14. 15 | 29. 153
29. 552
29. 699
29. 625
29. 325
28. 911
29. 761
29. 872
29. 783 | | February 3. 5. 0 4. 2. 30 5. 23. 45 6. 22. 55 15. 10. 50 17. 10. 35 21. 23. 0 25. 10. 35 | 29. 518
29. 492
29. 867
29. 962
30. 548
30. 343
30. 012
29. 733 | February 2. 13. 30 3. 17. 30 4. 13. 10 6. 9. 20 8. 22. 5 16. 19. 40 20. 14. 5 23. 9. 5 26. 16. 0 | 29. 143
29. 317
29. 334
29. 746
28. 982
30. 281
29. 645
29. 150
29. 564 | 4. 9. 0
7. 8. 50
9. 9. 50
13. 22. 20
17. 17. 55
18. 21. 10
22. 8. 15
27. 7. 15 | 29. 831
29. 931
29. 782
30. 060
29. 773
29. 743
30. 253
29. 914 | 2. 2. 15
5. 16. 15
8. 16. 40
10. 10. 0
16. 22. 10
18. 4. 25
19. 9. 15
26. 6. 40
28. 5. 0 | 28. 990
29. 528
29. 589
29. 327
29. 670
29. 625
29. 683
29. 642
29. 753 | October 2. 10. 0 4. 12. 20 10. 11. 0 16. 9. 5 24. 21. 5 29. 7. 45 31. 10. 10 | 29. 941
29. 878
30. 247
30. 103
30. 056
30. 097
30. 040 | October 1. 20. 25 3. 16. 45 6. 2. 30 13. 4. 20 20. 17. 40 27. 4. 35 30. 14. 40 | 29. 766
29. 764
29. 779
29. 936
29. 376
29. 489
29. 961 | | 27. 11. 0 | 29. 639 | 28. 16. 0 | 29. 518 | July | | July | | November | | November | | | March 1. 20. 20 7. 11. 25 10. 19. 30 16. 23. 15 21. 12. 0 27. 8. 35 30. 23. 35 | 29. 682
29. 767
29. 873
30. 276
29. 921
30. 207
30. 202 | March 3. 9. 0 8. 16. 15 13. 5. 0 21. 0. 10 22. 15. 20 29. 16. 0 | 29. 317
29. 669
29. 335
29. 758
29. 321
30. 014 | 1. 9. 0
7. 22. 0
15. 7. 55
21. 11. 0
23. 7. 45
25. 21. 0
28. 7. 10
30. 0. 20 | 30. 158
30. 315
29. 676
29. 865
29. 973
29. 983
29. 976
29. 858 | 4. 4. 20
14. 13. 0
16. 6. 45
22. 4. 0
24. 13. 15
26. 16. 12
29. 4. 25
30. 18. 0 | 29. 50 4
29. 573
29. 291
29. 760
29. 666
29. 50 3
29. 727
29. 679 | 6. 8. 55
9. 1. 50
11. 21. 30
16. 19. 10
19. 0. 10
21. 21. 15
23. 2. 5
25. 0. 45
26. 22. 40
30. 4. 30 | 30. 393
29. 823
30. 039
29. 504
29. 209
29. 169
29. 864
29. 475
29. 630
29. 500 | 1. 12. 45 8. 15. 15 9. 17. 0 15. 15. 10 17. 18. 15 20. 18. 55 22. 5. 25 24. 15. 10 25. 21. 20 29. 7. 10 30. 12. 30 | 29. 715
29. 710
29. 712
29. 260
28. 845
28. 886
29. 033
29. 322
29. 311
29. 199
29. 334 | | April | | April | | August | | August | | December | | December | | | 7. 1. 0
10. 21. 25
14. 7. 50
16. 9. 30
19. 9. 45
22. 9. 20
28. 8. 40 | 30. 356
30. 261
29. 931
29. 926
30. 299
30. 329
29. 480 | 4. 16. 0
8. 17. 0
12. 16. 20
15. 16. 0
17. 16. 5
20. 18. 0
25. 17. 40
29. 12. 0 | 29. 790
29. 920
29. 823
29. 823
29. 769
30. 103
29. 330
29. 305 | 1. 9. 45 6. 20. 30 9. 7. 20 11. 10. 15 13. 22. 15 18. 8. 25 22. 12. 0 26. 22. 15 31. 21. 50 | 30. 011
29. 834
29. 583
29. 782
29. 911
29. 823
29. 953
29. 703
29. 690 | 5. 17. 15
8. 14. 35
10. 13. 0
13. 0. 45
17. 2. 25
20. 2. 0
25. 17. 5
28. 23. 35 | 29. 627
29. 451
29. 128
29. 284
29. 447
29. 644
29. 595
29. 162 | 1. 12. 15 5. 8. 20 6. 18. 40 10. 18. 20 15. 19. 40 24. 21. 15 26. 8. 20 29. 10. 40 | 29. 812
29. 783
29. 776
29. 771
30. 589
29. 887
29. 589
30. 084 | 3. 14. 40
6. 0. 55
8. 20. 45
11. 15. 15
23. 17. 0
25. 16. 30
26. 20. 45
31. 10. 55 | 29, 221
29, 689
28, 543
29, 386
29, 493
29, 476
29, 239
29, 405 | The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the Barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period. The time is Universal Time. The height of the Barometer cistern above mean sea level is 152 feet; no correction has been applied to the reading to reduce to sea level. TABLE XVIII(B). - HIGHEST AND LOWEST READINGS OF THE BAROMETER IN EACH MONTH FOR THE YEAR 1946 | , | January | February | March | April | May | June | July | August | September | October | November | December | |----------------------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------| | HIGHEST
LOWEST
RANGE | in.
30.698
28.997
1.701 | in.
30. 548
28. 982
1. 566 | in.
30. 276
29. 317
0. 959 | in.
30.356
29.305
1.051 | in.
30.072
29.301
0.771 | in.
30. 253
28. 990
1. 263 | 1n.
30.315
29.291
1.024 | in.
30.011
29.128
0.883 | in.
30.100
28.911
1.189 | in.
30. 247
29. 376
0. 871 | in.
30.393
28.845
1.548 | in.
30.589
28.543
2.046 | The highest reading in the year was 30.698 ins. on January 15. The lowest reading in the year was 28.543 ins. on December 8. The range of reading in the year was 2.155 ins. TABLE XIX. - MONTHLY RESULTS OF METEOROLOGICAL ELEMENTS FOR THE YEAR 1946 TEMPERATURE OF THE AIR | | . | <u> </u> | | | | | | | | | | | | - 1 | | - 1 | | 1 | | |---------------------------------------|--------------------------------------|-------------------------------|---------------------------------------|---|---------------------------|--|--|----------------------|---------------------------------|-------------------------|---------------------|----------------------|---|-----------------------|------------------------------------|------------|----------------------|------------------------------------|--| | MONTH
1946 | Mea
Readi
of th
Barome | ing
he | Highes | st Lo | owest | in | nge Mes
the of s
nth High | all
e | Mean
of all
the
Lowest | Me:
of
Dai
Ran | the
lly | Monthly
Mean | Exce
of Me
above
Avera
of G | the
age
35 | Mean
Temperat
of
Evaporat | | Tempe
of | ean
erature
the
Point | Mean Degree of Humidity (Saturation = 100) | | | in. | | 0 | | 0 | | | | • | | | 0 | | | 0 | | | 0 | | | January | 29.94 | l | 55.5 | ١, | 0.5 | 35 | | , | | 1 | | | | _ | | | | i | | | February | 29.82 | | 55.7 | | 0.0 | 35 | 1 . | | 33. 6
38. 1 | 8.
10. | - 1 | 38. 1
43. 7 | -0.
+4. | | 36. 3
41. 1 | | | 3. 5
7. 3 | 83.0
78.4 | | March | 29.82 | | 65.6 | | 3. 5 | 42 | | - 1 | 34.7 | 13. | _ | 41. 2 | -0. | | 38. 5 | | | 1.5 | 76. 4
76. 9 | | April | 29.90 | | 79. 7 | | 7. 1 | 52 | | 3 | 40.6 | 20. | | 51.0 | +3. | 7 | 46.3 | 1 | - | 0.4 | 67. 8 | | May | 29.76 | | 70.0 | | 5.0 | 35 | | - 1 | 43. 3 | 17. | | 51.6 | 71. | - | 48.0 | | | 3.8 | 75. 1 | | June
Jul y | 29.77
29.84 | | 75. 3
87. 0 | 1 | 4. 3
3. 8 | 31
43 | | - | 49.6
53.7 | 17. | | 57. 2 | -2. :
+1. (| | 53. 1 | | | 2.2 | 74.8 | | August | 29.68 | , | 83.3 | | 4.8 | 38 | Į. | | 52. 4 | 20.
17. | | 63.6
60.1 | -1. | | 58. 2
56. 1 | | | 3. 8
2. 7 | 71. 0
76. 8 | | September | 29.74 | | 77. 1 | | 4.7 | 32 | | | 51.6 | 13. | - 1 | 58.0 | +0. | | 55. 1 | | - | 2.6 | 82. 1 | | October | 29.90 | | 71.0 | 2 | 9.6 | 41 | | 8 | 45. 2 | 11. | | 50.9 | +0. | - | 48. 1 | | | 1.8 | 79.9 | | November | 29.59 | 8 | 66. 4 | | 4.3 | 32 | | 7 | 42. 3 | 9. | | 47. 4 | +3.9 | 9 | 45. 4 | | 43 | 3. 1 | 85. 4 | | December | 29.78 | 16 | 51.0 | 1 | 9.0 | 32 | .0 41. | 7 | 31.8 | 9. | 9 | 37. 5 | -2. | 5 | 36.0 | | 33 | 3. 8 | 86. 4 | | Means | 29. 79 | | Highes
87.0 | | west
9.0 | Ann
Rar
68 | nge | 3 | 43. 1 | 14. | 2 | 50.0 | +0. : | 5 | 46. 8 | | 43 | 3. 3 | 78. 1 | | <u> </u> | | Me | an | | | RA | IN | | | | | | WI | ND | | | | | | | MONTH
1946 | Mean
Elastic
Force
of | Tempor turn of Ear 4 for bell | era-
re
the
th
eet
Low | Mean
Amount
of
Cloud
(0-10) | Numb
of
Rain
Day | ny | Amount collected in Gauge No. 6, whose receiving | | | of Hour | s of | Prevalence | e of e | | | of Calm or | Calm Hours | Mean
Daily
Pressur
on the | From Robin- son's Anemo- meter | | | Vapour | Surf
of
So | ace
the | (0-10) | (0.00E
or ov | in. | surface is
5 inches
above the
Ground | N. | N.E. | Ε. | S.E. | s. | s.w. | W. | N.W. | Number | Nearly (| Square
Foot | Mean Daily
Horizontal
Movement
of the Air | | | in. | ۰ | , | | | | in. | h | h | h | h | h | h | h | h | 1 | h | lbs. | miles |
| January
February
March
April | 0. 192
0. 223
0. 200
0. 252 | 44.
44.
43.
46. | 7 0 7 | 7. 2
7. 4
7. 1
5. 0 | 11
17
11 | L | 1.615
2.487
1.213
1.703 | 14
56
62
77 | 67
23
167
99 | 95
13
143
61 | 31
1
18
17 | 125
5
27
53 | 204
146
109
151 | 76
193
33
44 | 126
11
28 | 10 | 24
09
74
90 | 0.58
1.00
0.32
0.17 | 303
367
251
210 | | May | 0. 287 | 49. | | 6.6 | 17 | | 3. 152 | 84 | 241 | 129 | 28 | 69 | 68 | 8
140 | 1 . | | 08 | 0.39 | 274
255 | | June | 0.352 | 53. | | 7. 4
6. 4 | 24
13 | | 2. 517
2. 393 | 26
30 | 14 | 7
31 | 19 | 67 | 326
283 | 117 | 1 | 1 | 36
47 | 0. 33
0. 23 | 239 | | July
August | 0.417 | 57.
58. | 1 | 7. 2 | 18 | | 4. 232 | 30 | 10 | 9 | 20 | 102 | 300 | 96 | | 1 | 24 | 0. 42 | 261 | | September | 0.399 | 57. | | 7.4 | 18 | | 2. 471 | 4 | 6 | 32 | 14 | 132 | 335 | 109 | | 0 | 64 | 0.38 | 270 | | October | 0. 298 | 55. | 8 | 7.5 | 9 | | 0.707 | 71 | 198 | 147 | 53 | 28 | 20 | 43 | 1 | | 53 | 0.20 | 220 | | November | 0. 280 | 51. | | 7.7 | 22
16 | | 2. 966
2. 265 | 65
39 | 60 | 17
37 | 23 | 132 | 216
170 | 75
109 | | | 16 | 0.59
0.30 | 313
271 | | December | 0. 194 | 47. | U | 6. 2 | 10 | <u>, </u> | 2. 20) | 27 | 77 | " | \ | 09 | 1/0 | 107 | - 89 | <u> "</u> | | | | | Sums | | •• | · | ••• | 187 | 7 | 27. 721 | 558 | 990 | 721 | 259 | 850 | 2328 | 1043 | 457 | 155 | 54 | ••• | | | Means | 0. 291 | 50. | 8 | 6.9 | ••• | | ••• | | | | ļ | | | | | | | 0.41 | 269 | The greatest recorded pressure of the wind on the square foot in the year was 31.0 lbs. on Aug. 28. The greatest recorded daily horizontal movement of the air in the year was 737 miles on Feb.8. The least recorded daily horizontal movement of the air in the year was 77 miles on Mar. 24. TABLE XX. - MONTHLY MEAN READING OF THE BAROMETER AT EVERY HOUR OF THE DAY AS DEDUCED FROM THE PHOTOGRAPHIC RECORDS | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |-------------------------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|----------|----------|----------|-----------------| | h | in. | o ^h | 29.936 | 29.843 | 29.825 | 29.918 | 29. 782 | 29.775 | 29.859 | 29. 698 | 29.747 | 29.906 | 29. 623 | 29. 789 | 29.808 | | 1 | 29.933 | 29.840 | 29.823 | 29.914 | 29.777 | 29.769 | 29.855 | 29. 692 | 29. 747 | 29.903 | 29. 620 | 29.788 | 29.805 | | 2 | 29.938 | 29. 838 | 29.817 | 29.908 | 29. 773 | 29. 763 | 29.851 | 29. 688 | 29.743 | 29.898 | 29.617 | 29. 789 | 29. 802 | | 3 | 29.939 | 29. 831 | 29.814 | 29.906 | 29. 768 | 29.759 | 29.846 | 29. 683 | 29. 738 | 29.893 | 29.610 | 29.785 | 29. 798 | | 4 1 | 29.940 | 29. 827 | 29.813 | 29.902 | 29.764 | 29. 761 | 29.842 | 29. 679 | 29. 736 | 29.892 | 29.603 | 29. 783 | 29. 795 | | 5 | 29.938 | 29.824 | 29.814 | 29.905 | 29.764 | 29.764 | 29.842 | 29. 680 | 29. 736 | 29.892 | 29. 599 | 29. 783 | 29. 795 | | 6 | 29.941 | 29. 819 | 29.820 | 29.912 | 29. 767 | 29.771 | 29.847 | 29. 682 | 29.743 | 29.896 | 29. 597 | 29. 785 | 29. 798 | | 7 | 29.948 | 29.820 | 29. 827 | 29.918 | 29.769 | 29.778 | 29.850 | 29. 686 | 29. 748 | 29.903 | 29. 599 | 29. 788 | 29.803 | | 8 | 29. 959 | 29. 822 | 29.832 | 29.923 | 29. 770 | 29. 781 | 29.851 | 29. 689 | 29. 753 | 29.910 | 29.604 | 29. 793 | 29.807 | | 9 | 29. 970 | 29. 819 | 29. 835 | 29.925 | 29.770 | 29.782 | 29.849 | 29. 690 | 29. 757 | 29. 917 | 29. 606 | 29. 800 | 29.810 | | 10 | 29.975 | 29.821 | 29. 837 | 29.923 | 29. 768 | 29. 779 | 29.848 | 29.689 | 29. 755 | 29.917 | 29.606 | 29.801 | 29.810 | | 11 | 29.971 | 29. 818 | 29.837 | 29.917 | 29. 765 | 29.779 | 29.845 | 29. 687 | 29. 749 | 29.915 | 29. 599 | 29. 795 | 29. 806 | | 12 | 29.963 | 29. 815 | 29. 832 | 29.910 | 29. 763 | 29.777 | 29. 842 | 29. 686 | 29.745 | 29.906 | 29. 587 | 29. 787 | 29.801 | | 13 | 29.952 | 29. 807 | 29.824 | 29.905 | 29. 759 | 29. 776 | 29.839 | 29. 684 | 29. 737 | 29.899 | 29. 580 | 29. 778 | 29. 795 | | 14 | 29.944 | 29.801 | 29.817 | 29.894 | 29.754 | 29.777 | 29.836 | 29. 681 | 29. 729 | 29.894 | 29. 573 | 29. 770 | 29. 789 | | 15 | 29.940 | 29.800 | 29.810 | 29. 884 | 29. 747 | 29. 776 | 29.833 | 29. 680 | 29.722 | 29.891 | 29.571 | 29.769 | 29. 785 | | 16 | 29.937 | 29. 801 | 29.809 | 29.879 | 29. 741 | 29.775 | 29.827 | 29.681 | 29.714 | 29. 893 | 29. 573 | 29. 773 | 29. 784 | | 17 | 29.932 | 29.807 | 29.814 | 29.878 | 29. 740 | 29.777 | 29.825 | 29.681 | 29.716 | 29. 895 | 29. 577 | 29.777 | 29. 785 | | 18 | 29.928 | 29.818 | 29.824 | 29.881 | 29. 741 | 29. 780 | 29.828 | 29. 685 | 29. 721 | 29.902 | 29. 585 | 29. 780 | 29. 789 | | 19 | 29.927 | 29. 825 | 29.833 | 29. 888 | 29. 748 | 29.786 | 29.834 | 29. 691 | 29. 733 | 29.906 | 29. 593 | 29. 785 | 29. 796 | | 20 | 29.924 | 29. 827 | 29.838 | 29.900 | 29. 758 | 29. 794 | 29.842 | 29. 698 | 29. 741 | 29.908 | 29. 600 | 29. 789 | 29. 802 | | 21 | 29.924 | 29.834 | 29.841 | 29.904 | 29. 764 | 29.804 | 29.853 | 29. 700 | 29. 747 | 29.909 | 29.607 | 29. 791 | 29. 806 | | 22 | 29. 922 | 29. 835 | 29.843 | 29.906 | 29. 768 | 29.807 | 29.856 | 29. 699 | 29. 751 | 29. 907 | 29.611 | 29.794 | 29. 808 | | 23 | 29.921 | 29.840 | 29.844 | 29.908 | 29.770 | 29.807 | 29.856 | 29. 695 | 29.755 | 29.904 | 29. 613 | 29. 797 | 29. 809 | | 24 | 29. 918 | 29. 846 | 29.843 | 29.907 | 29. 767 | 29. 803 | 29.853 | 29.689 | 29. 755 | 29.902 | 29.612 | 29. 796 | 29.808 | | 0 h-23 h | 29. 942 | 29. 822 | 29.826 | 29.904 | 29. 762 | 29. 779 | 29.844 | 29. 688 | 29. 740 | 29. 90 2 | 29.598 | 29. 786 | 29. 79 | | Means { 1h-24h | 29.941 | 29. 822 | 29. 827 | 29.904 | 29. 761 | 29. 780 | 29. 844 | 29. 687 | 29. 740 | 29.902 | 29. 598 | 29. 786 | 29. 79 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | TABLE XXI. - MONTHLY MEAN TEMPERATURE OF THE AIR, AT EVERY HOUR OF THE DAY AS DEDUCED FROM THE AUTOGRAPHIC RECORDS | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |---|---------|----------|-------|-------|-------|--------------------|-------|--------|-----------|---------|----------|----------|-----------------| | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | o ^h | 37. 5 | 41.9 | 37. 8 | 45.3 | 46. 4 | 52. 5 | 57.8 | 56.0 | 55.4 | 48.6 | 45.8 | 36. 2 | 46.8 | | i | 37. 3 | 41.8 | 37.6 | 44.6 | 45.8 | 51.8 | 56.7 | 55. 2 | 55.0 | 48. 3 | 45.8 | 36. 1 | 46. 3 | | 2 | 37. 1 | 41.7 | 37. 4 | 43.9 | 45.0 | 51. 2 | 56.0 | 54.7 | 54.7 | 47.9 | 45.5 | 35.9 | 459 | | 3 | 36.8 | 41.4 | 37. 1 | 43.3 | 44. 5 | 50.9 | 55. 4 | 54. 2 | 54. 2 | 47.8 | 45. 5 | 35.8 | 45.6 | | 4 | 36. 4 | 41. 1 | 36. 5 | 42.8 | 44.5 | 50 .8 | 55. 1 | 53.7 | 53. 8 | 47.6 | 45.3 | 35.4 | 45.3 | | 5 | 36. 3 | 41.4 | 36. 7 | 42.7 | 45.0 | 51.1 | 55.4 | 53.6 | 53. 8 | 47.8 | 45.0 | 35.4 | 45.3 | | 6 | 36. 4 | 41.6 | 36.8 | 42.9 | 46.7 | 52.6 | 57. 5 | 54.3 | 53. 9 | 47.9 | 45. 4 | 35.8 | 46.0 | | 7 | 36. 4 | 41.8 | 37. 4 | 45.0 | 48.9 | 54.8 | 60.4 | 56.6 | 54.8 | 48. 3 | 45.8 | 36. 1 | 47. 2 | | 8 | 36. 3 | 42. 1 | 39. 1 | 48.4 | 51.0 | 57. 1 | 63. 3 | 59. 2 | 56. 9 | 49.6 | 46. 3 | 36. 4 | 48. 8 | | 9 | 36. 7 | 43. 2 | 41. 2 | 52.1 | 53.4 | 59.6 | 65. 8 | 61.9 | 59. 2 | 51. 3 | 47. 2 | 37.0 | 50.7 | | 10 | 37.8 | 44. 2 | 43. 4 | 55.3 | 54.9 | 61. 2 | 67.9 | 63.7 | 61.0 | 53.0 | 48.5 | 38.0 | 52.4 | | 11 | 39. 2 | 45.6 | 45.0 | 57.1 | 55. 9 | 61.8 | 69. 2 | 64. 4 | 62. 1 | 54. 4 | 49.4 | 39.0 | 53.6 | | 12 | 40.3 | 46.6 | 46.0 | 58.4 | 57.0 | 62. 5 | 70.2 | 64.9 | 63. 0 | 55. 4 | 50.3 | 40.0 | 54.5 | | 13 | 40.8 | 47.5 | 46. 7 | 59.4 | 57.9 | 63. 1 | 71.3 | 66. 1 | 63. 2 | 55. 9 | 50.7 | 40.6 | 55. 3 | | 14 | 41. 1 | 47.4 | 47. 3 | 60.0 | 58.9 | 63. 8 | 71.8 | 67.0 | 63. 1 | 55.8 | 50.6 | 40.6 | 55.6 | | 15 | 40.3 | 47.1 | 47. 2 | 60.0 | 58.8 | 63.9 | 71.1 | 67.1 | 63.0 | 55. 2 | 50.1 | 40.0 | 55. 3 | | 16 | 39.7 | 46.6 | 46.6 | 59.4 | 58. 5 | 63. 2 | 70.9 | 66. 5 | 62. 1 | 54. 1 | 49.5 | 39.4 | 54.7 | | 17 | 39.0 | 45.9 | 45. 3 | 58.3 | 57.7 | 61. 9 | 70.1 | 65.5 | 61. 2 | 53. 1 | 48.6 | 38.9 | 53.8 | | 18 | 38.4 | 45.0 | 43.7 | 56. 1 | 56.5 | 60.5 | 68. 8 | 63.9 | 59.6 | 51.9 | 48. 1 | 38. 4 | 52.6 | | 19 | 38. 1 | 44.3 | 42.0 | 53.6 | 54.2 | 58.7 | 66. 6 | 61.7 | 57. 7 | 51.0 | 47.7 | 37. 7 | 51. 1 | | 20 | 38. 2 | 43.6 | 40.9 | 51. 2 | 52.0 | 57. 1 | 64. 2 | 59.8 | 56.9 | 50.2 | 47.0 | 37. 1 | 49.9 | | 21 | 38. 3 | 42.7 | 40.0 | 49.5 | 49.9 | 55. 5 | 62. 1 | 58. 4 | 56. 2 | 49.6 | 46. 5 | 36.6 | 48.8 | | 22 | 38. 3 | 42. 1 | 39. 2 | 48. 2 | 48.4 | 54.6 | 60.3 | 57.6 | 55.9 | 49. 1 | 46. 2 | 36. 4 | 48.0 | | 23 | 38. 2 | 41.4 | 38. 6 | 46.9 | 47.1 | 53.8 | 58. 8 | 56.7 | 55. 6 | 48.6 | 46.1 | 36. 1 | 47. 3 | | 24 | 38. 1 | 41. 2 | 38. 2 | 45. 5 | 46.4 | 52.9 | 57. 6 | 56.0 | 55.4 | 48. 2 | 45. 8 | 35.9 | 46. 8 | | ∫ 0 ^h -23 ^h | 38. 1 | 43. 7 | 41. 2 | 51.0 | 51.6 | 57. 2 [.] | 63. 6 | 60. 1 | 58. 0 | 50.9 | 47. 4 | 37. 5 | 50.0 | | Means $\left\{\frac{1^{h-24}h}{1^{h-24}}\right\}$ | 38. 1 | 43. 6 | 41. 2 | 51.0 | 51.6 | 57. 3 | 63. 6 | 60.1 | 58. 0 | 50.9 | 47. 4 | 37. 4 | 50.0 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | TABLE XXII. - MONTHLY MEAN TEMPERATURE OF EVAPORATION AT EVERY HOUR OF THE DAY, AS DEDUCED FROM THE AUTOGRAPHIC RECORDS | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |---|---------|----------|-------|-------|-------|-------|-------|--------|-----------|---------|----------|----------|-----------------| | | 0 | 0 | 0 | • | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | o h | 36. 1 | 40.0 | 36. 4 | 43.3 | 45.0 |
50.8 | 55. 5 | 54. 1 | 53.8 | 46. 9 | 44. 5 | 35.1 | 45.1 | | 1 | 36.0 | 40.0 | 36. 3 | 42. 7 | 44. 6 | 50.5 | 54.9 | 53.7 | 53. 5 | 46.7 | 44.5 | 35.0 | 44.9 | | 2 | 35. 7 | 39.9 | 36. 1 | 42.3 | 44. 2 | 50.4 | 54.5 | 53.4 | 53. 3 | 46.5 | 44.4 | 35.0 | 44.6 | | . 3 | 35.5 | 39.9 | 35.8 | 42. 1 | 43.9 | 50. 2 | 54. 2 | 53. 1 | 53.0 | 46.5 | 44.3 | 34. 8 | 44. 4 | | 4 | 35. 1 | 39.7 | 35.5 | 41.8 | 43.7 | 49.8 | 53. 8 | 52.9 | 52.8 | 46.6 | 44. 1 | 34.6 | 44. 2 | | 5 | 35.0 | 39.8 | 35. 4 | 41.2 | 43.9 | 49.9 | 53.9 | 52. 7 | 52.6 | 46. 4 | 44.0 | 34. 7 | 44.1 | | 6 | 34. 9 | 39.9 | 35. 2 | 41.1 | 45. 1 | 50.8 | 55.4 | 53.0 | 52.6 | 46. 2 | 44. 2 | 34. 8 | 44.4 | | 7 | 34.8 | 40.0 | 35. 7 | 42. 7 | 46.5 | 52. 1 | 57.0 | 54. 5 | 53. 3 | 46. 5 | 44. 2 | 34. 9 | 45. 2 | | 8 | 34. 7 | 40.3 | 37. 0 | 45.0 | 47.7 | 53.3 | 58. 4 | 56.0 | 55.0 | 47. 4 | 44.6 | 35. 1 | 46. 2 | | 9 | 35. Ź | 41.2 | 38. 6 | 47.3 | 49.1 | 54. 4 | 59.4 | 57. 3 | 56. 1 | 48.5 | 45.3 | 35. 7 | 47.3 | | 10 | 36.0 | 41.8 | 39.9 | 49.0 | 50.1 | 55.0 | 60.5 | 58. 2 | 57. 1 | 49.5 | 46. 1 | 36. 5 | 48.3 | | 11 | 36.9 | 42.5 | 40.9 | 49.8 | 50.5 | 55. 2 | 61. 1 | 58.5 | 57. 5 | 50. 1 | 46. 7 | 37. 2 | 48.9 | | 12 | 37. 5 | 42.9 | 41. 4 | 50.1 | 51.1 | 55.3 | 61.4 | 58.6 | 57.7 | 50.6 | 47. 2 | 37. 8 | 49.3 | | 13 | 37. 9 | 43. 2 | 41.7 | 50.4 | 51.6 | 55.8 | 61.8 | 59.1 | 57.7 | 50.8 | 47.5 | 38. 3 | 49.7 | | 14 | 38.0 | 43.3 | 42.0 | 50.6 | 52.0 | 56. 2 | 62. 2 | 59.4 | 57.7 | 50.7 | 47. 4 | 38. 3 | 49.8 | | 15 | 37.6 | 43.1 | 41.9 | 50.7 | 51.8 | 56.0 | 61.7 | 59. 1 | 57.8 | 50.2 | 47. 1 | 37.8 | 49.6 | | 16 | 37. 3 | 42.7 | 41.6 | 50.4 | 51.7 | 55.5 | 61.5 | 58. 8 | 57. 4 | 49.5 | 46.7 | 37. 4 | 49.2 | | 17 | 36.8 | 42.3 | 41.0 | 49.9 | 51.1 | 55. 2 | 61.1 | 58. 4 | 56.7 | 49. 1 | 46. 2 | 37.0 | 48. 7 | | 18 | 36. 6 | 41.7 | 40.1 | 49. 1 | 50.5 | 54.7 | 60.5 | 57.8 | 55.9 | 48. 5 | 46.0 | 36. 7 | 48. 2 | | 19 | 36. 5 | 41.3 | 39. 2 | 48. 2 | 49.4 | 54. 1 | 59. 5 | 57.0 | 54. 9 | 48. 1 | 45.8 | 36. 2 | 47.5 | | 20 | 36. 6 | 40.9 | 38. 6 | 47.1 | 48. 4 | 53.3 | 58.4 | 56.0 | 54. 5 | 47.6 | 45.4 | 35.8 | 46.9 | | 21 | 36.8 | 40.4 | 38. 0 | 46.0 | 47.3 | 52. 5 | 57. 5 | 55.5 | 54. 2 | 47.3 | 45.0 | 35. 5 | 46. 3 | | 22 | 36. 8 | 39.9 | 37. 6 | 45.0 | 46. 4 | 52. 1 | 56.7 | 55.0 | 54.0 | 46. 9 | 44.8 | 35. 3 | 45.9 | | 23 | 36. 7 | 39.4 | 37. 1 | 44. 3 | 45.5 | 51.7 | 55.9 | 54. 5 | 53.8 | 46. 7 | 44.6 | 35.0 | 45.4 | | 24 | 36. 7 | 39.2 | 36. 8 | 43.5 | 44. 9 | 51. 3 | 55.3 | 54. 1 | 53. 8 | 46. 5 | 44. 4 | 34. 8 | 45. 1 | | 0h-23h | 36. 3 | 41.1 | 38. 5 | 46. 3 | 48.0 | 53. 1 | 58. 2 | 56. 1 | 55. 1 | 48. 1 | 45. 4 | 36. 0 | 46. 8 | | Means $\left\{\frac{1^{h}-24^{h}}{1^{h}}\right\}$ | 36. 3 | 41. 1 | 38. 5 | 46. 3 | 48. 0 | 53. 1 | 58. 2 | 56. 1 | 55. 1 | 48.0 | 45.4 | 36.0 | 46. 8 | | No. of Days
Employed | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | TABLE XXIII. - MONTHLY MEAN TEMPERATURE OF THE DEW POINT AT EVERY HOUR OF THE DAY, AS DEDUCED FROM THE CORRESPONDING AIR AND EVAPORATION TEMPERATURES | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |--|---------|----------|-------|-------|-------|-------|-------|--------|--------------|---------|----------|----------|-----------------| | | 0 | | • | 0 | ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | o ^h | 33.9 | 37.3 | 34. 3 | 40.7 | 43.3 | 49.1 | 53.6 | 52. 5 | 52.4 | 45.0 | 42.9 | 33. 1 | 43.2 | | 1 | 33.9 | 37.5 | 34. 3 | 40.2 | 43. 1 | 49.3 | 53. 4 | 52. 4 | 52. 2 | 44.9 | 42. 9 | 33.0 | 43.1 | | · 2 | 33.5 | 37.4 | 34.0 | 40.3 | 43. 3 | 49.6 | 53. 2 | 52. 3 | 52. 1 | 44.9 | 43. 1 | 33.4 | 43.1 | | 3 | 33. 4 | 37.9 | 33.7 | 40.5 | 43.3 | 49.5 | 53. 2 | 52. 2 | 52.0 | 45.0 | 42.9 | 33.0 | 43. 1 | | 4 | 32. 9 | 37.8 | 33.7 | 40.5 | 42.8 | 48.8 | 52. 7 | 52. 2 | 52.0 | 45.4 | 42.8 | 33. 2 | 42.9 | | 5 | 32.8 | 37.6 | 33. 3 | 39.1 | 42.6 | 48.7 | 52.6 | 51.9 | 51.5 | 44.8 | 42.9 | 33.4 | 42.6 | | 6 | 32.4 | 37.5 | 32. 6 | 38. 5 | 43. 2 | 49. 1 | 53.6 | 51.9 | 51.4 | 44. 3 | 42.7 | 33.0 | 42.5 | | 7 | 32. 1 | 37. 5 | 33.0 | 39.6 | 43.8 | 49.6 | 54. 2 | 52.8 | 52.0 | 44.5 | 42. 2 | 32. 8 | 42.8 | | 8 | 32.0 | 37.8 | 33. 7 | 40.8 | 44.0 | 49.7 | 54.5 | 53. 4 | 53.5 | 45.0 | 42.5 | 32. 9 | 43.3 | | 9 | 32.8 | 38.4 | 34.5 | 41.8 | 44. 5 | 49.6 | 54. 5 | 53.6 | 53.6 | 45.5 | 43. 1 | 33.6 | 43.8 | | 10 | 33. 2 | 38.6 | 34.7 | 41.9 | 45. 1 | 49.4 | 54.9 | 53.8 | 53.9 | 45.8 | 43.4 | 34.3 | 44. 1 | | 11 | 33. 2 | 38.3 | 34.8 | 41.7 | 44.9 | 49. 1 | 55. 1 | 53.8 | 53.8 | 45.7 | 43.6 | 34. 5 | 44.0 | | 12 | 32.9 | 38.1 | 34. 7 | 40.9 | 45.0 | 48.7 | 54.8 | 53.6 | 53.4 | 45.7 | 43.6 | 34. 4 | 43.8 | | 13 | 33. 2 | 37.5 | 34. 3 | 40.3 | 45. 2 | 49.3 | 54. 7 | 53. 5 | 53. 2 | 45.5 | 44.0 | 34. 8 | 43.8 | | 14 | 33.0 | 37.9 | 34. 3 | 40.0 | 44.9 | 49.5 | 55. 1 | 53. 4 | 53. 3 | 45. 4 | 43.9 | 34.8 | 43.8 | | 15 | 33. 3 | 37.9 | 34. 2 | 40.3 | 44.5 | 49.0 | 54.7 | 52. 7 | 53.6 | 45.0 | 43.6 | 34. 4 | 43.6 | | 16 | 33. 5 | 37.5 | 34. 2 | 40.3 | 44.7 | 48. 5 | 54. 4 | 52.6 | 53.6 | 44.7 | 43.5 | 34. 3 | 43.5 | | 17 | 33. 3 | 37.4 | 34. 7 | 40.4 | 44. 2 | 49.0 | 54.3 | 52.6 | 53.0 | 44.9 | 43.5 | 34. 1 | 43.5 | | 18 | 33.8 | 37.0 | 34.7 | 41.1 | 44.1 | 49.5 | 54. 1 | 52.8 | 52.8 | 44.9 | 43.6 | 34.1 | 43.5 | | 19 | 34. 1 | 37.1 | 34. 9 | 42.0 | 44. 3 | 49.9 | 54.0 | 53. 1 | 52. 5 | 45.0 | 43.6 | 33. 9 | 43.7 | | 20 | 34. 2 | 37.1 | 35. 1 | 42.4 | 44. 5 | 49. 7 | 53.8 | 52.8 | 52.5 | 44.7 | 43.5 | 33.7 | 43.7 | | 21 | 34.6 | 37.0 | 35.0 | 41.8 | 44. 4 | 49.7 | 53.8 | 53.0 | 52.6 | 44.8 | 43.2 | 33. 6 | 43.6 | | 22 | 34. 6 | 36.7 | 35. 3 | 41.0 | 44. 2 | 49.8 | 53. 7 | 52.8 | 52. 4 | 44. 5 | 43.1 | 33. 4 | 43.5 | | 23 | 34.5 | 36.5 | 34.9 | 41. 2 | 43.6 | 49.7 | 53. 5 | 52. 7 | 52. 2 | 44.6 | 42. 7 | 33.0 | 43.3 | | 24 | 34. 6 | 36. 3 | 34. 7 | 40.9 | 43. 1 | 49.7 | 53. 4 | 52. 5 | 52. 4 | 44. 6 | 42.6 | 32. 8 | 43. 1 | | $\text{Means} \left\{ \begin{array}{l} 0^{\text{h}-23^{\text{h}}} \\ 1^{\text{h}-24^{\text{h}}} \end{array} \right.$ | 33. 4 | 37.6 | 34. 3 | 40.7 | 44. 1 | 49. 3 | 54.0 | 52. 8 | 52. 7 | 45.0 | 43. 2 | 33.7 | 43.4 | | Means $\left\{\frac{1^{h}-24^{h}}{1^{h}-24^{h}}\right\}$ | 33.4 | 37.5 | 34. 3 | 40.7 | 44. 1 | 49.3 | 54.0 | 52.8 | 52. 7 | 45.0 | 43. 2 | 33.7 | 43. 4 | TABLE XXIV. - MONTHLY MEAN DEGREE OF HUMIDITY (SATURATION = 100) AT EVERY HOUR OF THE DAY, AS DEDUCED FROM THE CORRESPONDING AIR AND EVAPORATION TEMPERATURES | Hour,
Universal Time | January | February | March | April | May | June | July | August | September | October | November | December | Yearly
Means | |-------------------------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|-----------------| | o h | 87 | 83 | 87 | 84 | 89 | 88 | 85 | 87 | 90 | 87 | 90 | 89 | 87 | | 1 | 88 | 84 | 88 | 85 | 91 | 91 | 88 | 90 | 91 | 88 | 90 | 89 | | | 2 | 87 | 84 | 88 | 87 | 93 | 94 | 91 | 91 | 91 | 89 | 91 | 91 | 89
90
91 | | 3 | 87 | 87 | 88 | 90 | 95 | 95 | 92 | 93 | 92 | 90 | 91 | 90 | 01 | | 4 | 87 | 88 | 90 | 91 | 93 | 93 | 91 | 95 | 93 | 92 | 91 | 92 | 91 | | 5 | 87 | 86 | 87 | 87 | 91 | 91 | 90 | 94 | 92 | 89 | 92 | 93 | 90 | | 6 | 85 | 85 | 84 | 84 | 87 | 87 | 87 | 91 | 91 | 87 | 91 | 90 | 87 | | 7 | 84 | 84 | 83 | 81 | 82 | 82 | 80 | 87 | 90 | 86 | 87 | 88 | 84 | | 8 | 84 | 84 | 81 | 74 | 77 | 77 | 73 | 81 | 88 | 84 | 87 | 87 | 81 | | 9 | 85 | 84 | 78 | 68 | 71 | 70 | 67 | 74 | 81 | 81 | 85 | 87 | 78 | | 10 | 83 | 80 | 71 | 61 | 69 | 65 | 63 | 70 | 77 | 77 | 82 | 86 | 74 | | 11 | 79 | 76 | 67 | 56 | 66 | 64 | 61 | 69 | 74 | 72 | 80 | 83 | 71 | | 12 | 75 | 71 | 65 | 52 | 64 | 61 | 58 | 67 | 71 | 70 | 78 | 80 | 68 | | 13 | 7.4 | 68 | 62 | 48 | 62 | 61 | 56 | 64 | 70 | 68 | 77 | 79 | 66 | | 14 | 73 | 69 | 60 | 47 | 60 | 60 | 56 | 61 | 71 | 68 | 77 | 79 | 65 | | 15 | 76 | 70 | 60 | 48 | 59 | 58 | 56 | 60 | 71 | 69 | 79 | 80 | 66 | | 16 | 78 | 70 | 62 | 49 | 60 | 59 | 56 | 61 | 73 | 70 | 80 | 82 | 67 | | 17 | 79 | 72 | 66 | 51 | 61 | 63 | 57 | 63 | 74 | 74 | 82 | 82 | 69 | | 18 | 83 | 74 | 71 | 57 | 63 | 67 | 60 | 67 | 78 | 77 | 84 | 84 | 72 | | 19 | 85 | 75 | 76 | 65 | 69 | 72 | 64 | 73 | 83 | 80 | 85 | 86 | 76 | | 20 | 85 | 78 | 79 | 72 | 75 | 77 | 69 | . 78 | 85 | 81 | 87 | 88 | 79 | | 21 | 86 | 80 | 82 | 75 | 81 | 81 | 74 | 83 | 87 | 83 | 88 | . 89 | 82 | | 22 | 86 | 81 | 86 | 76 | 85 | 84 | 79 | 84 | - 87 | 84 | 89 | 89 | 84 | | 23 | 86 | 83 | 86 | 80 | 88 | 86 | 83 | 86 | 88 | 86 | 88 | 89 | 86 | | 24 | 87 | 83 | 87 | 84 | 88 | 89 | 85 | 87 | 90 | 87 | 89 | 89 | 87 | | ∫ 0 h_23 h | 83 | 79 | 77 | 69 | 76 | 76 | 72 | 78 | 83 | 81 | 85 | 86 | 79 | | Means { 1h_24h | 83 | 79 | 77 | 69 | 76 | 76 | 72 | 78 | 83 | 81 | 85 | 86 | 79 | TABLE XXV. - TOTAL AMOUNT OF SUNSHINE REGISTERED IN EACH HOUR OF THE DAY IN EACH MONTH, AS DERIVED FROM THE RECORDS OF THE CAMPBELL-STOKES SELF-REGISTERING INSTRUMENT FOR THE YEAR 1946 | Month | | | | Ι | Reg1ste | red du | retion | of Su | nshine | in th | e Hour | endin | g : – | | | | Total
Registered
Duration | Corre-
sponding
aggregate
Period | Pro-
portion | Altitude of
Sun at Noon | |-----------------|------|----------------|-------|-------|---------|--------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|------|------------------------------------|--|-----------------|----------------------------| | 1946 | 5 h | 6 ^h | 7 h | 8 h | 9 h | 10 h | 11 ^h | Noon | 13 ^h | 14 ^h | 15 ^h | 16 ^h | 17 ^h | 18 ^h | 19 h | 20 h | of
Sunshine
in each
Month | during which the Sun was above the Horizon | of
Sunshine | Mean Alt
the Sun | | | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | - | 0 | | January
| } | | | | 0.7 | 5. 1 | 6. 2 | 10. 2 | 10.0 | 10.5 | 7. 2 | 0.7 | | | | | 50.6 | 260.7 | 0.194 | 18 | | February | | | | 1.0 | 4. 1 | 4.4 | 7.8 | 8.3 | 8.9 | 7.9 | 5.4 | 3. 1 | 0.2 | | l | | 51.1 | 278.5 | 0. 183 | 26 | | March | 1 | 1 | 1.0 | 3. 2 | 6.9 | 6.5 | 8.0 | 9.4 | 9.4 | 10.2 | 9.7 | 7.9 | 4.8 | | | | 77.0 | 367.5 | 0.210 | 37 | | April | 1 | 1. 2 | 6.9 | 14. 5 | 18. 4 | 18.9 | 18. 7 | 19. 1 | 19. 2 | 19. 2 | 16. 7 | 17. 2 | 15.5 | 6.9 | 1. 2 | | 193.6 | 415. 1 | 0.466 | 48 | | May | 0.5 | 4.8 | 8. 1 | 11.4 | 12.7 | 11.3 | 9.9 | 12. 4 | 14.9 | 17.6 | 17.5 | 16. 6 | 14. 6 | 14.9 | 11.3 | 0.7 | 179. 2 | 483. 5 | 0.371 | 57 | | June | 2.0 | 8. 2 | 9.4 | 12.3 | 15.3 | 13. 5 | 11.5 | 13. 5 | 11.5 | 13.6 | 13. 2 | 12. 4 | 11. 5 | 9. 1 | | 1. 2 | 163. 3 | 496. 2 | 0.329 | 62 | | July | 2. 8 | 9.3 | 12.9 | 16.0 | 17. 1 | 19.4 | 17. 2 | 17.6 | 17. 4 | 15.6 | 13.8 | 16. 4 | 15. 2 | 14. 2 | 11.7 | 1.5 | 218. 1 | 500.1 | 0.436 | 60 | | August | 0. 1 | 4.2 | 10.9 | 12.6 | 13.5 | 14.5 | 10.6 | 11.0 | 12. 3 | 15. 1 | 14.9 | 12. 4 | 11.7 | 9. 2 | 4. 1 | 1 | 157.1 | 452.6 | 0.347 | 52 | | September | 1 | 0.1 | 5. 1 | 8.5 | 10.4 | 10.4 | 12. 1 | 11.7 | 8.9 | 7.1 | 9.9 | 8. 1 | 7.0 | 3.5 | 0.1 | | 102.9 | 380.5 | 0. 270 | 41 | | October | | | | 2.4 | 6.3 | 7.4 | 9.5 | 11.7 | 10.7 | 9. 2 | 7.8 | 5.4 | 2.6 | 1 | | | 73.0 | 332. 2 | 0.220 | 30 | | November | ļ | | l | 0.2 | 3.5 | 5.5 | 6. 2 | 7. 1 | 5.9 | 5.4 | 3. 2 | 1.8 | 0.2 | | | ł | 39.0 | 267.7 | 0.146 | 20 | | December | | | | | 0.8 | 2. 5 | 5. 2 | 5.9 | 5. 1 | 5.5 | 1.7 | | | | | | 26. 7 | 245.7 | 0. 109 | 16 | | For the
Year | 5. 4 | 27. 8 | 54. 3 | 82. 1 | 109. 7 | 119. 4 | 112.9 | 137. 9 | 134. 2 | 136.9 | 121.0 | 10 2. 0 | 83. 3 | 57. 8 | 33. 5 | 3. 4 | 1331. 6 | 4480.3 | 0. 297 | | The hours are reckoned from "Apparent" midnight. TABLE XXVI. - READINGS OF THE THERMOMETERS IN THE STEVENSON SCREEN IN THE CHRISTIE ENCLOSURE (The readings of the maximum and minimum thermometers apply to the 24 hours ending 21h) | | | | (The | e read | ings c | f the | maxim | um and | mini | num th | ermomet | ters a | pply t | o the | 24 hor | urs en | ding 2 | 21") | | | | |---------------|----------------|----------------|----------------|--------------------|------------------|-----------------|----------------|-----------------|-------------------|-----------------|---------------|----------------|----------------|----------------|-------------------|-----------------|-----------------|----------------|--|-------------------|-----------------| | Day
of the | , | | | ermomet
the Gro | | | | | ermomet
the Gr | | Day
of the | | | | ermomet
the Gr | | | | | ermomet
the Gr | • | | Month | Maxi-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | Month | Maxi- | Mini-
mam | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | | | | | | | JANUARY | | | | | | | | | | | MARCH | <u></u> | | <u>' </u> | | | | 1 | 34.0 | 27.7 | 29°.0 | 32.6 | 33.4 | 32.8 | 28.6 | 30. 8 | 31.4 | 30. 8 | 1 | 37. 2 | 28.7 | 31.7 | 34. 2 | 37. 1 | 34.0 | 31. 2 | 31.9 | 33.6 | 31.6 | | 2 | 32.9 | 31. 2 | 32.6 | 32.7 | 32.6 | 32. 5 | 31. 3 | 30.2 | 30.2 | 30.5 | 2 | 35.0 | 31.8 | 34. 6 | 33. 1 | 33.6 | 31.8 | 31.5 | 32. 3 | 32. 6 | 31. 3 | | 3 | 34. 1
40. 0 | 23. 3
23. 3 | 25. 0
28. 6 | 31. 6
38. 4 | 31. 6
39. 4 | 24. 0
38. 0 | 23. 7
27. 8 | 29. 2
35. 2 | 29.6
34.9 | 23. 6
35. 0 | 3
4 | 36.8
35.0 | 30.8
27.9 | 33. 3
33. 1 | 34. 8
32. 7 | 36. 0
34. 7 | 30.8
35.0 | 31. 7
31. 8 | 33. 6
32. 1 | 34. 6
34. 3 | 30.0
34.5 | | 5 | 48. 4 | 36.8 | 45.6 | 48. 1 | 48. 3 | 46. 4 | 42. 9 | 44. 5 | 44. 8 | 43.4 | 5 | 37.8 | 34. 5 | 36. 6 | 37.8 | 36.4 | 34. 5 | 36. 1 | 37.0 | 35.9 | 34.0 | | 6 | 48.9
46.5 | 42. 3
33. 4 | 44. 3
34. 4 | 48. 1
44. 5 | 47. 5
44. 4 | 44. 2
42. 0 | 42.9
34.1 | 45. 3
41. 1 | 45. 3
40. 8 | 42. 6
40. 8 | 6
7 | 35. 4
37. 8 | 32. 5
33. 5 | 34. 6
34. 5 | 35. 2
35. 9 | 34. 6
37. 5 | 34. 0
34. 5 | 32. 4
31. 7 | 33. 3
32. 3 | 33. 0
32. 0 | 32. 2
32. 5 | | 8 | 47.9 | 40.4 | 45. 4 | 47.8 | 47.6 | 47.0 | 44. 4 | 45. 1 | 44. 2 | 46.0 | 8 | 35. 0 | 27. 3 | 32.8 | 34.6 | 34.6 | 32. 5 | 29. 3 | 30.6 | 30. 1 | 30.0 | | 9
10 | 50.9
53.5 | 47.0
46.3 | 48.0
47.6 | 49. 6
50. 7 | 50.7
52.7 | 50.9
53.5 | 46.7
44.6 | 47.3
47.0 | 48. 1
48. 8 | 49.5
52.3 | 9
10 | 37. 4
44. 0 | 28. 7
23. 5 | 33. 6
33. 6 | 36. 6
40. 5 | 37. 2
43. 7 | 33. 2
30. 0 | 31. 3
32. 1 | 31. 7
35. 3 | 31.6
37.7 | 31. 2
28. 8 | | 11 | 55. 5 | 52.8 | 53.4 | 55. 5 | 53.9 | 52. 8 | 52.7 | 53.6 | 52. 3 | 51. 3 | 11 | 42. 2 | 28.6 | 35. 6 | 40.2 | 41.7 | 36. 6 | 33.6 | 37.9 | 38. 6 | 35. 2 | | 12
13 | 52. 8
43. 6 | 43.0
34.2 | 44. 4
42. 2 | 47. 1
42. 0 | 47. 5
41. 4 | 43. 6
34. 2 | 42. 1
39. 9 | 42. 5
38. 2 | 43. 0
37. 4 | 41. 0
32. 0 | 12
13 | 49.9
42.7 | 35. 6
37. 3 | 37. 8
41. 2 | 47.7 | 49. 4
40. 0 | 42. 7
37. 4 | 36. 4
39. 7 | 42. 6
39. 7 | 43. 4
38. 7 | 41.0
35.8 | | 14 | 38. 3 | 31. 1 | 35.0 | 38. 1 | 35.7 | 35.0 | 31.7 | 33.0 | 31. 2 | 32.0 | 14 | 39.1 | 35.3 | 36.6 | 38.9 | 38. 4 | 36. 5 | 34.9 | 36.3 | 36. 2 | 34. 3 | | 15
16 | 37. 2
38. 8 | 31. 3
39. 5 | 31. 9
36. 1 | 36. 6
38. 0 | 35.6
35.7 | 32. 1
34. 5 | 29. 6
33. 4 | 32. 3
34. 4 | 31. 5
32. 6 | 29. 8
32. 5 | 15
16 | 39. 1
35. 0 | 33. 4
31. 5 | 36. 9
33. 0 | 38. 2
34. 3 | 37. 6
35. 0 | 33. 4
31. 5 | 34. 7
29. 9 | 35. 2
31. 6 | 33. 7 | 30.8
29.5 | | 17 | 34. 5 | 28.3 | 30.0 | 33. 1 | 33.3 | 31.0 | 28.7 | 29. 5 | 30. 1 | 29.5 | 17 | 44.0 | 27.0 | 38.4 | 43. 2 | 43.0 | 39.8 | 33.7 | 37.9 | 39.0 | 37.4 | | 18
19 | 32. 6
38. 2 | 26. 9
27. 7 | 28. 0
28. 8 | 29. 2
35. 1 | 32. 2
35. 0 | 30.8
29.0 | 26. 7
28. 1 | 26. 5
31. 3 | 29. 0
32. 2 | 29.0
27.8 | 18
19 | 55. 5
59. 0 | 39.8
46.3 | 48. 9
51. 2 | 52. 4
57. 4 | 53. 2
57. 1 | 50.0
47.0 | 46.9
46.9 | 50.1 | 50. 1
48. 8 | 48. 0
43. 2 | | 20 | 38. 2
29. 0 | 20.5 | 28.8 | 26. 7 | 27.7 | 25.0 | 21.8 | 26. 4 | 27. 1 | 24.7 | 20 | 61. 1 | 40.7 | 51. 1 | 58. 2 | 59.1 | 50. 7 | 45.8 | 49. 2 | 48.7 | 46.0 | | 21 | 31.0 | 22.7 | 25. 5 | 29. 2 | 30.6 | 30.6 | 24.7 | 28. 1
33. 6 | 29. 8
34. 1 | 29. 8
32. 0 | 21
22 | 58. 1
52. 9 | 47. 2
44. 0 | 50.3
49.9 | 54. 1
48. 6 | 56. 4
47. 6 | 48.0
44.0 | 46. 4
48. 9 | 47.7 | 48. 4 | 46. 8
42. 2 | | 22
23 | 35.0
36.6 | 29.4
31.6 | 31.6
33.8 | 34. 5
35. 9 | 35.0
36.0 | 32. 8
31. 6 | 31. 2
32. 5 | 33.9 | 33.7 | 30.6 | 23 | 56.6 | 39.0 | 48.6 | 54. 5 | 56. 2 | 44. 4 | 44.7 | 45.8 | 46. 2 | 42. 2 | | 24 | 41.4 | 31.6 | 34.6 | 37. 8 | 39. 2 | 35. 5 | 32.8 | 35. 2 | 36. 2 | 34. 2 | 24 | 51. 3
59. 4 | 40. 3
32. 8 | 47. 0
45. 0 | 50.6 | 50.0
58.6 | 43. 4
44. 4 | 44. 3
42. 5 | 46. 0
45. 5 | 46. 5 | 42. 2
41. 4 | | 25
26 | 43. 1
42. 6 | 34.6
39.2 | 41.7 | 43.0
42.2 | 42.6
40.5 | 41. 8
39. 2 | 40.7
40.9 | 41. 8
41. 1 | 41.6 | 41. 0
38. 6 | 25
26 | 63.3 | 33.9 | 48. 5 | 59.4 | 63.3 | 47. 5 | 45. 1 | 49.6 | 50.3 | 44.0 | | 27 | 42.9 | 31.5 | 34. 4 | 39. 4 | 41.4 | 33.6 | 34. 3 | 38. 4 | 39.0 | 32.6 | 27 | 64.0 | 36. 3 | 46.7 | 60.6 | 63.6 | 46. 2 | 43. 2 | 51. 2 | 53. 3 | 42.7 | | 28
29 | 49. 8
52. 2 | 33.6
40.8 | 41. 2
42. 2 | 48. 7
45. 4 | 47.8
44.2 | 46. 0
52. 2 | 39.9
38.0 | 45. 5
40. 4 | 45. 3
41. 0 | 45.6 | 28
29 | 62.7 | 37. 8
43. 2 | 49.3 | 59.9
63.6 | 61. 3
63. 7 | 47.7
47.0 | 46. 4
46. 0 | 53. 4
55. 6 | 54. 3
55. 8 | 45. 2
45. 5 | | 30 | 53.0 | 36.8 | 40.0 | 40.9 | 40.0 | 36.8 | 37. 4 | 39. 1 | 37. 3 | 33. 7 | 30 | 61.5 | 40.6 | 43. 4 | 55. 2 | 60.8 | 48.0 | 43.0 | 51.5 | 53.6 | 46. 0
41. 5 | | 31 | 48. 2 | 34.7 | 38.6 | 46. 2 | 45. 7 | 48. 2 | 36.0 | 41. 7 | 44.6 | 47.6 | 31 | 60.3 | 40.0 | 50.8 | 58.8 | 60.3 | 44.0 | 44.9 | 50.4 | 51.6 | | | Means | 42. 4 | 33.7 | 36. 7 | 40. 3 | 40. 3
EBRUARY | 38. 3 | 35. 2 | 37. 5 | 37.6 | 36.8 | Means | 48. 2 | 35. 2 | 41. 2 | 46. 0 | 47.2 | 40.0 | 38. 6 | 41.4 | 41.9 | 38.0 | | | | | | · | , | | | 0 | Γ. | T . | | .0. | T . | 48.°0 | 60.°2 | 62.0 | 48.°0 | 44.°0 | 50°4 | 48.°7 | 41.6 | | 1 2 | 53.9
50.5 | 44.0
40.9 | 48.2
45.7 | 51.7
49.8 | 45.°1
47. 3 | 46.0
44.7 | 46.°3
43. 2 | 46.°5
44.6 | 43.°6
44. 3 | 43.°2
42. 4 | 1 2 | 62.4
68.0 | 37.°3
40.8 | 48.0
52.8 | 60.2 | 62.0 | 50.0 | 44.0 | 53.7 | 53.0 | 47.0 | | 3 | 53.6 | 44. 5 | 46.6 | 52. 2 | 53.0 | 52. 0 | 45.6 | 51. 2 | 52.0 | 48. 8 | 3 | 76.8 | 44. 1 | 59.9 | 76. 5 | 76.6 | 55.8 | 53.2 | 58. 7 | 56. 7 | 50.0 | | 4 5 | 52. 0
51. 9 | 40.1
41.7 | 47.7
44.0 | 47.0
49.4 | 49. 2
50. 5 | 42. 3
43. 0 | 44. 9
41. 3 | 44. 8
44. 4 | 43. 8
43. 7 | 39.3
41.0 | 4 5 | 79.7
57.4 | 45.7
44.0 | 61. 7
53. 7 | 78. 6
48. 6 | 78. 1
47. 0 | 57. 4
44. 0 | 54. 3
52. 9 | 62. 1
47. 6 | 62. 6
45. 6 | 51. 4
41. 0 | | 6 | 55. 5 | 40.4 | 45.3 | 51.6 | 55. 5 | 49.3 | 44. 8 | 50.4 | 51.0 | 46. 9 | 6 | 54.0 | 36.7 | 46.6 | 52. 5 | 53.9 | 41.5 | 42. 1 | 44.5 | 45.7 | 40.1 | | . 7
8 | 55. 7
54. 8 | 47. 6
46. 5 | 52. 6
52. 4 | 54. 0
52. 6 | 55.6
52.0 | 54. 0
46. 5 | 50.1
50.5 | 51. 2
49. 4 | 52. 2
49. 7 | 51. 5
43. 0 | 7
8 | 63. 4
57. 0 | 36. 3
40. 3 | 49.8 | 59. 1
55. 2 | 62. 8
57. 0 | 49.0
53.8 | 44. 2
45. 7 | 47. 7
50. 5 | 51.0 | 43. 0
49. 2 | | 9 | 46. 5 | 35.6 | 41.6 | 43.8 | 44. 2 | 39.4 | 37.0 | 38.0 | 37.9 | 36. 4 | 9 | 54.7 | 40.0 | 48.9 | 51.6 | 52.7 | 42.0 | 42.9 | 43.0 | 43.6 | 39.2 | | 10
11 | 51. 0
49. 9 | 37. 1
39. 2 | 45. 4
43. 7 | 48. 3
49. 6 | 49.7
48.5 | 44. 0
45. 0 | 44. 3
41. 3 | 46. 0
44. 5 |
46.0
44.0 | 42. 0
42. 7 | 10
11 | 49.0
56.3 | 33. 7
27. 1 | 44. 9
44. 8 | 46.5 | 46.6
55.6 | 36.9
49.5 | 40.0
38.8 | 38. 4
42. 9 | 38. 6
45. 1 | 34. 4
44. 0 | | 12 | 49.9 | 42.5 | 45.9 | 48. 6 | 49.7 | 45.8 | 45. 1 | 46.6 | 47.3 | 45. 5 | 12 | 59.9 | 38.0 | 50. 2 | 53.6 | 59.7 | 49. 2 | 44. 2 | 46. 5 | 49.8 | 45.0 | | 13 | 49.9
49.1 | 44. 5
44. 3 | 47. 2
47. 0 | 49. 1
48. 8 | 48.6
49.0 | 47.0
47.8 | 46. 7
46. 5 | 48. 2
47. 8 | 48. 1
48. 3 | 46.9
47.2 | 13
14 | 63.8 | 36.6
40.9 | 52.6
55.4 | 61. 2 | 63.8 | 54.0 | 48.0
49.7 | 52. 2
53. 5 | 54. 1
55. 0 | 50.0
46.2 | | 14
15 | 47.8 | 44.7 | 45.5 | 45.7 | 47.0 | 47.0 | 44.0 | 44. 4 | 44. 3 | 44.6 | 15 | 67.0 | 40.9 | 57. 4 | 67.3 | 66. 1 | 50.3 | 51.6 | 55. 3 | 54.0 | 46. 3 | | 16 | 52.9 | 45. 2 | 47.6 | 50.5 | 49.5 | 50.0 | 44. 9
20. 8 | 46. 6
42. 4 | 47. 8
44. 8 | 48. 0
41. 0 | 16
17 | 74.0
63.0 | 45. 4
49. 4 | 57.6 | 69.6 | 72.0 | 54.7 | 51.3 | 57. 3 | 57. 5
52. 2 | 50.0
49.2 | | 17
18 | 50. 5
51. 0 | 39.0
40.2 | 41.8
47.6 | 48. 2
49. 4 | 50.3 | 43. 3
48. 5 | 39.8
45.0 | 47. 1 | 47.6 | 46. 4 | 18 | 53.0 | 44.4 | 51.0 | 51. 5 | 52. 1 | 44. 4 | 48.7 | 46.7 | 45.8 | 40.0 | | 19 | 53.8 | 44.9 | 48.0 | 51. 3 | 53. 3 | 44.9 | 46.5 | 47.2 | 48.0 | 40.9 | 19
20 | 58.0
66.4 | 33. 7
35. 5 | 48. 8
54. 3 | 55. 3
62. 5 | 57. 5
66. 2 | 46.0
50.0 | 42. 5
45. 5 | 45. 4
51. 1 | 47.8
52.9 | 42. 8
46. 5 | | 20
21 | 46. 4
40. 1 | 36.0
33.9 | 42. 8
35. 8 | 45. 4
38. 8 | 45.8
39.7 | 36. 7
34. 4 | 38. 7
31. 7 | 38. 4
33. 5 | 38. 5
33. 4 | 33. 7
30. 4 | 20
21 | 59.7 | 46.8 | 52. 2 | 58.6 | 59.6 | 49. 4 | 45.7 | 47. 6 | 48. 1 | 43. 4 | | 22 | 45. 4 | 27.9 | 34. 3 | 42.0 | 44.9 | 40.0 | 31.0 | 36.9 | 38.9 | 37. 4 | 22 | 60.2 | 40.3 | 52. 1 | 56. 5
58. 6 | 59.0
59.0 | 45.0
52.6 | 44. 3
47. 3 | 46. 5 | 48.5 | 42. 5
50. 8 | | 23
24 | 49.8
43.9 | 38. 4
32. 6 | 46.6
36.4 | 49.4 | 47.0
43.8 | 38.7
37.7 | 45. 2
32. 4 | 43.9
34.9 | 40. 5
37. 6 | 35.0
34.9 | 23
24 | 63. 5 | 35. 7
42. 3 | 54. 7
50. 1 | 52.9 | 53. 2 | 47. 2 | 46. 1 | 46. 8 | 46. 1 | 44. 5 | | 25 | 42. 3 | 31.9 | 35. 4 | 40.6 | 40.1 | 36.9 | 32. 7 | 35.3 | 35.9 | 35.0 | 25 | 54.0 | 43.7 | 49.6 | 52. 2 | 52.7 | 49. 3
54. 0 | 48.6
49.5 | 50.5 | 51. 2 | 48.7 | | 26
27 | 37. 9
38. 0 | 32. 0
28. 4 | 37. 2
31. 6 | 36. 1
36. 0 | 33. 5
36. 6 | 32. 0
29. 0 | 36. 5
30. 6 | 35. 5
32. 1 | 33. 0
32. 7 | 31. 6
28. 2 | 26
27 | 59.0
64.2 | 47. 3
48. 9 | 51. 1
56. 2 | 55. 4
59. 3 | 58.1 | 56.4 | 51.9 | 53.8 | 56.8 | 54.0 | | 28 | 38. 3 | 20.0 | 26. 9 | 33. 2 | 38. 1 | 30.0 | 26. 2 | 30.7 | 31. 9 | 28. 6 | 28 | 57.7 | 47. 5 | 48.8 | 52.0 | 54. 4 | 52.7 | 47. 4 | 50.3 | 52.0
49.1 | 51. 4
48. 0 | | | | | | | | | | | | | 29
30 | 52. 7
65. 1 | 46. 5
43. 5 | 48. 9
56. 1 | 50.0
63.6 | 49.7
64.5 | 48. 0
51. 0 | 47.9
52.1 | 49. 5 | 54.5 | 48.0 | | Means | 48. 7 | 38.7 | 43. 2 | 46. 6 | 47. 1 | 42.7 | 41. 2 | 42.9 | 43. 1 | 40. 4 | Means | 61. 5 | 41. 1 | 52. 1 | 58. 4 | 60.0 | 49.5 | 47.3 | 50.1 | 50.7 | 46.0 | | | | THE STEVENSON SCREEN IN THE CHRISTIE ENCL
ermometers apply to the 24 hours ending 21h) | OSURE | |---|---|---|-----------------------| | Dry-Bulb Thermometers,
4 ft. above the Ground. | Wet-Bulb Thermometers,
4 ft. above the Ground. | Dry-Bulb Thermometers, Day 4 ft. above the Ground. | Wet-Bulb
4 ft. abo | | | | 36 | | | Max1 | JULY 0 | 21h 9h 12h 15h 21h 70. 7 63. 1 66. 3 69. 3 66. 5 72. 6 68. 7 74. 6 73. 9 66. 9 69. 2 66. 9 69. 6 70. 9 65. 0 57. 8 61. 3 61. 5 57. 3 53. 7 59. 5 55. 9 55. 7 55. 8 53. 3 60. 0 57. 2 57. 0 58. 0 53. 0 58. 7 56. 0 57. 0 59. 8 53. 7 62. 2 53. 6 59. 0 59. 1 56. 0 65. 0 60. 1 65. 0 64. 6 60. 5 65. 0 60. 1 65. 0 64. 6 60. 5 65. 0 60. 1 65. 0 64. 6 60. 5 70. 2 65. 0 69. 1 70. 0 65. 2 67. 5 66. 2 68. 2 68. 0 62. 5 70. 9 66. 1 66. 5 68. 0 62. 7 56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | |---|--|--| | MAY 1 66. 4 43. 1 58. 2 64. 9 65. 4 53. 0 52. 5 53. 5 53. 6 49. 3 1 80. 3 59. 8 2 62. 4 45. 4 52. 0 58. 2 61. 6 50. 0 49. 0 52. 7 52. 1 47. 0 2 86. 4 58. 2 3 61. 3 45. 3 49. 7 59. 2 59. 8 48. 2 47. 0 52. 7 52. 6 44. 6 3 82. 2 57. 7 4 58. 9 42. 7 51. 6 56. 6 58. 0 49. 0 46. 2 49. 1 50. 5 45. 2 4 70. 1 57. 8 5 54. 0 39. 8 48. 3 52. 6 49. 0 40. 4 44. 9 46. 9 45. 0 38. 4 5 66. 5 53. 3 6 56. 6 37. 7 48. 2 52. 6 54. 2 49. 5 44. 4 45. 7 46. 7 47. 2 6 70. 5 50. 3 7 63. 8 47. 0 57. 0 61. 2 61. 8 50. 8 51. 4 52. 6 54. 0 47. 6 7 73. 0 50. 9 8 51. 1 44. 6 47. 7 50. 1 49. 2 45. 4 46. 7 49. 2 46. 8 43. 1 8 73. 3 49. 4 9 59. 2 41. 9 48. 6 55. 7 58. 6 48. 7 43. 4 48. 2 51. 6 44. 7 9 78. 5 50. 2 10 64. 9 41. 2 57. 2 63. 6 62. 8 50. 1 50. 4 52. 7 48. 8 45. 1 10 78. 7 52. 3 11 58. 1 44. 2 48. 3 54. 3 54. 8 46. 7 45. 0 48. 9 50. 4 44. 3 11 83. 7 59. 3 14 49. 2 39. 8 45. 9 47. 6 47. 1 42. 3 40. 6 42. 1 41. 2 40. 3 14 70. 9 56. 3 15 55. 4 35. 0 46. 2 51. 6 53. 4 43. 5 40. 7 47. 3 46. 7 49. 2 12 85. 4 58. 7 18 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 43. 8 18 59. 4 44. 7 58. 3 53. 4 58. 0 49. 1 51. 5 50. 6 51. 0 47. 6 18 66. 4 55. 7 21 62. 8 44. 4 56. 9 58. 2 62. 6 51. 0 51. 0 53. 3 53. 8 53. 4 49. 0 20 68. 4 55. 7 22 66. 8 41. 0 57. 3 63. 5 62. 2 53. 5 51. 0 53. 7 58. 6 54. 7 24 87. 0 54. 3 27 7 58. 6 54. 3 55. 0 58. 4 59. 0 55. 8 54. 1 56. 6 56. 55. 7 58. 6 61. 2 53. 5 50. 4 53. 8 55. 0 51. 9 25 78. 0 54. 3 25 61. 1 48. 0 55. 4 60. 5 59. 5 53. 5 50. 4 53. 8 55. 0 51. 9 25 78. 0 54. 3 26 68. 8 41. 0 57. 3 63. 6 62. 6 63. 6 67. 0 55. 8 54. 1 56. 6 56. 0 51. 8 23 78. 6 61. 2 61. 5 55. 5 6 | 66. 0 72. 5 78. 7
75. 1 84. 6 85. 0
75. 4 80. 1 81. 1
62. 9 66. 7 63. 5
59. 4 62. 0 64. 5
63. 2 68. 5 69. 5
64. 0 67. 4 72. 8
59. 1 67. 7 72. 5
70. 8 76. 7 77. 2
70. 2 76. 5 76. 4
72. 6 80. 0 83. 2
76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
54. 1 63. 7 56. 6 | 70. 7 63. 1 66. 3 69. 3 66. 5 72. 6 68. 7 74. 6 73. 9 66. 9 69. 2 66. 9 69. 6 70. 9 65. 0 57. 8 61. 3 61. 5 57. 3 53. 7 59. 5 55. 9 55. 7 55. 8 53. 3 60. 0 57. 2 57. 0 58. 0 53. 0 58. 7 55. 8 53. 7 56. 0 67. 5 60. 1 65. 0 64. 6 60. 5 63. 0 59. 4 64. 7 66. 7 59. 5 66. 2 68. 0 62. 5 67. 5 66. 2 68. 0 62. 7 66. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 1 66.4 43.1 58.2 64.9 65.4 53.0 52.5
53.5 53.6 49.3 1 80.3 59.8 2 62.4 45.4 52.0 58.2 61.6 50.0 49.0 52.7 52.1 47.0 2 86.4 58.2 3 61.3 45.3 49.7 59.2 59.8 48.2 47.0 52.7 52.6 44.6 3 82.2 57.7 4 58.9 42.7 51.6 56.6 58.0 49.0 46.2 49.1 50.5 45.2 4 70.1 57.8 54.0 39.8 48.3 52.6 49.0 40.4 44.9 46.9 45.0 38.4 5 66.5 53.3 6 56.6 37.7 48.2 52.6 54.2 49.5 44.4 45.7 46.7 47.2 6 70.5 50.3 7 63.8 47.0 57.0 61.2 61.8 50.8 51.4 52.6 54.0 47.6 7 73.0 50.9 8 51.1 44.6 47.7 50.1 49.2 45.4 46.7 49.2 46.8 43.1 8 73.3 49.4 9.9 59.2 41.9 48.6 55.7 58.6 48.7 43.4 48.2 51.6 44.7 9 78.5 50.2 10 64.9 41.2 57.2 63.6 62.8 50.1 50.4 52.7 48.8 45.1 10 78.7 52.3 11 58.1 44.2 48.3 54.3 54.8 46.7 45.0 48.9 50.4 44.3 11 83.9 54.4 12 65.0 43.3 52.6 63.2 61.5 53.2 49.1 54.6 54.0 49.2 12 85.4 58.7 13 57.5 42.6 48.5 55.6 55.2 46.5 44.0 47.3 46.7 41.5 13 83.7 59.3 14 49.2 39.8 45.9 47.6 47.1 42.3 40.6 42.1 41.2 40.3 14 70.9 56.3 15 55.4 35.0 46.2 51.6 53.4 43.5 40.7 42.6 44.1 42.0 15 69.1 48.1 651.7 35.0 43.9 41.6 51.4 41.5 41.9 39.5 45.4 41.0 16 56.8 48.6 17 59.9 35.5 53.3 54.6 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 48.6 17 59.9 35.5 53.3 54.6 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 59.0 49.1 51.5 50.6 51.0 47.6 67.1 16 56.8 48.6 55.3 26.6 63.2 61.5 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 59.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.6 26.6 66.8 67.0 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 59.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.6 26.6 66.8 67.0 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 59.0 47.0 49.1 52.1 53.5 54.0 19 68.6 55.3 26.4 66.8 67.0 58.6 68.8 67.0 53.3 53.8 53.4 49.0 20 68.4 55.7 24.6 64.8 49.3 52.4 66.6 68.8 67.0 55.8 54.7 50.7 53.7 58.6 54.7 24.8 87.0 58.4 25.6 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 51.9 25.7 78.0 54.3 78.6 61.2 78.0 54.3 78.6 61.2 78.0 54.3 78.6 61.2 78.0 54.3 78.6 61.2 78.0 54.3 78.6 61.2 64.8 49.3 52.4 56.6 66.8 67.0 55.5 50.5 53.5 50.4 53.8 55.0 51.9 25.5 78.0 54.3 78.0 54.3 78.0 54.3 78.0 54.3 78.0 54.3 78.0 54 | 66. 0 72. 5 78. 7 75. 1 84. 6 85. 0 75. 4 80. 1 81. 1 62. 9 66. 7 63. 5 59. 4 62. 0 64. 5 63. 2 68. 5 69. 5 64. 0 67. 4 72. 8 59. 1 67. 7 72. 5 70. 8 76. 7 77. 2 70. 2 76. 5 76. 4 72. 6 80. 0 83. 2 76. 2 81. 7 82. 0 77. 5 82. 2 80. 0 61. 4 61. 5 65. 0 60. 5 62. 9 65. 0 51. 4 53. 1 56. 0 54. 1 63. 7 56. 6 | 70. 7 63. 1 66. 3 69. 3 66. 5 72. 6 68. 7 74. 6 73. 9 66. 9 69. 2 66. 9 69. 6 70. 9 65. 0 57. 8 61. 3 61. 5 57. 3 53. 7 59. 5 55. 9 55. 7 55. 8 53. 3 60. 0 57. 2 57. 0 58. 0 53. 0 58. 7 55. 8 53. 7 56. 0 67. 5 60. 1 65. 0 64. 6 60. 5 63. 0 59. 4 64. 7 66. 7 59. 5 66. 2 68. 0 62. 5 67. 5 66. 2 68. 0 62. 7 66. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 3 61.3 45.3 49.7 59.2 59.8 48.2 47.0 52.7 52.6 44.6 3 82.2 57.7 48.8 9 42.7 51.6 56.6 58.0 49.0 46.2 49.1 50.5 45.2 4 70.1 57.8 5 54.0 39.8 48.3 52.6 49.0 40.4 44.9 46.9 45.0 38.4 5 66.5 53.3 6 56.6 37.7 48.2 52.6 54.2 49.5 44.4 45.7 46.7 47.2 6 70.5 50.3 7 63.8 47.0 57.0 61.2 61.8 50.8 51.4 52.6 54.0 47.6 7 73.0 50.9 8 51.1 44.6 47.7 50.1 49.2 45.4 46.7 49.2 46.8 43.1 8 73.3 49.4 9 59.2 41.9 48.6 55.7 58.6 48.7 43.4 48.2 51.6 44.7 9 78.5 50.2 10 64.9 41.2 57.2 63.6 62.8 50.1 50.4 52.7 48.8 45.1 10 78.7 52.3 11 58.1 44.2 48.3 54.3 54.8 46.7 45.0 48.9 50.4 44.3 11 83.9 54.4 12 65.0 43.3 52.6 63.2 61.5 53.2 49.1 54.0 47.3 46.7 41.5 13 83.7 59.3 14 49.2 39.8 45.9 47.6 47.1 42.3 40.6 42.1 41.2 40.3 14 70.9 56.3 15 55.4 35.0 46.2 51.6 53.4 43.5 40.7 42.6 44.1 42.0 15 69.1 48.1 16 51.7 35.0 43.9 41.6 51.4 41.5 41.9 39.5 45.4 41.0 16 56.8 48.1 18 59.4 44.7 58.3 53.4 58.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.3 20 63.5 40.7 60.3 59.0 56.0 51.0 53.3 53.8 53.4 49.0 20 68.4 55.6 55.3 36.6 62.8 50.1 50.5 50.6 51.0 47.6 18 66.4 55.6 62.8 63.2 61.5 53.2 50.6 51.0 47.6 18 66.4 55.6 63.6 63.6 63.6 63.6 56.7 50.5 53.3 53.8 53.4 49.0 20 68.4 55.6 55.3 20 63.5 40.7 60.3 59.0 56.0 51.0 53.3 53.8 53.4 49.0 20 68.4 55.7 21 62.8 44.4 56.9 58.2 62.6 51.0 51.0 53.7 53.2 51.0 22 78.4 55.3 24.6 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.6 66.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25.5 36.0 59.5 59.5 53.5 50.4 53.8 55.0 51.9 25.7 78.0 54.3 25.1 78.0 54.3 25.1 78.0 54.3 25.1 78.0 54.3 25.1 78.0 54.3 25.1 78.0 54.3 25.0 55.4 60.5 59 | 75. 4 80. 1 81. 1 62. 9 66. 7 63. 5 59. 4 62. 0 64. 5 63. 2 68. 5 69. 5 64. 0 67. 4 72. 8 59. 1 67. 7 72. 5 70. 8 76. 7 77. 2 70. 2 76. 5 76. 4 72. 6 80. 0 83. 2 76. 2 81. 7 82. 0 77. 5 82. 2 80. 0 61. 4 61. 5 65. 0 60. 5 62. 9 65. 0 51. 4 53. 1 56. 0 54. 1 63. 7 56. 6 | 69. 2 66. 9 69. 6 70. 9 65. 0 57. 8 61. 3 61. 5 57. 3 53. 7 59. 5 55. 9 55. 7 55. 8 53. 3 60. 0 57. 2 57. 0 58. 0 53. 0 58. 7 56. 0 57. 0 59. 8 53. 7 62. 2 53. 6 59. 0 59. 1 56. 0 65. 0 60. 1 65. 0 64. 6 60. 5 63. 0 59. 4 64. 7 66. 7 59. 5 70. 2 65. 0 69. 1 70. 0 65. 2 67. 5 66. 2 68. 2 68. 0 62. 5 70. 9 66. 1 66. 5 68. 0 62. 7 56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 4 58.9 42.7 51.6 56.6 58.0 49.0 46.2 49.1 50.5 45.2 4 70.1 57.8 5 54.0 39.8 48.3 52.6 49.0 40.4 44.9 46.9 45.0 38.4 5 66.5 53.3 6 56.6 37.7 48.2 52.6 54.2 49.5 44.4 45.7 46.7 47.2 6 70.5 50.3 7 63.8 47.0 57.0 61.2 61.8 50.8 51.4 52.6 54.0 47.6 7 73.0 50.9 8 51.1 44.6 47.7 50.1 49.2 45.4 46.7 49.2 46.8 43.1 8 73.3 49.4 9 59.2 41.9 48.6 55.7 58.6 48.7 43.4 48.2 51.6 44.7 9 78.5 50.2 10 64.9 41.2 45.3 54.8 | 62.9 66.7 63.5
59.4 62.0 64.5
63.2 68.5 69.5
64.0 67.4 72.8
59.1 67.7 72.5
70.8 76.7 77.2
70.2 76.5 76.4
72.6 80.0 83.2
76.2 81.7 82.0
77.5 82.2 80.0
61.4 61.5 65.0
60.5 62.9 65.0
54.1 63.7 56.6 | 57.8 61.3 61.5 57.3 53.7 59.5 55.9 55.7 55.8 53.3 60.0 57.2 57.0 58.0 53.0 58.7 56.0 57.0 59.8 53.7 62.2 53.6 59.0 59.1 56.0 65.0 60.1 65.0 64.6 60.5 63.0 59.4 64.7 66.7 59.5 67.5 66.2 68.2 68.0 62.5 70.9 66.1 66.5 68.0 62.7 56.3 55.9 57.0 55.2 49.0 56.4 51.5 53.1 53.4 50.6 | | 6 56.6 37.7 48.2 52.6 54.2 49.5 44.4 45.7 46.7 47.2 6 70.5 50.3 7 63.8 47.0 57.0 61.2 61.8 50.8 51.4 52.6 54.0 47.6 7 73.0 50.9 8 51.1 44.6 47.7 50.1 49.2 45.4 46.7 49.2 46.8 43.1 8 73.3 49.4 9 59.2 41.9 48.6 55.7 58.6 48.7 43.4 48.2 51.6 44.7 9 78.5 50.2 10 64.9 41.2 57.2 63.6 62.8 50.1 50.4 52.7 48.8 45.1 10 78.7 52.3 11 58.1 44.2 48.3 54.3 54.8 46.7 45.0 48.9 50.4 44.3 11 83.9 54.4 12 65.0 43.3 52.6 63.2 61.5 53.2 49.1 54.6 54.0 49.2 12 85.4 58.7 13 57.5 42.6 48.5 55.6 55.2 46.5 44.0 47.3 46.7 41.5 13 83.7 59.3 14 49.2 39.8 45.9 47.6 47.1 42.3 40.6 42.1 41.2 40.3 14 70.9 56.3 15 55.4 35.0 46.2 51.6 53.4 43.5 40.7 42.6 44.1 42.0 15 69.1 48.1 16 51.7 35.0 43.9 41.6 51.4 41.5 41.9 39.5 45.4 41.0 16 56.8 48.6 17 59.9 35.5 53.3 54.6 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 58.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.6 55.6 55.0 63.2 62.6 51.0 53.3 53.8 53.4 49.0 20 68.4 55.7 60.3 59.0 56.0 51.0 47.6 18 66.4 55.7 66.3 50.5 60.5 51.0 47.6 18 66.4 55.6 55.6 55.2 66.8 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 59.0 47.0 49.1 52.1 53.5 50.6 51.0 47.6 18 66.4 55.6 63.5 60.5 51.0 51.0 47.6 18 66.4 55.6 63.5 60.5 51.0 51.0 47.6 18 66.4 55.6 63.5 60.5 51.0 51.0 51.8 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 | 63. 2 68. 5 69. 5
64. 0 67. 4 72. 8
59. 1 67. 7 72. 5
70. 8 76. 7 77. 2
70. 2 76. 5 76. 4
72. 6 80. 0 83. 2
76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
54. 1 63. 7 56. 6 | 60.0 57.2 57.0 58.0 53.0 58.7 56.0 57.0 59.8 53.7 62.2 53.6 59.0 59.1 56.0 65.0 64.6 60.5 63.0 59.4 64.7 66.7 59.5 70.2 65.0 69.1 70.0 65.2 67.5 66.2 68.2 68.0 62.5 70.9 66.1 66.5 68.0 62.7 56.3 55.9 57.0 55.2 49.0 56.4 51.5 53.1 53.4 50.6 | | 7 63.8 47.0 57.0 61.2 61.8 50.8 51.4 52.6 54.0 47.6 7 73.0 50.9 8 51.1 44.6 47.7 50.1 49.2 45.4 46.7 49.2 46.8 43.1 8 73.3 49.4 9 59.2 41.9 48.6 55.7 58.6 48.7 43.4 48.2 51.6 44.7 9 78.5 50.2 10 64.9 41.2 57.2 63.6 62.8 50.1 50.4 52.7 48.8 45.1 10 78.7 52.3 11 58.1 44.2 48.3 54.3 54.8 46.7 45.0 48.9 50.4 44.3 11 83.9 54.4 12 65.0 43.3 52.6 63.2 61.5 53.2 49.1 54.6 54.0 49.2 12 85.4 58.7 59.3 44.6 74.0 47.3 46.7 41.5 13 83.7 59.3 59.3 44.6 54.0 49.1 54.6 | 64. 0 67. 4 72. 8
59. 1 67. 7 72. 5
70. 8 76. 7 77. 2
70. 2 76. 5 76. 4
72. 6 80. 0 83. 2
76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6 | 58. 7 56. 0 57. 0 59. 8 53. 7 62. 2 53. 6 59. 0 59. 1 56. 0 65. 0 60. 1 65. 0 64. 6 60. 5 63. 0 59. 4 64. 7 66. 7 59. 5 70. 2 65. 0 69. 1 70. 0 65. 2 67. 5 66. 2 68. 2 68. 0 62. 5 70. 9 66. 1 66. 5 68. 0 62. 7 56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 8 51. 1 44. 6 47. 7 50. 1 49. 2 45. 4 46. 7 49. 2 46. 8 43. 1 8 73. 3 49. 4 9 59. 2 41. 9 48. 6 55. 7 58. 6 48. 7 43. 4 48. 2 51. 6 44. 7 9 78. 5 50. 2 10 64. 9 41. 2 57. 2 63. 6 62. 8 50. 1 50. 4 52. 7 48. 8 45. 1 10 78. 7 52. 3 11 58. 1 44. 2 48. 3 54. 3 54. 8 46. 7 45. 0 48. 9 50. 4 44. 3 11 83. 9 54. 4 12 65. 0 43. 3 52. 6 63. 2 61. 5 53. 2 49. 1 54. 6 54. 0 49. 2 12 85. 4 58. 7 58. 7 58. 7 58. 7 58. 6 55. 6 55. 2 46. 5 50. 0 44. 0 47. 3 46. 7 41. 5 11 83. 9 54. 4 48. 7 49. 1 54. 6 54. 0 49. 2 12 85. 4 88. 7 59. 3 58. 1 | 70. 8 76. 7 77. 2
70. 2 76. 5 76. 4
72. 6 80. 0 83. 2
76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6 | 65. 0 60. 1 65. 0 64. 6 60. 5 63. 0 59. 4 64. 7 66. 7 59. 5 70. 2 65. 0 69. 1 70. 0 65. 2 67. 5 66. 2 68. 2 68. 0 62. 5 70. 9 66. 1 66. 5 68. 0 62. 7 56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 10 64.9 41.2 57.2 63.6 62.8 50.1 50.4 52.7
48.8 45.1 10 78.7 52.3 11 58.1 44.2 48.3 54.8 46.7 45.0 48.9 50.4 44.3 11 83.9 54.4 12 65.0 43.3 52.6 63.2 61.5 53.2 49.1 54.6 54.0 49.2 12 85.4 58.7 13 57.5 42.6 48.5 55.6 55.2 46.5 44.0 47.3 46.7 41.5 13 83.7 59.3 14 49.2 39.8 45.9 47.6 47.1 42.3 40.6 42.1 41.2 40.3 14 70.9 56.3 15 55.4 35.0 46.2 51.6 53.4 43.5 40.7 42.6 44.1 42.0 15 69.1 48.1 16 51.7 35.0 43.9 41.6 51.4 41.5 41.9 39.5 45.4 41.0 16 56.8 48.6 | 70. 2 76. 5 76. 4 72. 6 80. 0 83. 2 76. 2 81. 7 82. 0 77. 5 82. 2 80. 0 61. 4 61. 5 65. 0 60. 5 62. 9 65. 0 51. 4 53. 1 56. 0 54. 1 63. 7 56. 6 | 63.0 | | 11 58. 1 44. 2 48. 3 54. 3 54. 8 46. 7 45. 0 48. 9 50. 4 44. 3 11 83. 9 54. 4 12 65. 0 43. 3 52. 6 63. 2 61. 5 53. 2 49. 1 54. 6 54. 0 49. 2 12 85. 4 58. 7 13 57. 5 42. 6 48. 5 55. 6 55. 2 46. 5 44. 0 47. 3 46. 7 41. 5 13 83. 7 59. 3 14 49. 2 39. 8 45. 9 47. 6 47. 1 42. 3 40. 6 42. 1 41. 2 40. 3 14 70. 9 56. 3 15 55. 4 35. 0 46. 2 51. 6 53. 4 43. 5 40. 7 42. 6 44. 1 42. 0 15 69. 1 48. 1 16 51. 7 35. 0 43. 9 41. 6 51. 4 41. 5 41. 9 39. 5 45. 4 41. 0 16 56. 8 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 <td>76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6</td> <td>67. 5 66. 2 68. 2 68. 0 62. 5
70. 9 66. 1 66. 5 68. 0 62. 7
56. 3 55. 9 57. 0 55. 2 49. 0
56. 4 51. 5 53. 1 53. 4 50. 6</td> | 76. 2 81. 7 82. 0
77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6 | 67. 5 66. 2 68. 2 68. 0 62. 5
70. 9 66. 1 66. 5 68. 0 62. 7
56. 3 55. 9 57. 0 55. 2 49. 0
56. 4 51. 5 53. 1 53. 4 50. 6 | | 13 57. 5 42. 6 48. 5 55. 6 55. 2 46. 5 44. 0 47. 3 46. 7 41. 5 13 83. 7 59. 3 14 49. 2 39. 8 45. 9 47. 6 47. 1 42. 3 40. 6 42. 1 41. 2 40. 3 14 70. 9 56. 3 15 55. 4 35. 0 46. 2 51. 6 53. 4 43. 5 40. 7 42. 6 44. 1 42. 0 15 69. 1 48. 1 16 51. 7 35. 0 43. 9 41. 6 51. 4 41. 5 41. 9 39. 5 45. 4 41. 0 16 56. 8 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 43. 8 18 59. 4 44. 7 58. 3 53. 4 59. 0 47. 0 49. 1 51. 5 50. 6 51. 0 47. 6 18 66. 4 55. 6 19 62. 4 46. 4 49. 4 53. 4 59. 0 47. 0 49. 1 <td>77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6</td> <td>70.9 66.1 66.5 68.0 62.7
56.3 55.9 57.0 55.2 49.0
56.4 51.5 53.1 53.4 50.6</td> | 77. 5 82. 2 80. 0
61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6 | 70.9 66.1 66.5 68.0 62.7
56.3 55.9 57.0 55.2 49.0
56.4 51.5 53.1 53.4 50.6 | | 14 49. 2 39. 8 45. 9 47. 6 47. 1 42. 3 40. 6 42. 1 41. 2 40. 3 14 70. 9 56. 3 15 55. 4 35. 0 46. 2 51. 6 53. 4 43. 5 40. 7 42. 6 44. 1 42. 0 15 69. 1 48. 1 16 51. 7 35. 0 43. 9 41. 6 51. 4 41. 5 41. 9 39. 5 45. 4 41. 0 16 56. 8 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 43. 8 18 59. 4 44. 7 58. 3 53. 4 59. 0 47. 0 49. 1 51. 5 50. 6 51. 0 47. 6 18 66. 4 55. 6 19 62. 4 46. 4 49. 4 53. 4 59. 0 47. 0 49. 1 52. 1 53. 5 45. 0 19 68. 6 55. 3 20 63. 5 40. 7 60. 3 59. 0 56. 0 51. 0 53. 3 <td>61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6</td> <td>56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6</td> | 61. 4 61. 5 65. 0
60. 5 62. 9 65. 0
51. 4 53. 1 56. 0
54. 1 63. 7 56. 6 | 56. 3 55. 9 57. 0 55. 2 49. 0 56. 4 51. 5 53. 1 53. 4 50. 6 | | 16 51. 7 35. 0 43. 9 41. 6 51. 4 41. 5 41. 9 39. 5 45. 4 41. 0 16 56. 8 48. 6 17 59. 9 35. 5 53. 3 54. 6 58. 6 48. 3 47. 3 46. 7 49. 8 45. 3 17 68. 0 43. 8 18 59. 4 44. 7 58. 3 53. 4 58. 0 49. 1 51. 5 50. 6 51. 0 47. 6 18 66. 4 55. 6 19 62. 4 46. 4 49. 4 53. 4 59. 0 47. 0 49. 1 52. 1 53. 5 45. 0 19 68. 6 55. 3 20 63. 5 40. 7 60. 3 59. 0 56. 0 51. 0 53. 3 53. 8 53. 4 49. 0 20 68. 4 55. 7 21 62. 8 44. 4 56. 9 58. 2 62. 6 51. 0 51. 9 53. 2 52. 9 48. 3 21 69. 9 54. 1 22 66. 8 41. 0 57. 3 63. 5 62. 2 53. 5 51. 0 53. 7 <td>51. 4 53. 1 56. 0 54. 1 63. 7 56. 6</td> <td></td> | 51. 4 53. 1 56. 0 54. 1 63. 7 56. 6 | | | 17 59.9 35.5 53.3 54.6 58.6 48.3 47.3 46.7 49.8 45.3 17 68.0 43.8 18 59.4 44.7 58.3 53.4 58.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.6 19 62.4 46.4 49.4 53.4 59.0 47.0 49.1 52.1 53.5 45.0 19 68.6 55.3 20 63.5 40.7 60.3 59.0 56.0 51.0 53.3 53.8 53.4 49.0 20 68.4 55.7 21 62.8 44.4 56.9 58.2 62.6 51.0 51.9 53.2 52.9 48.3 21 69.9 54.1 22 66.8 41.0 57.3 63.5 62.2 53.5 51.0 53.7 53.2 51.0 22 78.4 55.3 23 67.6 48.5 62.6 66.8 67.0 55.8 54.1 56.6 56.0 51.8 23 78.6 61.2 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 53.7 58.6 | 54. 1 63. 7 56. 6 | 52.4 50.8 51.6 52.6 49.9 | | 18 59.4 44.7 58.3 53.4 58.0 49.1 51.5 50.6 51.0 47.6 18 66.4 55.6 19 62.4 46.4 49.4 53.4 59.0 47.0 49.1 52.1 53.5 45.0 19 68.6 55.3 20 63.5 40.7 60.3 59.0 56.0 51.0 53.3 53.8 53.4 49.0 20 68.4 55.7 21 62.8 44.4 56.9 58.2 62.6 51.0 51.9 53.2 52.9 48.3 21 69.9 54.1 22 66.8 41.0 57.3 63.5 62.2 53.5 51.0 53.7 53.2 51.0 22 78.4 55.3 23 67.6 48.5 62.6 66.8 67.0 55.8 54.1 56.6 56.0 51.8 23 78.6 61.2 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 53.8 55.0 51.9 25 78.0 58.4 25 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 | 61.1 63.3 64.7 | 57.8 52.1 54.7 53.6 54.3 | | 20 63.5 40.7 60.3 59.0 56.0 51.0 53.3 53.8 53.4 49.0 20 68.4 55.7 21 62.8 44.4 56.9 58.2 62.6 51.0 51.9 53.2 52.9 48.3 21 69.9 54.1 22 66.8 41.0 57.3 63.5 62.2 53.5 51.0 53.7 53.2 51.0 22 78.4 55.3 23 67.6 48.5 62.6 66.8 67.0 55.8 54.1 56.6 56.0 51.8 23 78.6 61.2 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 51.9 25 78.0 54.3 | 1 | 58. 8 58. 1 59. 3 57. 7 55. 3
58. 6 56. 7 57. 7 58. 7 55. 6 | | 21 62.8 44.4 56.9 58.2 62.6 51.0 51.9 53.2 52.9 48.3 21 69.9 54.1 22 66.8 41.0 57.3 63.5 62.2 53.5 51.0 53.7 53.2 51.0 22 78.4 55.3 23 67.6 48.5 62.6 66.8 67.0 55.8 54.1 56.6 56.0 51.8 23 78.6 61.2 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 51.9 25 78.0 54.3 | | 58. 5 55. 7 57. 4 57. 0 54. 2 | | 23 67.6 48.5 62.6 66.8 67.0 55.8 54.1 56.6 56.0 51.8 23 78.6 61.2 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 51.9 25 78.0 54.3 | 60.3 65.7 66.0 | 58.8 56.7 58.7 58.2 55.4
64.7 61.3 65.1 67.8 62.0 | | 24 64.8 49.3 52.4 56.6 63.6 56.7 50.7 53.7 58.6 54.7 24 87.0 58.4 25 61.1 48.0 55.4 60.5 59.5 53.5 50.4 53.8 55.0 51.9 25 78.0 54.3 | 1 1 | 64.7 61.3 65.1 67.8 62.0 63.8 63.6 64.8 65.3 61.2 | | | 79. 7 83. 1 83. 6 | 68.9 70.7 72.3 71.8 63.6 | | | 1 1 - 1 | 61. 2 56. 3 60. 3 62. 3 57. 5 63. 4 61. 0 66. 5 64. 9 61. 4 | | 26 58.0 50.0 54.7 57.3 57.2 52.3 54.0 55.1 55.1 52.0 26 77.2 51.3 27 64.3 51.3 55.4 58.4 63.5 52.8 53.6 54.8 56.0 51.3 27 69.0 54.7 | 64. 6 65. 5 61. 2 | 56. 7 59. 7 56. 8 57. 4 53. 2 | | 28 66.4 46.5 57.7 61.2 66.2 53.0 55.0 57.2 56.7 50.5 28 69.9 48.6 | 1 - 1 - 1 | 57. 2 57. 0 57. 7 57. 4 54. 9 62. 2 55. 8 58. 7 60. 0 56. 5 | | 29 64.6 46.8 56.9 58.1 61.4 56.5 54.7 55.3 58.4 54.2 29 73.6 54.8 30 70.0 46.5 62.0 65.6 70.0 57.2 56.2 58.7 60.0 54.7 30 72.0 55.7 | | 61.7 61.5 63.1 62.8 56.2 | | 31 59.5 49.4 58.5 52.9 53.7 50.0 52.5 50.2 52.7 47.5 31 67.8 52.5 | 65. 0 63. 5 64. 6 | 59.6 57.6 53.0 55.5 54.0 | | Means 60.9 43.8 53.4 57.0 58.8 49.9 49.1 51.1 51.8 47.3 Means 74.3 54.1 | | 62. 1 59. 4 61. 4 61. 7 57. 5 | | JUNE | AUGUST | 0 0 0 0 0 | | 1 63.0 47.2 55.5 57.8 60.2 50.4 52.5 52.8 53.7 48.8 1 73.1 48.6 | 1 -2 | 60. 6 56. 7 60. 2 59. 6 55. 6 65. 4 60. 9 63. 1 65. 5 61. 6 | | 2 62.1 47.7 56.1 58.6 61.9 53.5 51.1 52.9 54.8 49.0 2 74.5 57.4
3 63.8 48.4 57.1 58.9 61.1 54.2 53.6 49.9 52.1 48.8 3 76.0 58.1 | , | 63. 5 59. 2 60. 9 64. 0 58. 0 | | 4 61.0 45.3 55.6 59.2 58.0 53.3 51.3 53.2 52.7 52.4 4 82.7 51.9 | 1 | 66. 8 63. 0 67. 0 68. 8 64. 0 68. 0 65. 5 68. 1 68. 7 62. 5 | | 5 66. 2 53. 3 58. 5 58. 8 66. 2 54. 0 55. 4 56. 4 55. 7 50. 7 5 83. 3 57. 3 6 68. 0 50. 1 60. 7 61. 7 68. 0 56. 0 54. 1 55. 1 58. 7 53. 3 6 75. 4 58. 1 | 1 1 | 68.0 65.5 68.1 68.7 62.5 61.0 62.4 62.4 64.2 56.5 | | 7 70.9 44.3 61.5 66.7 70.5 59.0 52.5 56.1 58.5 54.0 7 72.0 58.1 | 1 1 | 58. 5 60. 1 61. 6 61. 0 53. 5
57. 2 56. 3 60. 0 60. 5 51. 7 | | 8 64.9 54.3 62.4 63.5 59.8 56.2 57.4 59.3 57.6 54.2 8 69.5 52.9 9 62.7 49.5 56.8 61.2 59.7 53.8 52.3 54.2 53.7 52.2 9 70.1 50.6 | | 57. 2 56. 3 60. 0 60. 5 51. 7
56. 4 57. 6 57. 5 58. 8 55. 9 | | 10 63.6 51.0 58.5 59.9 58.0 51.0 55.3 53.7 52.0 47.0 10 69.4 54.8 | 64. 1 65. 4 58. 0 | 54.8 61.0 59.6 54.0 52.5 | | 11 63.0 44.8 53.9 58.0 59.5 51.0 49.4 50.7 54.2 48.8 11 71.2 49.8 | | 58.0 57.9 58.3 58.5 54.2 57.0 60.7 58.6 59.3 53.0 | | 12 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 13 67.4 45.9 57.2 60.8 65.7 52.0 52.2 51.8 54.5 50.5 13 68.7 54.6 14 59.6 45.1 56.2 54.3 57.5 52.0 52.2 51.8 54.5 50.5 13 68.7 54.6 15 59.6 45.1 56.2 54.3 57.5 52.0 52.2 51.8 54.5 50.5 13 68.7 54.6 16 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 17 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 18 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 19 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 18 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 19 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 12 68.0 55.1 19 59.6 45.1 56.2 54.3 57.5 52.3 53.4 49.8 50.9 50.5 50.5 13 68.7 54.6 19 59.6 45.1 56.2 | 59.0
65.0 66.8 | 58. 1 54. 0 56. 5 56. 6 54. 3 | | 14 68. 4 47. 6 61. 6 65. 8 67. 3 55. 3 56. 4 56. 0 55. 8 52. 3 14 71. 1 53. 3 | | 54.7 55.6 56.7 59.9 53.5
54.3 53.7 54.1 54.9 51.0 | | 15 66. 3 52.7 54. 4 63. 2 64. 0 53. 6 53. 1 58. 1 56. 0 52. 3 15 66. 2 50. 3 16 67. 8 50. 3 59. 0 66. 7 62. 5 54. 0 53. 5 59. 0 54. 0 52. 8 16 63. 2 45. 3 | 60.7 61.8 60.5 | 54. 3 54. 7 55. 2 53. 2 53. 3 | | 17 63.9 53.5 58.7 62.5 60.0 54.2 53.9 53.5 53.4 52.0 17 59.3 52.7 | 1 1 | 55. 2 | | 18 65.0 51.7 60.3 63.4 60.3 53.0 52.7 53.1 53.3 48.0 18 70.2 44.8 | | 59.0 55.2 57.8 58.2 58.0 | | 20 65.8 45.7 58.6 61.9 57.6 53.4 52.1 53.9 51.8 50.6 20 62.2 53.8 | 55.6 55.6 61.8 | 56.8 54.9 54.2 57.2 54.8 | | 21 69.3 45.0 61.9 64.9 65.7 54.3 54.9 55.4 56.5 53.0 21 68.4 48.7 | 1 1 1 | 60.4 57.3 57.8 58.1 58.9 | | 22 69.8 46.9 61.2 60.3 62.4 53.7 53.5 64.9 71.3 74.5 60.2 56.9 59.0 63.0 55.8 23 71.4 54.1 | 63. 2 68. 3 69. 0 | 63. 3 59. 7 62. 1 62. 7 62. 1 | | 24 72.2 57.1 70.0 67.1 70.0 60.6 62.6 60.3 61.7 56.8 24 72.7 57.3 57.3 | | 61. 2 60. 1 64. 3 62. 7 59. 5
57. 5 57. 7 60. 2 61. 0 55. 5 | | 2) 70.3 49.8 02.9 00.1 07.0 07.0 0 0 57.5 26 69.6 51.1 | 61. 2 65. 6 64. 7 | 56. 8 55. 9 56. 7 56. 2 52. 8 | | 26 71. 4 35. 5 36. 7 65. 1 61. 2 64. 6 62. 8 57. 5 55. 2 57. 1 55. 8 55. 5 27 68. 4 47. 5 | 61. 6 65. 0 61. 6 64. 5 64. 2 64. 3 | 56. 0 55. 9 56. 8 55. 9 53. 5
56. 5 57. 7 56. 7 56. 6 54. 4 | | 28 70.3 53.3 59.6 65.2 69.0 58.5 55.4 55.8 58.0 54.5 28 67.1 54.5 28 67.1 54.5 55.0 57 | 64. 5 64. 2 64. 3 | 54.0 54.2 54.5 55.2 52.0 | | 29 09.0 33.4 03.1 03.0 00.0 00.0 00.0 00.0 00.0 00.0 | 59.6 58.8 64.1 | 55. 2 53. 2 54. 5 54. 0 53. 2
55. 0 55. 5 56. 5 57. 0 54. 0 | | 30 73.3 56.2 63.9 67.5 72.0 63.4 60.4 62.7 66.0 60.8 30 66.5 49.9 61.0 | 59. 6 58. 8 64. 1
58. 6 61. 6 62. 2 | | TABLE XXVI. - READING OF THE THERMOMETERS IN THE STEVENSON SCREEN IN THE CHRISTIE ENCLOSURE (The readings of the maximum and minimum thermometers apply to the 24 hours ending 21h) | (The readings of the maximum and minimum thermometers apply to the 24 hours ending 21 ^h) |--|----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|---------------|----------------|----------------|---------------------------|-------------------|-----------------|-----------------|---|-----------------|-----------------|-----------------| | Day
of the | | | | | | | | | | | Day
of the | | | - | ermomet
the Gr | , | | Wet-Bulb Thermometers,
4 ft. above the Ground. | | | | | Month | Max1-
mum | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12h | 15 ^h | 21 ^h | Month | Maxi- | Mini-
mum | 9 ^h | 12 ^h | 15 ^h | 21 ^h | 9 ^h | 12 ^h | 15 ^h | 21 ^h | | | SEPTEMBER | | | | | | | | <u> </u> | L | | · | L | | N | OVEMBER | | | | L | <u> </u> | | 1 | 70°. 5 | 49.9 | 61. 4 | 67.4 | 59. 2 | 54. 0 | o
55. 6 | 58.9 | 56.0 | 52.0 | 1 | 43.8 | 37. 2 | 41.0 | °
42. 8 | 42.3 | °
37. 2 | 40.0 | 40, 8 | 39. 8 | 36. 8 | | 2 | 66. 4 | 51. 2 | 56. 1 | 63. 2 | 65.8 | 55. 5 | 53.7 | 56.8 | 58. 2 | 53. 2 | 2 | 48. 5 | 36. 3 | 39. 2 | 44.9 | 48. 3 | 45. 4 | 38. 5 | 42.7 | 44.9 | 44.5 | | 3 4 | 62. 5
60. 8 | 53.3
56.0 | 57. 8
59. 2 | 59. 1
57. 6 | 59. 2
59. 8 | 57. 5
57. 0 | 55. 8
57. 4 | 56. 1
56. 6 | 56. 7
57. 2 | 56.0
55.7 | 3
4 | 57. 4
66. 4 | 45. 4
45. 3 | 52. 0
54. 1 | 56. 6
64. 0 | 56. 7
62. 0 | 54. 5
45. 3 | 50. 7
51. 6 | 53. 8
56. 5 | 54. 1
53. 5 | 52. 0
44. 3 | | 5 | 66.8 | 54.0 | 59.4 | 64.5 | 64.0 | 54.0 | 56.0 | 57.8 | 57. 5 | 52.0 | 5 | 59. 1 | 38.3 | 44.7 | 55.9 | 57.4 | 46. 5 | 43.9 | 51. 1 | 52.6 | 46.5 | | 6 | 63. 0
65. 4 | 50. 2
47. 2 | 58. 8
60. 8 | 60.7
63.6 | 59. 3
64. 5 | 51. 4
58 0 | 55. 7
56. 7 | 56. 7
57. 6 | 56.0
59.0 | 50. 4
56. 8 | 6
7 | 51. 3
48. 0 | 40. 3
39. 4 | 45. 7
40. 7 | 50.9
42.5 | 49. 6
46. 6 | 40. 3
45. 1 | 44. 4
39. 5 | 46.9
41.5 | 45. 9
46. 0 | 39.8
43.8 | | 8 | 60. 7 | 54.9 | 59.9 | 57.6 | 58. 5 | 57.6 | 58.9 | 57. 2 | 57.8 | 56.8 | 8 | 49.4 | 42. 3 | 45. 4 | 48.6 | 48.8 | 45. 2 | 43. 2 | 45. 4 | 45. 7 | 43. 2 | | 9 | 63. 8
67. 0 | 51.9
50.7 | 58. 0
59. 0 | 62. 5
65. 8 | 60.4 | 55. 7
56. 1 | 53. 2
55. 0 | 54. 6
57. 2 | 54. 1
56. 6 | 52. 8
53. 1 | 9
10 | 46. 8
48. 8 | 43.0
41.4 | 45.6 | 46.5
47.8 | 46.0
46.6 | 43. 8
46. 0 | 43.8
41.5 | 43. 5 | 43. 3
44. 6 | 42. 0
45. 0 | | 11 | 63.0 | 55.8 | 61.6 | 62. 5 | 61.0 | 59.0 | 55. 7 | 57. 1 | 57. 1 | 56.6 | 11 | 47.6 | 44. 3 | 43. 9
45. 7 | 47. 3 | 47.5 | 46. 2 | 42.9 | 43. 8
44. 5 | 45.0 | 44.0 | | 12 | 67.5 | 49.7 | 58.6 | 65.0 | 65. 1 | 57. 2 | 55.6 | 57. 7 | 58. 2 | 54. 2 | 12 | 50. 2 | 44.5 | 46.6 | 49.4 | 50.0 | 50. 2 | 43.0 | 45.6 | 46. 3 | 47.8 | | 13
14 | 61. 9
60. 8 | 51. 4
46. 3 | 55. 1
56. 6 | 55.9 | 61.0
58.3 | 51. 4
60. 8 | 54. 0
52. 8 | 50. 5
55. 3 | 53. 6
57. 3 | 48. 2
59. 0 | 13
14 | 51.6
49.7 | 43. 5
42. 4 | 46. 6
47. 8 | 51. 3
49. 0 | 51. 2
49. 6 | 43. 5
48. 8 | 43.8
47.0 | 45. 6
48. 4 | 44. 9
49. 0 | 41.7 | | 15 | 66.9 | 53. 2 | 58. 4 | 62.5 | 66.7 | 54. 2 | 52. 4 | 53. 7 | 55.7 | 51.9 | 15 | 49.0 | 44.9 | 47. 1 | 48. 8 | 48. 4 | 46.0 | 46.6 | 48.0 | 47. 4 | 45.0 | | 16
17 | 63. 9
64. 8 | 44. 7
51. 3 | 57. 0
56. 2 | 62. 9
60. 6 | 62. 7
63. 9 | 52. 4
55. 6 | 52. 7
53. 4 | 55. 7
55. 8 | 55. 4
57. 3 | 50. 4
53. 6 | 16
17 | 48.7 | 44. 5
38. 1 | 46. 3
45. 5 | 48.7
47.7 | 47. 2
46. 0 | 44. 9
46. 3 | 44. 9
44. 3 | 46. 0
46. 3 | 45. 5
45. 2 | 44. 2 | | 18 | 60.4 | 52. 4 | 57. 3 | 57.6 | 58. 2 | 58. 8 | 56. 4 | 56. 1 | 57.6 | 55. 3 | 18 | 48.8 | 42.0 | 45.6 | 48.8 | 48. 5 | 42.0 | 41.7 | 42. 5 | 42. 2 | 39. 2 | | 19
20 | 60.0
63.6 | 49.4
47.7 | 55. 5
61. 6 | 58. 6
62. 6 | 59. 2
53. 6 | 53. 2
51. 2 | 51. 1
60. 1 | 52. 0
59. 5 | 53. 2
51. 3 | 52. 6
47. 5 | 19
20 | 54. 2
56. 0 | 42.0
51.2 | 44. 8
53. 7 | 45. 9
55. 1 | 46. 4
54. 7 | 54.0
51.2 | 43. 5
52. 8 | 45. 4
53. 0 | 45. 9
52. 5 | 53.0 | | 21 | 62.9 | 45. 3 | 55. 2 | 60.6 | 62.6 | 54. 5 | 51. 3 | 53.6 | 54.3 | 52. 5 | 21 | 53. 2 | 43.8 | 48. 5 | 52. 8 | 49.6 | 43.8 | 46.7 | 47.8 | 45.8 | 42. 3 | | 22
23 | 65. 2
64. 7 | 53. 2
52. 6 | 57. 2
60. 7 | 65. 2
61. 1 | 63. 2
63. 6 | 57.0
52.6 | 53.6
59.2 | 58. B
60. 0 | 58.6
58.0 | 55. 5
49. 9 | 22
23 | 51.0
53.0 | 41.0
34.3 | 49. 4
47. 4 | 50.7
52.5 | 49. 1
52. 0 | 41.0
51.4 | 46. 2
46. 4 | 46.8
49.5 | 43. 5
49. 5 | 38.0
50.0 | | 24 | 65. 5 | 50.4 | 56.8 | 62.9 | 62.7 | 54.0 | 53.6 | 57. 1 | 56.7 | 52.0 | 24 | 53. 1 | 49.5 | 51.0 | 52. 5 | 51.5 | 49.5 | 49.7 | 49.6 | 50.1 | 47.4 | | 25 | 70.0 | 52. 2 | 63. 2
62. 9 | 66. 6
68. 8 | 68. 3
67. 6 | 62. 0
60. 2 | 61. 2
60. 5 | 62. 4
64. 0 | 63. 6
63. 7 | 60. 5
58. 4 | 25
26 | 54. 4
51. 3 | 49.0
44.0 | 51. 9
46. 8 | 53. 7
50. 3 | 52.8
49.9 | 49.8
44.0 | 48. 8
44. 1 | 49. 4
45. 5 | 49. 2
45. 0 | 47.8 | | 26
27 | 71. 0
77. 1 | 58. 3
57. 6 | 64.4 | 73.3 | 76. 1 | 60.0 | 61.8 | 66.7 | 67.0 | 58. 5 | 27 | 54.9 | 42. 2 | 53. 5 | 54.5 | 53.5 | 52. 3 | 50.6 | 50.9 | 51.3 | 50.8 | | 28 | 73. 3 | 56. 1 | 64. 2 | 71.5 | 73. 1 | 60.4 | 61. 2 | 64.9 | 66. 1 | 58. 4 | 28 | 52.6 | 47.7 | 49.8 | 49.9 | 49.9 | 50.3 | 47. 2
46. 8 | 48. 4
47. 4 | 48. 4
47. 7 | 48. 7
45. 7 | | 29
30 | 64. 2
71. 0 | 59. 4
51. 2 | 61. 6
60. 1 | 63. 3
68. 6 | 61. 8
67. 8 | 59. 4
54. 4 | 60. 3
57. 8 | 60. 7
59. 7 | 60. 0
59. 7 | 58. 8
53. 0 | 29
30 | 50. 4
51. 7 | 46.0
41.3 | 48. 4 47. 0 | 49. 9
50. 4 | 50. 2
49. 8 | 46. 8
43. 5 | 45. 4 | 49.5 | 47.5 | 41.8 | | Means | 65. 5 | 51.9 | 59. 2 | 63.0 | 63.0 | 56. 2 | 56. 1 | 57.7 | 57.8 | 54. 2 | Means | 51. 7 | 42.8 | 47. 2 | 50. 3 | 50.1 | 46. 5 | 45. 3 | 47. 2 | 47.1 | 45.0 | | | | | | | OCTOBER | | | | | | | | | | | CEMBER | T | · | | r | r | | 1 | 70. 0 | 52. 5 | 62. 9 | 68. 8 | 69.4 | 58.0 | 57. 7 | 59.9 | 60.4 | 55. 5 | 1 | 47.0 | 38.9 | 40.9 | 46. 3 | 45.5 | 47.0 | 38. 5 | 41.5 | 41.8 | 45. 5 | | 2 | 71.0 | 50.5 | 61. 2 | 68.6 | 68. 3 | 58.0 | 58. 3
61. 1 | 62. 2 | 61. 1
62. 5 | 56. 4
56. 2
 2 | 51.0
45.0 | 39.6
36.8 | 46. 2
38. 8 | 47.9
44.2 | 46.7
44.4 | 39.6
38.2 | 43. 0
36. 8 | 44. 3
41. 0 | 42. 1
39. 7 | 37. 6
36. 4 | | 3 4 | 69. 8
63. 1 | 57. 5
50. 3 | 62. 2
57. 2 | 68. 1
60. 2 | 67. 2
60. 7 | 58. 2
56. 0 | 54. 1 | 64. 1
56. 2 | 56.9 | 51.0 | 4 | 43.7 | 35. 1 | 40.4 | 43.0 | 42.8 | 38. 7 | 38. 1 | 39.9 | 39.7 | 36. 2 | | 5 | 60.8 | 53. 3 | 57. 1 | 60.6 | 59.0 | 57.0 | 51.7 | 54.7 | 54. 8 | 53. 8 | 5 | 40. 1
43. 6 | 28.9 | 32.0
36.2 | 39.3
42.6 | 39.6
43.2 | 38. 8
37. 6 | 31. 4
35. 4 | 36.9
40.1 | 37.9
40.4 | 38. 6
37. 0 | | 6 7 | 59. 3
61. 7 | 48. 4
37. 9 | 54. 4
48. 9 | 57. 7
58. 0 | 58.0
58.3 | 48. 4
49. 7 | 48. 9
46. 7 | 50.0
50.0 | 49. 6
51. 2 | 44. 8
47. 7 | 6
7 | 44. 4 | 34.9
28.6 | 37.6 | 40.4 | 44.0 | 40.3 | 36.6 | 39.4 | 42. 5 | 38.8 | | 8 | 59.9 | 44. 1 | 54. 4 | 56.0 | 58. 5 | 51.5 | 51.6 | 52. 2 | 51.3 | 48. 1 | 8 | 43.0 | 33.9 | 39. 6
40. 7 | 43. 0
41. 9 | 37. 1
41. 3 | 42. 7
39. 4 | 38. 9
39. 3 | 41. 2
40. 1 | 36.8
39.7 | 41. 2
37. 6 | | 9 | 56. 1
58. 1 | 47. 1
49. 3 | 53. 6
52. 9 | 54.0
58.0 | 54. 6
56. 3 | 53. 8
51. 3 | 49. 2
48. 7 | 49.6
49.8 | 49.7
49.1 | 49. 4
45. 5 | 9
10 | 42. 7
40. 9 | 39. 2
30. 5 | 35.6 | 39. 3 | 39.9 | 30.5 | 34.6 | 37.5 | 38.4 | 30.3 | | 11 | 61.4 | 46. 3 | 54. 2 | 60.0 | 60.6 | 47.5 | 49.7 | 50.9 | 48. 7 | 46. 2 | 11 | 47.7 | 29.3 | 42. 5
35. 2 | 44. 2
39. 1 | 46. 6
37. 6 | 42. 6
30. 4 | 41. 4
34. 2 | 43. 4
37. 1 | 45. 8
36. 8 | 41.6 | | 12
13 | 54. 8
54. 6 | 46. 1
50. 6 | 51. 2
52. 8 | 52. 5
54. 6 | 54.8
54.0 | 51. 5
50. 6 | 46.9
50.5 | 48.0
50.5 | 49.8
50.0 | 50.0
46.8 | 12
13 | 42. 6
40. 8 | 30.4
24.1 | 28. 3 | 34.0 | 39.7 | 38.5 | 28. 3 | 31.0 | 37. 5 | 38.0 | | 14 | 52.8 | 48.8 | 50. 2 | 52. 4 | 52. 3 | 49. 2 | 47.5 | 48. 4 | 48. 3 | 47. 4 | 14 | 43.6 | 37.5 | 39. 4 | 43. 6
33. 5 | 42. 8
31. 5 | 40.•8
28. 4 | 38. 7
30. 3 | 41.8 | 42. 1
27. 5 | 40.2 | | 15
16 | 50. 3
53. 3 | 46. 3
45. 5 | 47.8
49.2 | 49.9
51.3 | 49.9
52.9 | 46. 4
50. 0 | 45. 6
46. 7 | 44.9
48.4 | 44. 4
47. 7 | 44. 2
46. 5 | 15
16 | 40.8
32.5 | 27.8
26.2 | 32.8
28.0 | 27.9 | 29.7 | 32. 5 | 26. 7 | 25. 4 | 27. 3 | 30.7 | | 17 | 55.4 | 47. 1 | 49.8 | 53. 3 | 54. 2 | 51.0 | 47.8 | 50.4 | 49. 2 | 47. 8 | 17 | 35.8 | 30.5 | 33.6 | 35. 4 | 35. 3 | 31. 3 | 32. 5
20. 5 | 32.7 | 32. 5
31. 5 | 29.8
29.0 | | 18
19 | 55. 2
62. 0 | 45.9
48.5 | 49. 6
53. 6 | 54. 7
61. 3 | 55. 2
58. 8 | 50. 2
54. 0 | 46.0
51.9 | 49. 2
56. 5 | 49. 3
55. 8 | 48. 5
52. 8 | 18
19 | 34. 9
34. 9 | 27. 1
28. 6 | 30.9
32.4 | 34. 6
32. 4 | 33. 8
32. 8 | 29. 8
33. 4 | 29. 5
31. 6 | 32. 0
32. 0 | 32.4 | 32.4 | | 20 | 63.9 | 52. 1 | 58.6 | 62.0 | 63.0 | 57.0 | 57.6 | 59.3 | 59. 2 | 56. 2 | 20 | 34.0 | 26. 7 | 28.6 | 32. 3 | 32. 8 | 28. 4 | 27. 3 | 30. 2 | 30.7 | 27.0 | | 21 22 | 61. 3
58. 1 | 52. 5
51. 8 | 56. 5
55. 7 | 60. 3
57. 7 | 59. 2
57. 5 | 53. 0
51. 8 | 55. 5
55. 3 | 57. 3
56. 4 | 57. 6
56. 3 | 52. 8
51. 8 | 21
22 | 28. 4
42. 6 | 19.0
21.0 | 23. 9
38. 6 | 26. 1
42. 3 | 25.0
41.0 | 21. 0
40. 6 | 23. 3
37. 8 | 25. 2
41. 0 | 24.0
40.0 | 20. 4
39. 6 | | 23 | 54.3 | 42. 2 | 52. 4 | 53.4 | 50.5 | 42. 3 | 50.7 | 49.3 | 47.0 | 40.9 | 23 | 41. 4 | 35. 5 | 38. 3 | 38. 3 | 39.0 | 35.8 | 37. 1 | 36. 7 | 36.9 | 35.4 | | 24 | 48. 3 | 38.0 | 44.8 | 48.0 | 46.6 | 38.0 | 41.7 | 42. 3
37. 5 | 39. 4
37. 5 | 34. 2
36. 0 | 24
25 | 40. 7
46. 3 | 31. 5
29. 5 | 39.0
43.3 | 40. 4
46. 1 | 39. 3
46. 2 | 31. 5
44. 4 | 37. 9
41. 7 | 38. 6
44. 3 | 37.8
44.9 | 31. 2
42. 9 | | 25
26 | 44. 8
49. 4 | 32. 5
36. 2 | 37.0
44.0 | 43. 0
48. 6 | 41. 7
48. 7 | 38. 0
47. 5 | 33. 3
41. 8 | 46.4 | 47.8 | 46.9 | 26 | 45.7 | 38.0 | 39.4 | 45. 3 | 45.0 | 41.8 | 37.9 | 42.0 | 41.7 | 40.2 | | 27 | 48.8 | 39.9 | 44. 5 | 47. 7 | 48. 6 | 46. 6 | 44. 1 | 46.7 | 46.6 | 44.0 | 27
28 | 45. 3
45. 6 | 36. 2
38. 5 | 39. 5
39. 2 | 43. 8
43. 7 | 45.0
45.5 | 41.8 | 38.0
37.9 | 41. 3
41. 0 | 41.7 | 40.5
39.0 | | 28
29 | 51.0
49.4 | 40.3 | 46. 6
34. 9 | 50. 2
48. 0 | 48. 3
48. 5 | 40.6
40.5 | 43. 5
33. 7 | 44.8
43.0 | 43.0
43.7 | 38. 2
39. 8 | 28
29 | 41.5 | 36.3 | 37. 1 | 40.3 | 37.8 | 38.0 | 36.8 | 39.3 | 37.4 | 37. 2 | | 30
31 | 52. 6
48. 7 | 39. 6
41. 4 | 46. 7
45. 3 | 50.9
48.7 | 48. 3
47. 0 | 45. 3
43. 8 | 42. 7
42. 0 | 45. 7
44. 5 | 45. 6
44. 7 | 43. 3
42. 4 | 30
31 | 46.0
44.8 | 34.0
31.9 | 45. 7
42. 7 | 45. 4
44. 0 | 44. 6
43. 7 | 34. 0
37. 3 | 45. 0
41. 7 | 43. 6
42. 0 | 42. 1
39. 7 | 33. 5
35. 5 | | Means | 56. 8 | 45.6 | 51.3 | 55. 4 | 55. 2 | 49.6 | 48. 5 | 50.6 | 50. 2 | 47. 3 | Means | 41. 8 | 31.8 | 37.0 | 40.0 | 40.0 | 36. 6 | 35.7 | 37. 8 | 37.8 | 35. 5 | ## TABLE XXVII. - READINGS OF THERMOMETERS AT $9^{\rm h}$ ON THE REVOLVING OPEN STAND (FORMERLY CALLED "ORDINARY") IN THE NEW SITE IN THE CHRISTIE ENCLOSURE | 1046 | | | | | | | | | | | | | | | | | <u> </u> | | | | T | | T | | |----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|-------|-----------|-------|---------|---------------|-------|-------------|-------|-------| | 1946 | Jan | uary | reb | February | | March | | April | | May | | me | Jı | ıly | August | | September | | October | | Nove | ember | Dece | ember | | Day | Max. | Min. | ١, | 0 | 0 | 0 | 0 | 0 _ | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | ö | | 0 | - | 0 | 0 | 0 | - | • | 0 | | | 1 | 36.4 | 27. 1 | 51.0 | 38. 2 | 38.7 | 26.0 | 62.0 | 35. 9 | 68. 2 | 41.5 | • • • | 46. 6 | 75. 1 | | 69.0 | 48. 2 | 64.6 | 49. 2 | 69.3 | 51.3 | 49.3 | 39.5 | 52. 2 | | | 2 | 33.6 | 28. 1
21. 3 | 53. 8 | 40.7 | 37.4 | 31.5 | 63. 5 | 39. 6 | 68. 5 | 45.6 | 64.0 | 47.4 | 82. 5 | 56. 7 | 74.4 | 57. 2 | 70.4 | 51. 2 | 71. 2 | 50. 2 | 45. 2 | 34. 8 | 51. 2 | 39.7 | | 4 | 33.0 | 21. 3 | 50.8 | 44. 2 | 35.3 | 31.4 | 69. 4 | 42. 6 | 64.5 | 45. 4 | 64. 1 | 48. 2 | 88.6 | 56. 6 | 75.8 | 57. 7 | 67. 1 | 53.0 | 70.5 | 56. 4 | 52. 3 | 38.8 | 48.7 | 36. 4 | | _ | | | 53. 7 | 46. 4 | 36.6 | 26. 3 | 77.9 | 44. 6 | 63.9 | 43. 1 | 65.8 | 45. 1 | 84. 5 | 62. 2 | 77. 3 | 50.7 | 63.5 | 56. 1 | 70.0 | 50. 2 | 58.0 | 50.5 | 45.5 | 34. 5 | | 5 | 45.6 | 27.7 | 49.4 | 39.9 | 37. 2 | 32. 4 | 78. 6 | 51.0 | 61.7 | 38.9 | 62.4 | 53. 4 | 72. 1 | | 84.0 | 55.8 | 62.7 | 53.8 | 64. 1 | 53. 1 | 65. 3 | 37、4 | 44.0 | 28. 1 | | 7 | 48.7 | 42.6 | 51.8 | 40.4 | 37.9 | 32. 5 | 53.6 | 35. 3 | 57. 2 | 37. 4 | 67. 3 | 50.1 | 68.9 | 49 . 9 | 84.6 | 57. 5 | 67.0 | 49.6 | 62. 1 | 51.4 | 59.5 | 43. 2 | 40.6 | 31.0 | | 8 | 49.4 | 32.8 | 55.3 | 44.8 | 35.7 | 33. 4 | 56.0 | 35. 4 | 58.9 | 46. 9 | 68. 5 | 43. 1 | 73. 4 | 49.0 | 75.9 | 57.8 | 64.7 | 46.6 | 61. 1 | 3 6. 5 | 52.0 | 38. 2 | 43.9 | 29. 1 | | _ | | 34.6 | 55.8 | 51.5 | 39. 2 | 25.7 | 65. 1 | 40.1 | 66. 3 | 44.6 | 74.0 | 53. 5 | 75.0 | 47.7 | 73.8 | 52. 5 | 67. 3 | 54. 3 | 62. 4 | 42. 1 | 48. 1 | 40.4 | 45.7 | 34. 3 | | 9
10 | 49. 2
51. 9 | 45. 2 | 53.2 | 45. 4 | 35.3 | 27. 2 | 58. 4 | 39. 2 | 52. 2 | 41.9 | 65.6 | 49.7 | 75.6 | 49. 2 | 70.7 | 50.4 | 60.9 | 52.0 | 61.7 | 45. 3 | 49.9 | 42, 8 | 43.3 | 37. 1 | | 11 | 55. 1 | 46. 1
46. 5 | 45. 7
51. 7 | 36. 7 | 38.5 | 22. 4 | 57. 2 | 31.6 | 62. 2 | 40.2 | 64. 3 | 53. 2 | 80.0 | 51. 2 | 70.5 | 56. 2 | 65. 2 | 50.4 | 57.6 | 48. 4 | 47. 4 | 40.7 | 42.4 | 33.6 | | 12 | 56.0 | 42.6 | | 38. 7 | 45. 2 | 27. 1 | 52. 2 | 26. 5 | 66.7 | 44.6 | 64.8 | 44.8 | 81.5 | 53.3 | 70.7 | 49. 1 | 67. 4 | 55.6 | 59.7 | 45. 2 | 50. 8 | 43. 3 | 42.9 | 29.0 | | | | | 50.6 | 42. 2 | 43. 1 | 35.5 | 57.5 | 37. 6 | 60.0 | 43. 4 | 64.0 | 44. 3 | 85. 2 | 57. 3 | 72.0 | 54. 5 | 64. 1 | 48. 2 | 62.8 | 45. 1 | 48.0 | 44. 9 | 48.0 | 32. 7 | | 13 | 48. 2
43. 1 | 38. 4
29. 7 | 49.8 | 44.6 | 51.4 | 38. 2 | 60.9 | 35. 7 | 67.6 | 42.7 | 61.0 | 44. 2 | 87. 1 | 57. 5 | 68. 8 | 54.6 | 68. 5 | 54.7 | 55.3 | 50.6 | 51.6 | 43. 5 | 39.0 | 23. 3 | | 14
15 | 38.8 | 30. 3 | 49.9 | 43. 9 | 41.8 | 35. 3 | 64. 4 | 39.9 | 60.0 | 39.2 | 69.4 | 46. 2 | 85.6 | 58. 4 | 70.0 | 53. 2 | 62.6 | 46. 2 | 55. 3 | 48. 5 | 52. 3 | 43.0 | 42.0 | 28. 1 | | 16 | 37.1 | 28. 2 | 49.5
47.4 | 44. 9
44. 9 | 39. 3
40. 0 | 35. 2
31. 8 | 68.4 | 39.0 | 51. 2 | 33.6 | 70. 1 | 52. 3 | 71.0 | 47. 8 | 73. 0 | 49.6 | 61. 2 | 53.0 | 53. 8 | 46. 3 | 49.9 | 44. 8 | 44.6 | 32. 5 | | 17 | 39.9 | 28. 1 | 53. 7 | 38. 0 | 38. 2 | 25. 4 | 68.6 | 45. 2 | 57.8 | 34.6 | 67.7 | 50. 4 | 71.0 | 48.6 | 67.9 | 43. 2 | 67. 8 | 45. 2 | 50.7 | | 49.4 | 44. 4 | 34.1 | 26. 3 | | 18 | 33. 3 | 27. 1 | 50.6 | 39. 4 | | 38. 1 | 74.0 | 49. 5 | 54.9 | 33.9 | 68. 8 | 53.7 | 57.6 | 43. 2 | 64. 5 | 52. 5 | 65.0 | 51.0 | 54. 2 | 46.9 | 49.5 | 37.9 | 33.7 | 26.6 | | 19 | 33. 1 | 26. 2 | | | 49.5 | | 64. 5 | 48. 2 | 61. 7 | 44. 2 | 65. 3 | 51.6 | 69. 1 | 54.6 | 61. 1 | 42.6 | 65. 3 | 52. 2 | 56. 3 | 44.9 | 49.5 | 42.8 | 36. 1 | 24. 8 | | 20 | 37. 1 | 19.4 | 50.6
53.8 | 45. 8
39. 6 | 56. 3
59. 1 | 46. 3
40. 1 | 54.9 | 32.6 | 62.0 | 46.6 | 67.4 | 46.9 | 67. 7 | 55.1 | 70.9 | 49.9 | 60.9 | 49. 3 | 56. 9 | 47.8 | 48.8 | 41.5 | 34.9 | 28. 2 | | 21 | 27. 7 | 21. 3 | 46.6 | 33. 4 | 61. 8 | 46.8 | 60.3 | 35. 0
47. 1 | 63. 7 | 38. 8 | 60.9 | 45. 4 | 69.9 | 55.6 | 66. 2 | 53. 5 | 62.0 | 52. 2 | 63.6 | 50.6 | 54. 7 | 44. 4 | 34.9 | 25.9 | | 22 | 33.0 | 25.0 | 41.0 | 27. 4 | 58.7 | 46. 7 | 67. 3
62. 4 | 38.7 | 65. 3
63. 7 | 43. 9
40. 5 | 66.7 | 43.6 | 70.3 | 53.8 | 62.6 | 48. 5 | 64. 3 | 44.8 | 64.7 | 52. 2 | 56. 3 | 47. 2 | 33. 7 | 19.8
| | 23 | 35.6 | 31. 2 | 46. 5 | 34.0 | 53. 5 | 38. 4 | | 1 | | | 71.4 | 47. 2 | 70.6 | 55. 2 | 70.0 | 51.9 | 63. 4 | 53. 2 | 62. 2 | 50.8 | 54. 0 | 41. 3 | 39.0 | 18. 9 | | 24 | 37. 2 | 31. 2 | 50.2 | 31.8 | 57. 4 | 40.1 | 62. 6
64. 1 | 35. 7
40. 5 | 67. 9
70. 1 | 46. 7
48. 6 | 71. 4 | 52. 2 | 79.0 | 60.6 | 66. 0 | 52.5 | 65. 3 | 56.6 | 58.8 | 50. 2 | 51. 4 | 34. 9 | 43. 1 | 38.0 | | 25 | 41.7 | 32. 1 | 45. 2 | 31. 1 | 52.6 | 33. 1 | | 43.6 | 66.7 | 48.6 | 78. 1
72. 7 | 56. 5 | 81. 2 | 57.3 | 73. 4 | 57.0 | 66. 1 | 50. 2 | 54.9 | 41.3 | 53. 4 | 47.0 | 39.7 | 35.6 | | 26 | 43. 5 | 40.7 | 42.7 | 35.6 | 59. 8 | 32.9 | •• | 47. 4 | | | | 48.4 | 87.6 | 53.6 | 73. 7 | 56. 3 | 66. 3 | 51.9 | 49.3 | 31.5 | 53.9 | 49.4 | 44.0 | 29.2 | | 27 | 43. 2 | 32.9 | 36.9 | 28. 3 | 63. 1 | 35. 1 | 61. 2 | 48. 8 | 63. 1
58. 9 | 50. 4
51. 2 | 71. 5
73. 6 | 53. 1 | 79. 1 | 50.3 | 72.9 | 50.3 | 70.5 | 57. 5 | 45.6 | 35.0 | 54. 8 | 45.0 | 47.0 | 37.9 | | 28 | 42. 5 | 32.6 | 38.0 | 19.5 | 64. 8 | 36. 2 | 64. 7 | 47. 4 | | | - | 48. 8 | 79.9 | 54. 1 | 70. 3 | 46. 1 | 72.0 | 57. 2 | 49.6 | 38. 7 | 53. 7 | 42.0 | 46.0 | 35. 6 | | 29 | 50.8 | 40.4 | 30.0 | 47. 7 | 64.8 | 41.1 | 59. 2 | 46.7 | 65. 9
67. 9 | 46. 1
45. 6 | 67. 4
72. 1 | 53. 5 | 69. 9 | 48. 2 | 68. 7 | 54. 3 | 76. 7 | 54.7 | 48.7 | 39.7 | 55. 3 | 49.8 | 45. 3 | 38.0 | | 30 | 52. 9 | 37.9 | | 1 | 67.0 | 40.8 | | 43.0 | 66. 2 | 45.6 | 70. 2 | 53. 3 | 71.0 | 54.7 | 68. 0 | 53.4 | 74.6 | 58. 3 | 52.8 | 28.9 | 50.3 | 47. 4 | 46.0 | 36.0 | | 31 | 43.8 | 34. 1 | | 1 | 62.9 | 38.9 | JG. U | ¥3.0 | | 49.2 | 70. 2 | ا ٥٠,٥ | 74. 7
72. 9 | 55. 2
52. 2 | 66. 7
66. 3 | 49. 5 | 65.9 | 50. 2 | 50.3 | 34.9 | 51. 2 | 41. 1 | 45.3 | 36. 1 | | | 4). 0 | 74. 4 | | | J2. 9 | 70.9 | | | •• | -7. 4 | | | | 72. 2 | 00. 5 | JU. 0 | | | 55.0 | 40.2 | | | 46. 5 | 31.8 | | 1eans | 42.0 | 32. 3 | 49. 1 | 39.0 | 48. 5 | 34.6 | 63. 1 | 40.8 | 62. 8 | 43. 3 | 67.9 | 49. 4 | 76: 1 | 53. 6 | 71. 0 | 52.2 | 66. 1 | 51.9 | 58. 4 | 45. 1 | 52. 2 | 42.7 | 42. 7 | 31.5 | #### TABLE XXVIII. - AMOUNT OF RAIN COLLECTED IN EACH MONTH OF THE YEAR 1946 | in the Ground
Enclosure | Monthly Amount of Rain collected in each Gauge | | | | | | | | | | | | | Rece | ght of
eiving
rface | | |-----------------------------|--|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|---------------------------|----------------------------| | sunk
Ist1e | Number
of
Gauge | January | February | March | Apr11 | May | June | July | August | September | October | November | December | Suums | Above
the
Ground | Above
Mean Sea
Level | | Osuges partly
in the Chr | 6
8 | in.
1.615
1.562 | in.
2. 487
2. 525 | in.
1. 213
1. 181 | in.
1. 703
1. 676 | in.
3. 152
3. 150 | in.
2. 517
2. 485 | in.
2. 393
2. 389 | in.
4. 232
4. 267 | 1n.
2. 471
2. 455 | in.
0. 707
0. 716 | in.
2. 966
2. 916 | in.
2. 265
2. 279 | in.
27. 721
27. 601 | ft.in.
0 5
1 0 | ft. in.
149 6
150 1 | | Numb
Rain;
(0.0 | per of
y Days
O5 in.
over) | 11 | 17 | 11 | 11 | 17 | 24 | 13 | 18 | 18 | 9 | 22 | 16 | 187 | •• | •• | TABLE XXIX. - MEAN HOURLY MEASURES OF THE HORIZONTAL MOVEMENT OF THE AIR, IN EACH MONTH, AND GREATEST HOURLY MEASURES, AS DERIVED FROM THE RECORDS OF ROBINSON'S ANEMOMETER.* | Hour
Ending | January | February | March | Apr11 | Мау | June | July | August | September | October | November | December | Mean
for the
Year | |--------------------------------|---------|----------|-------|-------|-------|-------|-------|--------|-----------|---------|----------|----------|-------------------------| | h | miles | 1 . | 12. 6 | 14.5 | 9.0 | 7.0 | 10.0 | 8. 1 | 8.7 | 8.9 | 10.3 | 7.4 | 11.6 | 10.5 | 9.9 | | 2 | 12.4 | 14.8 | 9. 1 | 6. 7 | 9.6 | 7.9 | 8. 2 | 9.3 | 10.8 | 7. 3 | 11.5 | 11.0 | 9.9 | | 3 | 11.6 | 14. 9 | 9. 1 | 6. 6 | 9.5 | 8. 1 | 7. 8 | 9.5 | 10.3 | 7. 1 | 12.0 | 10.6 | 9. 8 | | 4 | 11.7 | 14. 3 | 9.3 | 7. 1 | 9.7 | 8.6 | 7.4 | 9.3 | 10.1 | 7. 4 | , 12. 2 | 10. 7 | 9.8 | | 5 | 11.7 | 14.7 | 9.3 | 7.0 | 9.6 | 8.5 | 7.8 | 9.0 | 10.1 | 7. 9 | 12.6 | 10.8 | 9.9 | | 6 | 12.0 | 14.6 | 9.2 | 7. 1 | 9.9 | 8.3 | 7.8 | 8.9 | 9.7 | 7. 8 | 12. 7 | 10.5 | 9.9 | | 7 | 11.9 | 14.7 | 9.7 | 7. 0 | 10.6 | 8.7 | 7.8 | 9.4 | 9.6 | 8. 1 | 13.0 | 11. 2 | 10.1 | | 8 | 11.5 | 14.6 | 10.0 | 7.8 | 11. 1 | 8.7 | 8. 6 | 9.8 | 9.5 | 8. 8 | 12. 7 | 10.7 | 10.3 | | 9 | 11. 3 | 14.9 | 10.5 | 8. 6 | 11.5 | 9.9 | 9.0 | 10.5 | 10.2 | 8. 6 | 12.6 | 10.8 | 10.7 | | 10 | 11. 1 | 15. 3 | 10.5 | 8. 4 | 11.8 | 11. 1 | 9.3 | 11. 1 | 10.9 | 9. 3 | 12.8 | 11.1 | 11. 1 | | 11 | 11.8 | 15.6 | 11.4 | 9. 1 | 12. 1 | 11. 9 | 10.3 | 11.6 | 12.3 | 10.3 | 13. 2 | 11.9 | 11.8 | | 12 | 13.8 | 16.7 | 12.4 | 10.6 | 13. 5 | 12. 4 | 11. 2 | 12.8 | 12.6 | 10.7 | 14. 3 | 12.6 | 12. 8 | | 13 | 13. 5 | 16.9 | 12. 3 | 10. 7 | 13.8 | 13. 7 | 12.0 | 12.6 | 13.0 | 11. 1 | 14. 2 | 12.5 | 13.0 | | 14 | 13.5 | 17. 5 | 12.6 | 11. 1 | 13. 7 | 13. 3 | 12. 2 | 13.0 | 13.9 | 11. 4 | 14. 5 | 12.7 | 13. 3 | | 15 | 13.7 | 17.6 | 12.9 | 11. 3 | 13. 6 | 13. 6 | 12. 3 | 13.9 | 13.5 | 12. 1 | 14. 5 | 13.0 | 13. 5 | | 16 | 13. 2 | 16. 3 | 12.0 | 10.6 | 12.8 | 13. 9 | 12. 2 | 13. 2 | 12.5 | 11. 7 | 14. 5 | 12. 2 | 12. 9 | | 17 | 12.8 | 16. 4 | 12. 2 | 10.8 | 13. 2 | 14. 5 | 13. 4 | 13. 5 | 12. 2 | 11. 1 | 13. 8 | 11.9 | 13. 0 | | 18 | 13. 2 | 15.7 | 12.0 | 11. 2 | 12. 3 | 13. 4 | 12.6 | 13. 1 | 12. 2 | 10.5 | 13.4 | 11.5 | 12. 6 | | 19 | 13. 2 | 14.9 | 10.8 | 9.8 | 12.0 | 12.5 | 11.3 | 11.7 | 11.4 | 9.8 | 13. 2 | 11.4 | 11.8 | | 20 | 13. 3 | 14.9 | 10.1 | 9.3 | 11.4 | 11. 2 | 11.0 | 10.9 | 11. 2 | 9. 2 | 13. 1 | 11.0 | 11.4 | | 21 | 14. 1 | 14.9 | 10.0 | 8. 8 | 10.7 | 10.1 | 10.3 | 10.5 | 11. 2 | 8. 7 | 13. 5 | 10.6 | 11. 1 | | 22 | 13. 1 | 14.0 | 9.4 | 8. 4 | 10.9 | 9. 5 | 9.8 | 10.0 | 11.1 | 8. 4 | 13. 2 | 10.5 | 10.7 | | 23 | 12. 9 | 14. 2 | 9.2 | 8. 2 | 10.5 | 9. 2 | 9.4 | 9.6 | 11.0 | 7.8 | 12.6 | 10.4 | 10.4 | | 24 | 12. 7 | 14. 0 | 8. 8 | 7. 0 | 10.1 | 8. 3 | 8. 9 | 9. 3 | 10.4 | 7.8 | 11.5 | 10.6 | 9.9 | | Means | 12. 6 | 15.3 | 10.5 | 8. 8 | 11. 4 | 10.6 | 10.0 | 10.9 | 11. 3 | 9. 2 | 13.0 | 11.3 | 11. 2 | | Greatest
Hourly
Measures | 45 | 40 | 26 | 21 | 30 | 30 | 30 | 34 | 40 | 25 | 31 | 30 | • • | ^{*} The measures are derived from the motion of the cups by the formula V = 2.7 v, where v is the hourly motion of the cups in miles. See Introduction p.xvi. ·