MONTHLY MAGNETIC BULLETIN # **King Edward Point Observatory** **November 2021** #### MONTHLY MAGNETIC BULLETIN # King Edward Point Observatory magnetic data #### 1. Introduction King Edward Point Observatory was installed by the British Geological Survey (BGS), with the permission of the Government of South Georgia and the South Sandwich Islands (GSGSSI), in collaboration with British Antarctic Survey (BAS), and became operational in February 2011. This bulletin is published to provide rapid access to the provisional geomagnetic observatory results. The information is freely available for personal, academic, educational and non-commercial research or use. Magnetic observatory data are presented as a series of plots of one-minute, hourly and daily values, followed by tabulations of monthly values. The operation of the observatory and presentation of data are described in the rest of this section. Enquiries about the data should be addressed to: Geomagnetism Team British Geological Survey The Lyell Centre Research Avenue South Edinburgh EH14 4AS Scotland, UK Tel: +44 (0) 131 667 1000 Email: enquiries@bgs.ac.uk Internet: geomag.bgs.ac.uk #### 2. Position King Edward Point Observatory, one of the geomagnetic observatories maintained and operated by the British Geological Survey (BGS), is situated on a site adjacent to the Government of South Georgia and the South Sandwich Islands (GSGSSI) research station at King Edward Point, Cumberland East Bay, South Georgia. The observatory co-ordinates are: Geographic: 54° 16'55.2"N 323° 30'25.2"E Geomagnetic: 46° 26'34.8"N 030° 00'18"E Height above mean sea level: 7 m The geographical coordinates are measured by a handheld GPS device, which uses WGS84 as the reference coordinate system. The height above MSL is determined from the best available contour maps. The geomagnetic co-ordinates are approximations, calculated using the 13th generation International Geomagnetic Reference Field (IGRF) at epoch 2021.5. Online access to models (including IGRF), charts and navigational data are available at geomag.bgs.ac.uk/data_service/models_compass/home ### 3. The observatory operation #### **3.1 GDAS** The observatory operates under the control of the Geomagnetic Data Acquisition System (GDAS), which was developed by BGS staff, installed and became operational in February 2011. The data acquisition software, running on QNX operated computers, controls the data logging and the communications. There are two sets of sensors used for making magnetic measurements. A tri-axial linear-core fluxgate magnetometer, manufactured by the Danish Meteorological Institute, is used to measure the variations in the horizontal (H) and vertical (Z) components of the field. The third sensor is oriented perpendicular to these, and measures variations, which are proportional to the changes in declination (D). Measurements are made at a rate of 1 Hz. In addition to the fluxgate sensors there is a proton precession magnetometer (PPM) making measurements of the absolute total field intensity (*F*) at a rate of 0.1Hz. The raw unfiltered data are retrieved automatically via Internet connections to the BGS office in Edinburgh in near real-time. The fluxgate data are filtered to produce one-minute values using a 61-point cosine filter and the total field intensity samples are filtered using a 7-point cosine filter. The one-minute values provide input for various data products, available on-line at qeomag.bgs.ac.uk/data_service/home #### 3.2 Absolute observations The GDAS fluxgate magnetometers accurately measure variations in the components of the geomagnetic field, but not the absolute magnitudes. One set of absolute measurements of the field are made manually once per month. A fluxgate sensor mounted on a theodolite is used to determine *D* and inclination (*I*); the GDAS PPM measurements, with a site difference correction applied, are used for *F*. The absolute observations are used in conjunction with the GDAS variometer measurements to produce a continuous record of the absolute values of the geomagnetic field elements as if they had been measured at the observatory reference pillar. ## 4. Observatory results The data presented in the bulletin are in the form of plots and tabulations described in the following sections. #### 4.1 Absolute observations The absolute observation measurements made during the month are tabulated. Also included are the corresponding baseline values, which are the differences between the absolute measurements and the variometer measurements of D, H and Z (in the sense absolute-variometer). These are also plotted (markers) along with the derived preliminary daily baseline values (line) throughout the year. Daily mean differences between the measured absolute F and the F computed from the baseline corrected H and Z values are plotted in the fourth panel (in the sense measured-derived). The bottom panel shows the daily mean temperature in the fluxgate chamber. #### 4.2 Summary magnetograms Small-scale magnetograms are plotted which allow the month's data to be viewed at a glance. They are plotted 16 days to a page and show the one-minute variations in *D*, *H* and *Z*. The scales are shown on the right-hand side of the page. On disturbed days the scales are multiplied by a factor, which is indicated above the panel for that day. The variations are centred on the monthly mean value, shown on the left side of the page. #### 4.3 Magnetograms The daily magnetograms are plotted using one-minute values of *D*, *H* and *Z* from the fluxgate sensors, with any gaps filled using back-up data. The magnetograms are plotted to a variable scale; scale bars are shown to the right of each plot. The absolute level (the monthly mean value) is indicated on the left side of the plots. #### 4.4 Hourly mean value plots Hourly mean values of *D*, *H* and *Z* for the past 12 months are plotted in 27-day segments corresponding to the Bartels solar rotation number. Magnetic disturbances associated with active regions and/or coronal holes on the Sun may recur after 27 days: the same is true for geomagnetically quiet intervals. Plotting the data in this way highlights this recurrence. Diurnal variations are also clear in these plots and the amplitude changes throughout the year highlight the seasonal changes. Longer term secular variation is also illustrated. #### 4.5 Daily and monthly mean values Daily mean values of D, H, Z and F are plotted throughout the year. In addition, a table of monthly mean values of all the geomagnetic elements is provided. These values depend on accurate specification of the fluxgate sensor baselines. It is anticipated that these provisional values will not be altered by more than a few nT or tenths of arcminutes before being made definitive at the end of the year. #### 5. Conditions of use The data presented in this bulletin are provided for personal, academic, educational, non-commercial research or other non-commercial use and are not for sale or distribution to third parties without written permission from BGS. Reproduction of any part of this bulletin should be accompanied by the statement: 'Reproduced with the permission of the British Geological Survey ©UKRI. All rights Reserved'. Publications making use of the data should include an acknowledgment statement of the form: 'The results presented in this paper rely on the data collected at King Edward Point magnetic observatory, South Georgia operated by the British Geological Survey in co-operation with the British Antarctic Survey and the Government of South Georgia and the South Sandwich Islands (GSGSSI).' Commercial users can contact the geomagnetism team for information on the range of applications and services offered. Full contact details are available at geomag.bgs.ac.uk/contactus/staff # **King Edward Point Observatory** #### **Absolute observations** | | | Declination | | | Inclination | | Total field | | Horizontal intensity | | Vertical intensity | | |---------------|-------------------|---|---|--|---|--|--|--|---|---|--|--| | Day
Number | Time
(UT) | Absolute
(°) | Baseline
(º) | Time
(UT) | Absolute
(°) | Site
difference
(nT) | Absolute
corrected
(nT) | Absolute
(nT) | Baseline
(nT) | Absolute
(nT) | Baseline
(nT) | Observer | | 312 | 14:04 | -7.0127 | -7.0417 | 14:12 | -56.2058 | 11.7 | 27534.2 | 15314.8 | 15997.9 | -22882.1 | -23199.0 | MG | | 312 | 14:18 | -7.0115 | -7.0400 | 14:26 | -56.2087 | 11.7 | 27534.6 | 15313.9 | 15996.6 | -22883.2 | -23200.0 | MG | | 329 | 14:02 | -6.9782 | -7.0450 | 14:14 | -56.1379 | 11.7 | 27536.1 | 15343.0 | 15997.9 | -22865.4 | -23199.0 | MG | | 329 | 14:20 | -6.9665 | -7.0417 | 14:27 | -56.1446 | 11.7 | 27534.8 | 15339.6 | 15998.4 | -22866.2 | -23198.7 | MG | 312
312
329 | Number (UT) 312 14:04 312 14:18 329 14:02 | Day Number Time (UT) Absolute (°) 312 14:04 -7.0127 312 14:18 -7.0115 329 14:02 -6.9782 | Day Number Time (UT) Absolute (°) Baseline (°) 312 14:04 -7.0127 -7.0417 312 14:18 -7.0115 -7.0400 329 14:02 -6.9782 -7.0450 | Day Number Time (UT) Absolute (°) Baseline (UT) Time (UT) 312 14:04 -7.0127 -7.0417 14:12 312 14:18 -7.0115 -7.0400 14:26 329 14:02 -6.9782 -7.0450 14:14 | Day Number Time (UT) Absolute (°) Baseline (°) Time (UT) Absolute (°) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 312 14:18 -7.0115 -7.0400 14:26 -56.2087 329 14:02 -6.9782 -7.0450 14:14 -56.1379 | Day Number Time (UT) Absolute (°) Baseline (°) Time (UT) Absolute (°) Site difference (nT) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 11.7 312 14:18 -7.0115 -7.0400 14:26 -56.2087 11.7 329 14:02 -6.9782 -7.0450 14:14 -56.1379 11.7 | Day Number Time (UT) Absolute (°) Baseline (°) Time (UT) Absolute (°) Site difference (nT) Absolute corrected (nT) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 11.7 27534.2 312 14:18 -7.0115 -7.0400 14:26 -56.2087 11.7 27534.6 329 14:02 -6.9782 -7.0450 14:14 -56.1379 11.7 27536.1 | Day Number Time (UT) Absolute (°) Time (UT) Absolute (°) Site difference (nT) Absolute corrected (nT) Absolute corrected (nT) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 11.7 27534.2 15314.8 312 14:18 -7.0115 -7.0400 14:26 -56.2087 11.7 27534.6 15313.9 329 14:02 -6.9782 -7.0450 14:14 -56.1379 11.7 27536.1 15343.0 | Day Number Time (UT) Absolute (°) Time (UT) Absolute (°) Site difference (nT) Absolute corrected (nT) Absolute (nT) Baseline (nT) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 11.7 27534.2 15314.8 15997.9 312 14:18 -7.0115 -7.0400 14:26 -56.2087 11.7 27534.6 15313.9 15996.6 329 14:02 -6.9782 -7.0450 14:14 -56.1379 11.7 27536.1 15343.0 15997.9 | Day Number Time (UT) Absolute (°) Baseline (UT) Time (UT) Absolute (°) Site difference (nT) Absolute corrected (nT) Absolute (nT) Baseline (nT) Absolute (nT) 312 14:04 -7.0127 -7.0417 14:12 -56.2058 11.7 27534.2 15314.8 15997.9 -22882.1 312 14:18 -7.0115 -7.0400 14:26 -56.2087 11.7 27534.6 15313.9 15996.6 -22883.2 329 14:02 -6.9782 -7.0450 14:14 -56.1379 11.7 27536.1 15343.0 15997.9 -22865.4 | Day Number Time (UT) Absolute (°) Baseline (UT) Time (UT) Absolute (°) Site difference (nT) Absolute corrected (nT) Absolute (nT) Baseline (nT) Absolute (nT) Baseline (nT) Baseline (nT) Absolute (nT) Baseline (nT) Corrected (nT) Absolute (nT) Baseline Bas | King Edward Point 2021 #### King Edward Point Observatory: Declination (degrees) ### King Edward Point Observatory: Horizontal Intensity (nT) ## King Edward Point Observatory: Vertical Intensity (nT) # Monthly mean values for King Edward Point Observatory 2021 | Month | D | Н | 1 | X | Υ | Z | F | |----------|-------------|----------|-----------|----------|----------|-----------|----------| | January | -7° 2.4′ | 15397 nT | -56° 5.2′ | 15281 nT | -1887 nT | -22902 nT | 27597 nT | | February | -7° 2.3′ | 15384 nT | -56° 6.7′ | 15268 nT | -1885 nT | -22903 nT | 27590 nT | | March | -7° 2.7′ | 15375 nT | -56° 7.6′ | 15259 nT | -1886 nT | -22903 nT | 27585 nT | | April | -7° 2.6′ | 15371 nT | -56° 8.0′ | 15255 nT | -1885 nT | -22903 nT | 27583 nT | | May | -7° 2.7′ | 15370 nT | -56° 7.8′ | 15254 nT | -1885 nT | -22900 nT | 27580 nT | | June | -7° 2.3′ | 15369 nT | -56° 7.6′ | 15253 nT | -1883 nT | -22895 nT | 27575 nT | | July | -7° 2.0′ | 15364 nT | -56° 8.0′ | 15248 nT | -1881 nT | -22893 nT | 27570 nT | | August | -7° 1.5′ | 15359 nT | -56° 8.4′ | 15244 nT | -1879 nT | -22891 nT | 27566 nT | | Septembe | er -7° 1.3′ | 15355 nT | -56° 8.6′ | 15240 nT | -1877 nT | -22888 nT | 27561 nT | | October | -7° 0.9′ | 15351 nT | -56° 8.8′ | 15236 nT | -1875 nT | -22885 nT | 27556 nT | | November | r -7° 0.7′ | 15346 nT | -56° 9.2′ | 15231 nT | -1873 nT | -22883 nT | 27552 nT | #### Note: i. The values shown here are provisional.